Skip to main content

2018 | OriginalPaper | Buchkapitel

8. Liquid Metal Enabled Injectable Biomedical Electronics

verfasst von : Jing Liu, Liting Yi

Erschienen in: Liquid Metal Biomaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In clinics, a medical device is defined as implantable if it is either partly or totally introduced, surgically or medically into the human body and is intended to remain there after the procedure. By virtue of characteristics of well controlled wettability, high electrical conductivity, low cost and easy operation, liquid metal materials have been developed into above area in recent years. In this chapter, representative strategies to develop liquid metals as implantable or injectable medical electronics were introduced and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kim DH, Viventi J, Amsden JJ et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517CrossRef Kim DH, Viventi J, Amsden JJ et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517CrossRef
2.
Zurück zum Zitat Jiang G, Zhou DD (2010) Technology advances and challenges in hermetic packaging for implantable medical devices. In: Implantable neural prostheses 2: techniques and engineering approaches. Springer, Berlin, pp 28–61 Jiang G, Zhou DD (2010) Technology advances and challenges in hermetic packaging for implantable medical devices. In: Implantable neural prostheses 2: techniques and engineering approaches. Springer, Berlin, pp 28–61
3.
Zurück zum Zitat Bazaka K, Jacob MV (2013) Implantable devices: issues and challenges. Electronics 2(1):1–34 Bazaka K, Jacob MV (2013) Implantable devices: issues and challenges. Electronics 2(1):1–34
5.
Zurück zum Zitat Viventi J, Kim DH, Moss JD et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2(24):24ra22CrossRef Viventi J, Kim DH, Moss JD et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2(24):24ra22CrossRef
6.
Zurück zum Zitat Kim DH, Ahn JH, Choi WM et al (2008) Strechable and foldable silicon integrated circuits. Science 320(5875):507–511CrossRef Kim DH, Ahn JH, Choi WM et al (2008) Strechable and foldable silicon integrated circuits. Science 320(5875):507–511CrossRef
7.
Zurück zum Zitat Irnich W (2002) Electronic security systems and active implantable medical devices. Pacing Clin Electrophysiol Pace 25(8):1235–1258CrossRef Irnich W (2002) Electronic security systems and active implantable medical devices. Pacing Clin Electrophysiol Pace 25(8):1235–1258CrossRef
8.
Zurück zum Zitat Adunka O, Kiefer J, Unkelbach MH et al (2010) Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation. Laryngoscope 114(114):1237–1241 Adunka O, Kiefer J, Unkelbach MH et al (2010) Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation. Laryngoscope 114(114):1237–1241
9.
Zurück zum Zitat Halperin D, Heydt-Benjamin TS, Fu K et al (2008) Security and privacy for implantable medical devices. Pervasive Comput 7:30–39CrossRef Halperin D, Heydt-Benjamin TS, Fu K et al (2008) Security and privacy for implantable medical devices. Pervasive Comput 7:30–39CrossRef
10.
Zurück zum Zitat Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11(11):1–24CrossRef Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11(11):1–24CrossRef
11.
Zurück zum Zitat Fountas KN, Kapsalaki E, Hadjigeorgiou G (2010) Cerebellar stimulation in the management of medically intractable epilepsy: a systematic and critical review. Neurosurg Focus 29(2):E8CrossRef Fountas KN, Kapsalaki E, Hadjigeorgiou G (2010) Cerebellar stimulation in the management of medically intractable epilepsy: a systematic and critical review. Neurosurg Focus 29(2):E8CrossRef
12.
Zurück zum Zitat Zrenner E (2002) Will retinal implants restore vision? Science 295(5557):1022–1025CrossRef Zrenner E (2002) Will retinal implants restore vision? Science 295(5557):1022–1025CrossRef
13.
Zurück zum Zitat Magjarević R, Ferekpetrić B (2010) Implantable cardiac pacemakers-50 years from the first implantation. Zdravniški Vestnik 79(1):55–67 Magjarević R, Ferekpetrić B (2010) Implantable cardiac pacemakers-50 years from the first implantation. Zdravniški Vestnik 79(1):55–67
14.
Zurück zum Zitat Gelinck GH, Huitema HEA, Veenendaal EV et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mat 3(2):106–110CrossRef Gelinck GH, Huitema HEA, Veenendaal EV et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mat 3(2):106–110CrossRef
15.
Zurück zum Zitat Onuki Y, Bhardwaj U, Papadimitrakopoulos F et al (2008) A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diab Sci Technol 2(6):1003–1015CrossRef Onuki Y, Bhardwaj U, Papadimitrakopoulos F et al (2008) A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diab Sci Technol 2(6):1003–1015CrossRef
16.
Zurück zum Zitat Cameron T, Liinamaa TL, Loeb GE et al (1998) Long-term biocompatibility of a miniature stimulator implanted in feline hind limb muscles. IEEE Trans Biomed Eng 45(8):1024–1035CrossRef Cameron T, Liinamaa TL, Loeb GE et al (1998) Long-term biocompatibility of a miniature stimulator implanted in feline hind limb muscles. IEEE Trans Biomed Eng 45(8):1024–1035CrossRef
17.
Zurück zum Zitat Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953CrossRef Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953CrossRef
18.
Zurück zum Zitat International Organization for Standardization ISO 10993. Biological evaluation of medical devices. Part 1: evaluation and testing within a risk management process. Geneva: ISO, 2009 International Organization for Standardization ISO 10993. Biological evaluation of medical devices. Part 1: evaluation and testing within a risk management process. Geneva: ISO, 2009
19.
Zurück zum Zitat Joung YH (2013) Development of implantable medical devices: from an engineering perspective. Int Neurourol J 17(3):98–106CrossRef Joung YH (2013) Development of implantable medical devices: from an engineering perspective. Int Neurourol J 17(3):98–106CrossRef
20.
Zurück zum Zitat Thomas RW (1976) Moisture, myths, and microcircuits. IEEE Trans Parts Hybrids Packag 12(3):167–171CrossRef Thomas RW (1976) Moisture, myths, and microcircuits. IEEE Trans Parts Hybrids Packag 12(3):167–171CrossRef
21.
Zurück zum Zitat Chlebowski AL, Chow EY, Ellison C et al (2012) Integrated LTCC packaging for use in biomedical devices. Biomed Mater Eng 22(6):361–372 Chlebowski AL, Chow EY, Ellison C et al (2012) Integrated LTCC packaging for use in biomedical devices. Biomed Mater Eng 22(6):361–372
22.
Zurück zum Zitat Kim SJ, Lee DS, Kim IG et al (2012) Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor. Kaohsiung J Med Sci 28(3):123–129CrossRef Kim SJ, Lee DS, Kim IG et al (2012) Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor. Kaohsiung J Med Sci 28(3):123–129CrossRef
23.
Zurück zum Zitat Chen GQ (2011) Biofunctionalization of polymers and their applications. Adv Biochem Eng Biotechnol 125(125):29–45 Chen GQ (2011) Biofunctionalization of polymers and their applications. Adv Biochem Eng Biotechnol 125(125):29–45
24.
Zurück zum Zitat Guenther T, Dodds CWD, Lovell NH et al. (2011) Chip-scale hermetic feedthroughs for implantable bionics. In: International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 6717–6720 Guenther T, Dodds CWD, Lovell NH et al. (2011) Chip-scale hermetic feedthroughs for implantable bionics. In: International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 6717–6720
25.
Zurück zum Zitat Qin Y, Howlader MMR, Deen MJ et al (2014) Polymer integration for packaging of implantable sensors. Sens Actuators B Chem 202(10):758–778CrossRef Qin Y, Howlader MMR, Deen MJ et al (2014) Polymer integration for packaging of implantable sensors. Sens Actuators B Chem 202(10):758–778CrossRef
26.
Zurück zum Zitat Hwang GT, Im D, Lee SE et al (2013) In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano 7(5):4545–4553CrossRef Hwang GT, Im D, Lee SE et al (2013) In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano 7(5):4545–4553CrossRef
27.
Zurück zum Zitat Ha D, Kim BG, Lin TY et al. (2010) 3D packaging technique on liquid crystal polymer (LCP) for miniature wireless biomedical sensor. In: Microwave Symposium Digest. IEEE, pp 612–615 Ha D, Kim BG, Lin TY et al. (2010) 3D packaging technique on liquid crystal polymer (LCP) for miniature wireless biomedical sensor. In: Microwave Symposium Digest. IEEE, pp 612–615
28.
Zurück zum Zitat White TJ, Broer DJ (2015) Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater 14(11):1087CrossRef White TJ, Broer DJ (2015) Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater 14(11):1087CrossRef
29.
Zurück zum Zitat Kim S, Bhandari R, Klein M et al (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevice 11(2):453–466CrossRef Kim S, Bhandari R, Klein M et al (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevice 11(2):453–466CrossRef
30.
Zurück zum Zitat Ryu SI, Shenoy KV (2009) Human cortical prostheses: lost in translation? Neurosurg Focus 27(1):E5CrossRef Ryu SI, Shenoy KV (2009) Human cortical prostheses: lost in translation? Neurosurg Focus 27(1):E5CrossRef
31.
Zurück zum Zitat Schalk G, Miller KJ, Anderson NR et al (2008) Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng 5(1):75CrossRef Schalk G, Miller KJ, Anderson NR et al (2008) Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng 5(1):75CrossRef
32.
Zurück zum Zitat So JH, Thelen J, Qusba A et al (2009) Reversibly deformable and mechanically tunable fluidic antennas. Adv Func Mater 19(22):3632–3637CrossRef So JH, Thelen J, Qusba A et al (2009) Reversibly deformable and mechanically tunable fluidic antennas. Adv Func Mater 19(22):3632–3637CrossRef
33.
Zurück zum Zitat Zhang Q, Zheng Y, Liu J (2012) Direct writing of electronics based on alloy and metal (DREAM) ink: a newly emerging area and its impact on energy, environment and health sciences. Front Energy 6(4):311–340CrossRef Zhang Q, Zheng Y, Liu J (2012) Direct writing of electronics based on alloy and metal (DREAM) ink: a newly emerging area and its impact on energy, environment and health sciences. Front Energy 6(4):311–340CrossRef
34.
Zurück zum Zitat Zheng Y, He Z, Gao Y et al (2013) Direct desktop printedcircuits—on-paper flexible electronics. Sci Rep 3(5):759–762 Zheng Y, He Z, Gao Y et al (2013) Direct desktop printedcircuits—on-paper flexible electronics. Sci Rep 3(5):759–762
35.
Zurück zum Zitat Wang L, Liu J (2014) Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. Sci China Technol Sci 57(11):2089–2095CrossRef Wang L, Liu J (2014) Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. Sci China Technol Sci 57(11):2089–2095CrossRef
36.
Zurück zum Zitat Jin C, Zhang J, Li X et al (2013) Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep 3:3342CrossRef Jin C, Zhang J, Li X et al (2013) Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep 3:3342CrossRef
37.
Zurück zum Zitat Butson CR, Maks CB, Mcintyre CC (2006) Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol 117(2):447CrossRef Butson CR, Maks CB, Mcintyre CC (2006) Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol 117(2):447CrossRef
38.
Zurück zum Zitat Chu V, Otero JM, Lopez O et al (2001) Method for non-invasively recording electrocardiograms in conscious mice. BMC Physiol 1(1):6CrossRef Chu V, Otero JM, Lopez O et al (2001) Method for non-invasively recording electrocardiograms in conscious mice. BMC Physiol 1(1):6CrossRef
39.
Zurück zum Zitat Salama G, London B (2007) Mouse models of long QT syndrome. J Physiol 578(1):43–53CrossRef Salama G, London B (2007) Mouse models of long QT syndrome. J Physiol 578(1):43–53CrossRef
40.
Zurück zum Zitat Sun X, Yuan B, Rao W, Liu J (2017) Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors. Biomaterials 146:156–167CrossRef Sun X, Yuan B, Rao W, Liu J (2017) Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors. Biomaterials 146:156–167CrossRef
41.
Zurück zum Zitat Cabrales LB, Ciria HC, Bruzón RP et al (2001) Electrochemical treatment of mouse Ehrlich tumor with direct electric current. Bioelectromagnetics 22:316–322CrossRef Cabrales LB, Ciria HC, Bruzón RP et al (2001) Electrochemical treatment of mouse Ehrlich tumor with direct electric current. Bioelectromagnetics 22:316–322CrossRef
42.
Zurück zum Zitat Wemyss-Holden SA, Robertson GS, Dennison AR et al (2000) Electrochemical lesions in the rat liver support its potential for treatment of liver tumors. J Surg Res 93:55–62CrossRef Wemyss-Holden SA, Robertson GS, Dennison AR et al (2000) Electrochemical lesions in the rat liver support its potential for treatment of liver tumors. J Surg Res 93:55–62CrossRef
43.
Zurück zum Zitat Czymek R, Nassrallah J, Gebhard M et al (2012) Intrahepatic radiofrequency ablation versus electrochemical treatment in vivo. Surg Oncol 21:79–86CrossRef Czymek R, Nassrallah J, Gebhard M et al (2012) Intrahepatic radiofrequency ablation versus electrochemical treatment in vivo. Surg Oncol 21:79–86CrossRef
44.
Zurück zum Zitat Keisari Y, Hochman I, Confino H, Korenstein R, Kelson I (2014) Activation of local and systemic anti-tumor immune responses by ablation of solid tumors with intratumoral electrochemical or alpha radiation treatments. Cancer Immunol Immunother 63:1–9CrossRef Keisari Y, Hochman I, Confino H, Korenstein R, Kelson I (2014) Activation of local and systemic anti-tumor immune responses by ablation of solid tumors with intratumoral electrochemical or alpha radiation treatments. Cancer Immunol Immunother 63:1–9CrossRef
45.
Zurück zum Zitat Nilsson E, von Euler H, Berendson J et al (2000) Electrochemical treatment of tumours. Bioelectrochemistry 51:1–11CrossRef Nilsson E, von Euler H, Berendson J et al (2000) Electrochemical treatment of tumours. Bioelectrochemistry 51:1–11CrossRef
46.
Zurück zum Zitat Li K, Xin Y, Gu Y, Xu B, Fan D, Ni B (1997) Effects of direct current on dog liver: possible mechanisms for tumor electrochemical treatment. Bioelectromagnetics 18:2–7CrossRef Li K, Xin Y, Gu Y, Xu B, Fan D, Ni B (1997) Effects of direct current on dog liver: possible mechanisms for tumor electrochemical treatment. Bioelectromagnetics 18:2–7CrossRef
47.
Zurück zum Zitat Xin Y, Xue F, Ge B, Zhao F, Shi B, Zhang W (1997) Electrochemical treatment of lung cancer. Bioelectromagnetics 18:8–13CrossRef Xin Y, Xue F, Ge B, Zhao F, Shi B, Zhang W (1997) Electrochemical treatment of lung cancer. Bioelectromagnetics 18:8–13CrossRef
48.
Zurück zum Zitat Li J, Xin Y, Fan X, Chen J, Wang J, Zhou J (2013) Effect of electrochemotherapy in treating patients with venous malformations. Chinese J integr Med 19:387–393CrossRef Li J, Xin Y, Fan X, Chen J, Wang J, Zhou J (2013) Effect of electrochemotherapy in treating patients with venous malformations. Chinese J integr Med 19:387–393CrossRef
49.
Zurück zum Zitat Yen Y, Li J, Zhou B, Rojas F, Yu J, Chou C (1999) Electrochemical treatment of human KB cells in vitro. Bioelectromagnetics 20:34–41CrossRef Yen Y, Li J, Zhou B, Rojas F, Yu J, Chou C (1999) Electrochemical treatment of human KB cells in vitro. Bioelectromagnetics 20:34–41CrossRef
50.
Zurück zum Zitat Nilsson E, Fontes E (2001) Mathematical modelling of physicochemical reactions and transport processes occurring around a platinum cathode during the electrochemical treatment of tumours. Bioelectrochemistry 53:213–224CrossRef Nilsson E, Fontes E (2001) Mathematical modelling of physicochemical reactions and transport processes occurring around a platinum cathode during the electrochemical treatment of tumours. Bioelectrochemistry 53:213–224CrossRef
51.
Zurück zum Zitat Cury FL, Bhindi B, Rocha J et al (2015) Electrochemical red-ox therapy of prostate cancer in nude mice. Bioelectrochemistry 104:1–9CrossRef Cury FL, Bhindi B, Rocha J et al (2015) Electrochemical red-ox therapy of prostate cancer in nude mice. Bioelectrochemistry 104:1–9CrossRef
52.
Zurück zum Zitat Belyy Y, Tereshchenko A, Shatskih A (2012) Electrochemical lysis of an intraocular tumour using a combination of electrode placements. Ecancermedicalscience 6:272 Belyy Y, Tereshchenko A, Shatskih A (2012) Electrochemical lysis of an intraocular tumour using a combination of electrode placements. Ecancermedicalscience 6:272
53.
Zurück zum Zitat Czymek R, Dinter D, Löffler S et al (2011) Electrochemical treatment: An investigation of dose-response relationships using an isolated liver perfusion model. Saudi J Gastroenterol 17:335CrossRef Czymek R, Dinter D, Löffler S et al (2011) Electrochemical treatment: An investigation of dose-response relationships using an isolated liver perfusion model. Saudi J Gastroenterol 17:335CrossRef
54.
Zurück zum Zitat Ren RL, Vora N, Yang F et al (2001) Variations of dose and electrode spacing for rat breast cancer electrochemical treatment. Bioelectromagnetics 22:205–211CrossRef Ren RL, Vora N, Yang F et al (2001) Variations of dose and electrode spacing for rat breast cancer electrochemical treatment. Bioelectromagnetics 22:205–211CrossRef
55.
Zurück zum Zitat von Euler H, Nilsson E, Olsson JM, Lagerstedt AS (2001) Electrochemical treatment (EChT) effects in rat mammary and liver tissue. In vivo optimizing of a dose-planning model for EChT of tumours. Bioelectrochemistry 54:117–124CrossRef von Euler H, Nilsson E, Olsson JM, Lagerstedt AS (2001) Electrochemical treatment (EChT) effects in rat mammary and liver tissue. In vivo optimizing of a dose-planning model for EChT of tumours. Bioelectrochemistry 54:117–124CrossRef
56.
Zurück zum Zitat Jin C, Zhang J, Li X, Yang X, Li J, Liu J (2013) Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep 3(6163):3442CrossRef Jin C, Zhang J, Li X, Yang X, Li J, Liu J (2013) Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep 3(6163):3442CrossRef
57.
Zurück zum Zitat Liu J, Fu TM, Cheng Z et al (2015) Syringe-injectable electronics. Nat Nanotechnol 10:629–636CrossRef Liu J, Fu TM, Cheng Z et al (2015) Syringe-injectable electronics. Nat Nanotechnol 10:629–636CrossRef
58.
Zurück zum Zitat Hong G, Fu TM, Zhou T, Schuhmann TG, Huang J, Lieber CM (2015) Syringe injectable electronics: Precise targeted delivery with quantitative input/output connectivity. Nano Lett 15:6979–6984CrossRef Hong G, Fu TM, Zhou T, Schuhmann TG, Huang J, Lieber CM (2015) Syringe injectable electronics: Precise targeted delivery with quantitative input/output connectivity. Nano Lett 15:6979–6984CrossRef
59.
Zurück zum Zitat Kim DH, Lee Y (2015) Bioelectronics: injection and unfolding. Nat Nanotechnol 10:570–571CrossRef Kim DH, Lee Y (2015) Bioelectronics: injection and unfolding. Nat Nanotechnol 10:570–571CrossRef
60.
Zurück zum Zitat Sheng L, Zhang J, Liu J (2014) Diverse transformations of liquid metals between different morphologies. Adv Mater 26:6036–6042CrossRef Sheng L, Zhang J, Liu J (2014) Diverse transformations of liquid metals between different morphologies. Adv Mater 26:6036–6042CrossRef
61.
Zurück zum Zitat Zhang J, Sheng L, Liu J (2014) Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci Rep 4:7116CrossRef Zhang J, Sheng L, Liu J (2014) Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci Rep 4:7116CrossRef
62.
Zurück zum Zitat Liu T, Sen P, Kim CJ (2012) Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst 21:443–450CrossRef Liu T, Sen P, Kim CJ (2012) Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst 21:443–450CrossRef
63.
Zurück zum Zitat Saiz E, Tomsia AP (2004) Atomic dynamics and Marangoni films during liquid-metal spreading. Nat Mater 3:903–909CrossRef Saiz E, Tomsia AP (2004) Atomic dynamics and Marangoni films during liquid-metal spreading. Nat Mater 3:903–909CrossRef
64.
Zurück zum Zitat Zavabeti A, Daeneke T, Chrimes AF et al (2016) Ionic imbalance induced self-propulsion of liquid metals. Nat Commun 7:12402CrossRef Zavabeti A, Daeneke T, Chrimes AF et al (2016) Ionic imbalance induced self-propulsion of liquid metals. Nat Commun 7:12402CrossRef
65.
Zurück zum Zitat Wójcicki M, Drozdzik M, Olewniczak S et al (2000) Antitumor effect of electrochemical therapy on transplantable mouse cancers. Med Sci Monit 6:498–502 Wójcicki M, Drozdzik M, Olewniczak S et al (2000) Antitumor effect of electrochemical therapy on transplantable mouse cancers. Med Sci Monit 6:498–502
66.
Zurück zum Zitat Turk B, Bieth JG, Björk I et al (1995) Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Bio Chem Hoppe-Seyler 376:225–230CrossRef Turk B, Bieth JG, Björk I et al (1995) Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Bio Chem Hoppe-Seyler 376:225–230CrossRef
67.
Zurück zum Zitat Kroemer G, Jäättelä M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886CrossRef Kroemer G, Jäättelä M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886CrossRef
68.
Zurück zum Zitat von Euler H, Olsson JM, Hultenby K, Thörne A, Lagerstedt AS (2003) Animal models for treatment of unresectable liver tumours: a histopathologic and ultra-structural study of cellular toxic changes after electrochemical treatment in rat and dog liver. Bioelectrochemistry 59:89–98CrossRef von Euler H, Olsson JM, Hultenby K, Thörne A, Lagerstedt AS (2003) Animal models for treatment of unresectable liver tumours: a histopathologic and ultra-structural study of cellular toxic changes after electrochemical treatment in rat and dog liver. Bioelectrochemistry 59:89–98CrossRef
69.
Zurück zum Zitat von Euler H, Stråhle K, Thörne A, Yongqing G (2004) Cell proliferation and apoptosis in rat mammary cancer after electrochemical treatment (EChT). Bioelectrochemistry 62:57–65CrossRef von Euler H, Stråhle K, Thörne A, Yongqing G (2004) Cell proliferation and apoptosis in rat mammary cancer after electrochemical treatment (EChT). Bioelectrochemistry 62:57–65CrossRef
70.
Zurück zum Zitat Ikada Y, Tabata Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31(3):287–301CrossRef Ikada Y, Tabata Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31(3):287–301CrossRef
71.
Zurück zum Zitat Azab AK, Doviner V, Orkin B et al (2007) Biocompatibility evaluation of crosslinked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat. J Biomed Mater Res, Part A 83(2):414–422CrossRef Azab AK, Doviner V, Orkin B et al (2007) Biocompatibility evaluation of crosslinked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat. J Biomed Mater Res, Part A 83(2):414–422CrossRef
72.
Zurück zum Zitat Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohyd Polym 77(1):1–9CrossRef Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohyd Polym 77(1):1–9CrossRef
73.
Zurück zum Zitat Tan H, Li H, Rubin JP et al (2011) Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. J Tissue Eng Regenerative Med 5(10):790–797CrossRef Tan H, Li H, Rubin JP et al (2011) Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. J Tissue Eng Regenerative Med 5(10):790–797CrossRef
74.
Zurück zum Zitat Wang X, Ren Y, Liu J (2018) Liquid metal enabled electrobiology: A generalized easy going way to tackle disease challenges. arXiv:1805.04002 Wang X, Ren Y, Liu J (2018) Liquid metal enabled electrobiology: A generalized easy going way to tackle disease challenges. arXiv:​1805.​04002
Metadaten
Titel
Liquid Metal Enabled Injectable Biomedical Electronics
verfasst von
Jing Liu
Liting Yi
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5607-9_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.