Skip to main content
Erschienen in: Mathematics and Financial Economics 1/2016

01.01.2016

Liquidation with self-exciting price impact

verfasst von: Thomas Cayé, Johannes Muhle-Karbe

Erschienen in: Mathematics and Financial Economics | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study optimal execution with “self-exciting” price impact, where persistent trades not only incur price impact but also increase the execution costs for successive orders. This model is motivated by an equilibrium between fundamental sellers, market makers, and end users. For risk-neutral investors, it leads to faster initial trading compared to the constant execution rate of Bertsimas and Lo [5]. For risk-averse liquidation as in Almgren and Chriss [2, 3] or Huberman and Stanzl [15], self-excitement has a moderating effect: slow liquidation is sped up, whereas fast schedules are slowed down.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Front running becomes optimal in the presence of sufficiently large “preys” in the models of Brunnermeier and Pedersen [6] as well as Carlin, Lobo, and Viswanathan [7]. In the model of Schied and Schöneborn [20], potential predators can be either detrimental or beneficial depending on the model parameters.
 
2
Very similar models were proposed and studied concurrently by Bertsimas and Lo [5], Madhavan [18], as well as Huberman and Stanzl [15]. To keep in line with most of the literature, we nevertheless stick to the nomenclature “Almgren–Chriss model”.
 
3
Recently, a different kind of “self-excitement” has also started to receive increasing attention, see, e.g., [1] and the references therein. In these models, the orders of other market participants are modeled by a Hawkes process, a counting process whose jump intensities are self-exciting in that they are influenced by the past jumps. Whence, self-excitement is produced by the trades of the other market participants in these models, whereas it is instigated by the large trader in ours.
 
4
Since time horizons for liquidation programs are typically short, drifts are usually neglected (but cf. [16]) and it is reasonable to work with more tractable arithmetic Brownian motions rather than their geometric counterparts (but cf. [9]). In the case of a risk-neutral investor, the price process need not be an arithmetic Brownian motion, but can be a general martingale.
 
5
This price impact is purely temporary, in that it only affects the current trade but not subsequent ones. Linear permanent price impact can also be accounted for by shifting the unaffected price quote, see [3]. However, like proportional transaction costs, linear permanent impact does not alter optimal execution strategies. Hence, we disregard these two frictions throughout. Nonlinear permanent price impact depending on the cumulated number of shares sold by the large trader is studied by [13].
 
6
The linear dependence is assumed for tractability. It allows for closed-form solutions and also can be seen as a first-order approximation for more general small self-excitement mechanisms.
 
7
Indeed, assume we start with X shares. Buying shares at a constant rate on the interval \([0,\frac{T}{2}]\) to reach \(X+\frac{\ell _0}{\ell _1}+k\), for some integer k, and selling back these shares at the same speed on \([\frac{T}{2},T]\) yields an expected profit of order \(O(k^3)\) as k grows to infinity, while the standard deviation of the final profit is of order O(k).
 
8
To allow for buy orders in our model and rule out price manipulations, we could define the price impact parameter as \(\lambda _t:=\ell _0 + \ell _1 (X-x_t)^+\) when selling (\(\dot{x}_t<0\)) and \(\lambda _t:=\ell _0\) when buying (\(\dot{x}_t > 0\)). This means that, during a substantial liquidation, sales increase the price impact of further sales whereas the price impact of purchases remains constant. In such a model round-trips have a strictly positive expected cost, and optimal strategies are necessarily decreasing.
 
9
For convenience, we assume that \(h/\Delta t\) is an integer.
 
10
Here, the risk-free rate is set equal to zero, because the time horizons we consider are short.
 
11
Note, however, that there is recent empirical evidence suggesting that the marginal impact of child orders decreases as metaorder execution proceeds [4, 12]. Whence, the argument presented here may only apply for very large execution programs.
 
12
Adaptive strategies are studied by Almgren and Lorenz [17] for a mean-variance criterion and by Schied and Schöneborn [19] for von Neumann-Morgenstern utilities. Here, we focus on deterministic strategies to obtain tractable solutions also with our more complicated price impact structure in Sect. 4.2. In the risk-neutral case, this entails no loss of generality, cf. Remark 4.2.
 
13
The integrand to be minimized pointwise for each \(t\in [0,T]\) is given by \(F\left( t,x,v\right) = (\ell _0+\ell _1 X)v^2 -\ell _1 x v^2 \); its Hessian is \( \left( {\begin{array}{l@{\quad }l} 0 &{}\quad { - 2\ell _{1} v} \\ { - 2\ell _{1} v} &{}\quad {2\left( {\ell _{0} + \ell _{1} \left( {X - x} \right) } \right) } \\ \end{array} } \right) \) . The sum of this matrix’ eigenvalues is positive for \(x\in [0, X]\) and their product negative. Whence the goal functional is not convex.
 
14
Note that for \(\ell _1=0\), we recover the Euler–Lagrange equation (4.1) in the classical Almgren–Chriss model. Conversely, for \(\ell _1>0\) but \(\gamma =0\) we are back in the risk-neutral setting of Sect. 4.2.
 
15
Indeed, an inspection of the explicit formula shows that this holds uniformly on [0, T], so that the claim for the remainder follows from the dominated convergence theorem.
 
Literatur
1.
Zurück zum Zitat Alfonsi, A., Blanc, P.: Dynamic optimal execution in a mixed-market-impact Hawkes price model. Preprint (2014) Alfonsi, A., Blanc, P.: Dynamic optimal execution in a mixed-market-impact Hawkes price model. Preprint (2014)
2.
Zurück zum Zitat Almgren, R.F., Chriss, N.: Value under liquidation. Risk 12(12), 61–63 (1999) Almgren, R.F., Chriss, N.: Value under liquidation. Risk 12(12), 61–63 (1999)
3.
Zurück zum Zitat Almgren, R.F., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3, 5–40 (2001) Almgren, R.F., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3, 5–40 (2001)
4.
Zurück zum Zitat Bacry, E., Iuga, A., Lasnier, M., Lehalle, C.-A.: Market impacts and the life cycle of investors orders. Preprint (2014) Bacry, E., Iuga, A., Lasnier, M., Lehalle, C.-A.: Market impacts and the life cycle of investors orders. Preprint (2014)
5.
Zurück zum Zitat Bertsimas, D., Lo, A.W.: Optimal control of execution costs. J. Financ. Markets 1(1), 1–50 (1998)CrossRef Bertsimas, D., Lo, A.W.: Optimal control of execution costs. J. Financ. Markets 1(1), 1–50 (1998)CrossRef
6.
Zurück zum Zitat Brunnermeier, M.K., Pedersen, L.H.: Predatory trading. J. Financ. 60(4), 1825–1863 (2005)CrossRef Brunnermeier, M.K., Pedersen, L.H.: Predatory trading. J. Financ. 60(4), 1825–1863 (2005)CrossRef
7.
Zurück zum Zitat Carlin, B.I., Lobo, M.S., Viswanathan, S.: Episodic liquidity crises: cooperative and predatory trading. J. Financ. 62(5), 2235–2274 (2007)CrossRef Carlin, B.I., Lobo, M.S., Viswanathan, S.: Episodic liquidity crises: cooperative and predatory trading. J. Financ. 62(5), 2235–2274 (2007)CrossRef
8.
Zurück zum Zitat Garleanu, N., Pedersen, L.H.: Dynamic portfolio choice with frictions. Preprint (2013) Garleanu, N., Pedersen, L.H.: Dynamic portfolio choice with frictions. Preprint (2013)
9.
Zurück zum Zitat Gatheral, J., Schied, A.: Optimal trade execution under geometric brownian motion in the Almgren and Chriss framework. Int. J. Theor. Appl. Financ. 14(03), 353–368 (2011)MATHMathSciNetCrossRef Gatheral, J., Schied, A.: Optimal trade execution under geometric brownian motion in the Almgren and Chriss framework. Int. J. Theor. Appl. Financ. 14(03), 353–368 (2011)MATHMathSciNetCrossRef
10.
Zurück zum Zitat Gatheral, J., Schied, A.: Dynamical models of market impact and algorithms for order execution. In: Fouque, J.P., Langsam, J. (eds.) Handbook on systemic risk, pp. 579–602. Cambridge University Press, Cambridge (2013)CrossRef Gatheral, J., Schied, A.: Dynamical models of market impact and algorithms for order execution. In: Fouque, J.P., Langsam, J. (eds.) Handbook on systemic risk, pp. 579–602. Cambridge University Press, Cambridge (2013)CrossRef
11.
Zurück zum Zitat Gökay, S., Roch, A.F., Soner, H.M.: Liquidity models in continuous and discrete time. In: Di Nunno, J. (ed.) Advanced mathematical methods for finance, pp. 333–365. Springer, Heidelberg (2011)CrossRef Gökay, S., Roch, A.F., Soner, H.M.: Liquidity models in continuous and discrete time. In: Di Nunno, J. (ed.) Advanced mathematical methods for finance, pp. 333–365. Springer, Heidelberg (2011)CrossRef
12.
Zurück zum Zitat Gomes, C., Waelbroeck, H.: Is market impact a measure of the information value of trades? Market response to liquidity vs. informed metaorders. Quant. Financ. 15(5), 773–793 (2015)MathSciNetCrossRef Gomes, C., Waelbroeck, H.: Is market impact a measure of the information value of trades? Market response to liquidity vs. informed metaorders. Quant. Financ. 15(5), 773–793 (2015)MathSciNetCrossRef
13.
Zurück zum Zitat Guéant, O.: Permanent market impact can be nonlinear. Preprint (2013) Guéant, O.: Permanent market impact can be nonlinear. Preprint (2013)
15.
Zurück zum Zitat Huberman, G., Stanzl, W.: Optimal liquidity trading. Rev. Financ. 9(2), 165–200 (2005)MATHCrossRef Huberman, G., Stanzl, W.: Optimal liquidity trading. Rev. Financ. 9(2), 165–200 (2005)MATHCrossRef
16.
Zurück zum Zitat Lorenz, C., Schied, A.: Drift dependence of optimal trade execution strategies under transient price impact. Financ. Stoch. 17(4), 743–770 (2013)MATHMathSciNetCrossRef Lorenz, C., Schied, A.: Drift dependence of optimal trade execution strategies under transient price impact. Financ. Stoch. 17(4), 743–770 (2013)MATHMathSciNetCrossRef
18.
Zurück zum Zitat Madhavan, A.: Market microstructure: a survey. J. Financ. Markets 3(3), 205–258 (2000)CrossRef Madhavan, A.: Market microstructure: a survey. J. Financ. Markets 3(3), 205–258 (2000)CrossRef
19.
Zurück zum Zitat Schied, A., Schöneborn, T.: Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets. Financ. Stoch. 13(2), 181–204 (2009)MATHCrossRef Schied, A., Schöneborn, T.: Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets. Financ. Stoch. 13(2), 181–204 (2009)MATHCrossRef
20.
Zurück zum Zitat Schöneborn, T., Schied, A.: Liquidation in the face of adversity: stealth vs. sunshine trading. Preprint (2009) Schöneborn, T., Schied, A.: Liquidation in the face of adversity: stealth vs. sunshine trading. Preprint (2009)
Metadaten
Titel
Liquidation with self-exciting price impact
verfasst von
Thomas Cayé
Johannes Muhle-Karbe
Publikationsdatum
01.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Mathematics and Financial Economics / Ausgabe 1/2016
Print ISSN: 1862-9679
Elektronische ISSN: 1862-9660
DOI
https://doi.org/10.1007/s11579-015-0148-2

Weitere Artikel der Ausgabe 1/2016

Mathematics and Financial Economics 1/2016 Zur Ausgabe