Skip to main content
Erschienen in: Rare Metals 6/2022

21.02.2022 | Letter

Lithium metal recycling from spent lithium-ion batteries by cathode overcharging process

verfasst von: Mei-Cen Fan, John Wozny, Jue Gong, Yu-Qiong Kang, Xian-Shu Wang, Zhe-Xu Zhang, Guang-Min Zhou, Yun Zhao, Bao-Hua Li, Fei-Yu Kang

Erschienen in: Rare Metals | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Turcheniuk K, Bondarev D, Singhal V, Yushin G. Ten years left to redesign lithium-ion batteries. Nature. 2018;559(7715):467.CrossRef Turcheniuk K, Bondarev D, Singhal V, Yushin G. Ten years left to redesign lithium-ion batteries. Nature. 2018;559(7715):467.CrossRef
[2]
Zurück zum Zitat Ma X, Chen M, Chen B, Meng Z, Wang Y. High-performance graphite recovered from spent lithium-ion batteries. ACS Sustain Chem Eng. 2019;7(24):19732.CrossRef Ma X, Chen M, Chen B, Meng Z, Wang Y. High-performance graphite recovered from spent lithium-ion batteries. ACS Sustain Chem Eng. 2019;7(24):19732.CrossRef
[3]
Zurück zum Zitat Yang S, Zhang F, Ding H, He P, Zhou H. Lithium metal extraction from seawater. Joule. 2018;2(9):1648.CrossRef Yang S, Zhang F, Ding H, He P, Zhou H. Lithium metal extraction from seawater. Joule. 2018;2(9):1648.CrossRef
[4]
Zurück zum Zitat Tran MK, Rodrigues MTF, Kato K, Babu G, Ajayan PM. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat Energy. 2019;4(4):339.CrossRef Tran MK, Rodrigues MTF, Kato K, Babu G, Ajayan PM. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat Energy. 2019;4(4):339.CrossRef
[5]
Zurück zum Zitat Xu P, Dai Q, Gao H, Liu H, Zhang M, Li M, Chen Y, An K, Meng YS, Liu P, Li Y, Spangenberger JS, Gaines L, Lu J, Chen Z. Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule. 2020;4(12):2609.CrossRef Xu P, Dai Q, Gao H, Liu H, Zhang M, Li M, Chen Y, An K, Meng YS, Liu P, Li Y, Spangenberger JS, Gaines L, Lu J, Chen Z. Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule. 2020;4(12):2609.CrossRef
[6]
Zurück zum Zitat Natarajan S, Aravindan V. Burgeoning prospects of spent lithium-ion batteries in multifarious applications. Adv Energy Mater. 2018;8(33):1802303.CrossRef Natarajan S, Aravindan V. Burgeoning prospects of spent lithium-ion batteries in multifarious applications. Adv Energy Mater. 2018;8(33):1802303.CrossRef
[7]
Zurück zum Zitat Zhao Y, Fang LZ, Kang YQ, Wang L, Zhou YN, Liu XY, Li T, Li YX, Liang Z, Zhang ZX, Li BH. A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Met. 2021;40(6):1431.CrossRef Zhao Y, Fang LZ, Kang YQ, Wang L, Zhou YN, Liu XY, Li T, Li YX, Liang Z, Zhang ZX, Li BH. A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Met. 2021;40(6):1431.CrossRef
[8]
Zurück zum Zitat Peng C, Lahtinen K, Medina E, Kauranen P, Karppinen M, Kallio T, Wilson BP, Lundstrom M. Role of impurity copper in Li-ion battery recycling to LiCoO2 cathode materials. J Power Sour. 2020;450:227630.CrossRef Peng C, Lahtinen K, Medina E, Kauranen P, Karppinen M, Kallio T, Wilson BP, Lundstrom M. Role of impurity copper in Li-ion battery recycling to LiCoO2 cathode materials. J Power Sour. 2020;450:227630.CrossRef
[9]
Zurück zum Zitat Xiao WL, Zheng YJ, He HB. Cascade extraction of lithium in anode of waste lithium ion battery. Chin J Rare Metals. 2020;44(10):1078. Xiao WL, Zheng YJ, He HB. Cascade extraction of lithium in anode of waste lithium ion battery. Chin J Rare Metals. 2020;44(10):1078.
[10]
Zurück zum Zitat Yao Y, Zhu M, Zhao Z, Tong B, Fan Y, Hua Z. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustain Chem Eng. 2018;6(11):13611.CrossRef Yao Y, Zhu M, Zhao Z, Tong B, Fan Y, Hua Z. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustain Chem Eng. 2018;6(11):13611.CrossRef
[11]
Zurück zum Zitat Yang Y, Okonkwo EG, Huang G, Xu S, Sun W, He Y. On the sustainability of lithium ion battery industry-a review and perspective. Energy Storage Mater. 2021;36:186.CrossRef Yang Y, Okonkwo EG, Huang G, Xu S, Sun W, He Y. On the sustainability of lithium ion battery industry-a review and perspective. Energy Storage Mater. 2021;36:186.CrossRef
[12]
Zurück zum Zitat Lai X, Huang Y, Gu H, Deng C, Han X, Feng X, Zheng Y. Turning waste into wealth: a systematic review on echelon utilization and material recycling of retired lithium-ion batteries. Energy Storage Mater. 2021;40:96.CrossRef Lai X, Huang Y, Gu H, Deng C, Han X, Feng X, Zheng Y. Turning waste into wealth: a systematic review on echelon utilization and material recycling of retired lithium-ion batteries. Energy Storage Mater. 2021;40:96.CrossRef
[13]
Zurück zum Zitat Chabhadiya K, Srivastava RR, Pathak P. Two-step leaching process and kinetics for an eco-friendly recycling of critical metals from spent Li-ion batteries. J Environ Chem Eng. 2021;9(3):105232.CrossRef Chabhadiya K, Srivastava RR, Pathak P. Two-step leaching process and kinetics for an eco-friendly recycling of critical metals from spent Li-ion batteries. J Environ Chem Eng. 2021;9(3):105232.CrossRef
[14]
Zurück zum Zitat Munir H, Srivastava RR, Kim H, Ilyas S, Khosa MK, Yameen B. Leaching of exhausted LNCM cathode batteries in ascorbic acid lixiviant: a green recycling approach, reaction kinetics and process mechanism. J Chem Technol Biotechnol. 2020;95(8):2286.CrossRef Munir H, Srivastava RR, Kim H, Ilyas S, Khosa MK, Yameen B. Leaching of exhausted LNCM cathode batteries in ascorbic acid lixiviant: a green recycling approach, reaction kinetics and process mechanism. J Chem Technol Biotechnol. 2020;95(8):2286.CrossRef
[15]
Zurück zum Zitat Pegoretti VCB, Dixini PVM, Smecellato PC, Biaggio SR, Freitas MBJG. Thermal synthesis, characterization and electrochemical study of high-temperature (HT) LiCoO2 obtained from Co(OH)2 recycled of spent lithium ion batteries. Mater Res Bull. 2017;86:5.CrossRef Pegoretti VCB, Dixini PVM, Smecellato PC, Biaggio SR, Freitas MBJG. Thermal synthesis, characterization and electrochemical study of high-temperature (HT) LiCoO2 obtained from Co(OH)2 recycled of spent lithium ion batteries. Mater Res Bull. 2017;86:5.CrossRef
[16]
Zurück zum Zitat Li J, Shi P, Wang Z, Chen Y, Chang CC. A combined recovery process of metals in spent lithium-ion batteries. Chemosphere. 2009;77(8):1132.CrossRef Li J, Shi P, Wang Z, Chen Y, Chang CC. A combined recovery process of metals in spent lithium-ion batteries. Chemosphere. 2009;77(8):1132.CrossRef
[17]
Zurück zum Zitat Li L, Chen R, Sun F, Wu F, Liu J. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy. 2011;108(3–4):220.CrossRef Li L, Chen R, Sun F, Wu F, Liu J. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy. 2011;108(3–4):220.CrossRef
[18]
Zurück zum Zitat Pinna EG, Ruiz MC, Ojeda MW, Rodriguez MH. Cathodes of spent Li-ion batteries: dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy. 2017;167:66.CrossRef Pinna EG, Ruiz MC, Ojeda MW, Rodriguez MH. Cathodes of spent Li-ion batteries: dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy. 2017;167:66.CrossRef
[19]
Zurück zum Zitat Park YM, Lim H, Moon JH, Lee HN, Son SH, Kim H, Kim HJ. High-yield one-pot recovery and characterization of nanostructured cobalt oxalate from spent lithium-ion batteries and successive re-synthesis of LiCoO2. Metals. 2017;7(8):303.CrossRef Park YM, Lim H, Moon JH, Lee HN, Son SH, Kim H, Kim HJ. High-yield one-pot recovery and characterization of nanostructured cobalt oxalate from spent lithium-ion batteries and successive re-synthesis of LiCoO2. Metals. 2017;7(8):303.CrossRef
[20]
Zurück zum Zitat Yi AF, Zhu ZW, Liu YH, Zhang J, Su H, Qi T. Using highly concentrated chloride solutions to leach valuable metals from cathode-active materials in spent lithium-ion batteries. Rare Met. 2021;40(7):1971.CrossRef Yi AF, Zhu ZW, Liu YH, Zhang J, Su H, Qi T. Using highly concentrated chloride solutions to leach valuable metals from cathode-active materials in spent lithium-ion batteries. Rare Met. 2021;40(7):1971.CrossRef
[21]
Zurück zum Zitat Mei W, Yang X, Li L, Tong Y, Lei Y, Li P, Zheng Z. Rational electrochemical recycling of spent LiFePO4 and LiCoO2 batteries to Fe2O3/CoPi photoanodes for water oxidation. ACS Sustain Chem Eng. 2020;8(9):3606.CrossRef Mei W, Yang X, Li L, Tong Y, Lei Y, Li P, Zheng Z. Rational electrochemical recycling of spent LiFePO4 and LiCoO2 batteries to Fe2O3/CoPi photoanodes for water oxidation. ACS Sustain Chem Eng. 2020;8(9):3606.CrossRef
[22]
Zurück zum Zitat Patil D, Chikkamath S, Keny S, Tripathi V, Manjanna J. Rapid dissolution and recovery of Li and Co from spent LiCoO2 using mild organic acids under microwave irradiation. J Environ Manag. 2020;256:09935.CrossRef Patil D, Chikkamath S, Keny S, Tripathi V, Manjanna J. Rapid dissolution and recovery of Li and Co from spent LiCoO2 using mild organic acids under microwave irradiation. J Environ Manag. 2020;256:09935.CrossRef
[23]
Zurück zum Zitat Meng Q, Zhang Y, Dong P. Use of glucose as reductant to recover Co from spent lithium ions batteries. Waste Manag. 2017;64:214.CrossRef Meng Q, Zhang Y, Dong P. Use of glucose as reductant to recover Co from spent lithium ions batteries. Waste Manag. 2017;64:214.CrossRef
[24]
Zurück zum Zitat Sattar R, Ilyas S, Kousar S, Khalid A, Sajid M, Bukhari SI. Recycling of end-of-life LiNixCoyMnzO2 batteries for rare metals recovery. Environ Eng Research. 2020;25(1):88.CrossRef Sattar R, Ilyas S, Kousar S, Khalid A, Sajid M, Bukhari SI. Recycling of end-of-life LiNixCoyMnzO2 batteries for rare metals recovery. Environ Eng Research. 2020;25(1):88.CrossRef
[25]
Zurück zum Zitat Costa CM, Barbosa JC, Goncalves R, Castro H, Del Campo FJ, Lanceros-Mendez S. Recycling and environmental issues of lithium-ion batteries: advances, challenges and opportunities. Energy Storage Mater. 2021;37:433.CrossRef Costa CM, Barbosa JC, Goncalves R, Castro H, Del Campo FJ, Lanceros-Mendez S. Recycling and environmental issues of lithium-ion batteries: advances, challenges and opportunities. Energy Storage Mater. 2021;37:433.CrossRef
[26]
Zurück zum Zitat Lv W, Wang Z, Cao H, Sun Y, Zhang Y, Sun Z. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain Chem Eng. 2018;6(2):1504.CrossRef Lv W, Wang Z, Cao H, Sun Y, Zhang Y, Sun Z. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain Chem Eng. 2018;6(2):1504.CrossRef
[27]
Zurück zum Zitat Liu C, Li Y, Lin D, Hsu PC, Liu B, Yan G, Wu T, Cui Y, Chu S. Lithium extraction from seawater through pulsed electrochemical intercalation. Joule. 2020;4(7):1459.CrossRef Liu C, Li Y, Lin D, Hsu PC, Liu B, Yan G, Wu T, Cui Y, Chu S. Lithium extraction from seawater through pulsed electrochemical intercalation. Joule. 2020;4(7):1459.CrossRef
[28]
Zurück zum Zitat Li Z, Li C, Liu X, Cao L, Li P, Wei R, Li X, Guo D, Huang KW, Lai Z. Continuous electrical pumping membrane process for seawater lithium mining dagger. Energy Environ Sci. 2021;14(5):3152.CrossRef Li Z, Li C, Liu X, Cao L, Li P, Wei R, Li X, Guo D, Huang KW, Lai Z. Continuous electrical pumping membrane process for seawater lithium mining dagger. Energy Environ Sci. 2021;14(5):3152.CrossRef
[29]
Zurück zum Zitat Li Z, He L, Zhu Y, Yang C. A green and cost-effective method for production of LiOH from spent LiFePO4. ACS Sustain Chem Eng. 2020;8(42):15915.CrossRef Li Z, He L, Zhu Y, Yang C. A green and cost-effective method for production of LiOH from spent LiFePO4. ACS Sustain Chem Eng. 2020;8(42):15915.CrossRef
[30]
Zurück zum Zitat Lang J, Jin Y, Liu K, Long Y, Zhang H, Qi L, Wu H, Cui Y. High-purity electrolytic lithium obtained from low-purity sources using solid electrolyte. Nature Sustain. 2020;3(5):386.CrossRef Lang J, Jin Y, Liu K, Long Y, Zhang H, Qi L, Wu H, Cui Y. High-purity electrolytic lithium obtained from low-purity sources using solid electrolyte. Nature Sustain. 2020;3(5):386.CrossRef
[31]
Zurück zum Zitat Zhang JN, Li Q, Wang Y, Zheng J, Yu X, Li H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 2018;14:1.CrossRef Zhang JN, Li Q, Wang Y, Zheng J, Yu X, Li H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 2018;14:1.CrossRef
[32]
Zurück zum Zitat Li Y, Qi Y. Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface. Energy Environ Sci. 2019;12(4):1286.CrossRef Li Y, Qi Y. Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface. Energy Environ Sci. 2019;12(4):1286.CrossRef
[33]
Zurück zum Zitat Sun C, Zhang X, Li C, Wang K, Sun X, Ma Y. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Mater. 2020;32:497.CrossRef Sun C, Zhang X, Li C, Wang K, Sun X, Ma Y. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Mater. 2020;32:497.CrossRef
[34]
Zurück zum Zitat Chen H, Yang Y, Boyle DT, Jeong YK, Xu R, de Vasconcelos LS, Huang Z, Wang H, Wang H, Huang W, Li H, Wang J, Gu H, Matsumoto R, Motohashi K, Nakayama Y, Zhao K, Cui Y. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat Energy. 2021;6(8):790.CrossRef Chen H, Yang Y, Boyle DT, Jeong YK, Xu R, de Vasconcelos LS, Huang Z, Wang H, Wang H, Huang W, Li H, Wang J, Gu H, Matsumoto R, Motohashi K, Nakayama Y, Zhao K, Cui Y. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat Energy. 2021;6(8):790.CrossRef
[35]
Zurück zum Zitat Wang X, Zeng W, Hong L, Xu W, Yang H, Wang F, Duan H, Tang M, Jiang H. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat Energy. 2018;3(3):227.CrossRef Wang X, Zeng W, Hong L, Xu W, Yang H, Wang F, Duan H, Tang M, Jiang H. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat Energy. 2018;3(3):227.CrossRef
[36]
Zurück zum Zitat Zhitao E, Guo H, Yan G, Wang J, Feng R, Wang Z, Li X. Evolution of the morphology, structural and thermal stability of LiCoO2 during overcharge. J Energy Chem. 2021;55:524.CrossRef Zhitao E, Guo H, Yan G, Wang J, Feng R, Wang Z, Li X. Evolution of the morphology, structural and thermal stability of LiCoO2 during overcharge. J Energy Chem. 2021;55:524.CrossRef
[37]
Zurück zum Zitat Hirooka M, Sekiya T, Omomo Y, Yamada M, Katayama H, Okumura T, Yamada Y, Ariyosh K. Degradation mechanism of LiCoO2 under float charge conditions and high temperatures. Electrochim Acta. 2019;320:134596.CrossRef Hirooka M, Sekiya T, Omomo Y, Yamada M, Katayama H, Okumura T, Yamada Y, Ariyosh K. Degradation mechanism of LiCoO2 under float charge conditions and high temperatures. Electrochim Acta. 2019;320:134596.CrossRef
[38]
Zurück zum Zitat Wu J, Lau WM, Geng DS. Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Met. 2017;36(5):307.CrossRef Wu J, Lau WM, Geng DS. Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Met. 2017;36(5):307.CrossRef
[39]
Zurück zum Zitat Li Z, Li C, Liu X, Cao L, Li P, Wei R, Li X, Guo D, Huang KW, Lai Z. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ Sci. 2021;14(5):3152.CrossRef Li Z, Li C, Liu X, Cao L, Li P, Wei R, Li X, Guo D, Huang KW, Lai Z. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ Sci. 2021;14(5):3152.CrossRef
[40]
Zurück zum Zitat Zhang X, Han A, Yang Y. Review on the production of high-purity lithium metal. J Mater Chem A. 2020;8(43):22455.CrossRef Zhang X, Han A, Yang Y. Review on the production of high-purity lithium metal. J Mater Chem A. 2020;8(43):22455.CrossRef
Metadaten
Titel
Lithium metal recycling from spent lithium-ion batteries by cathode overcharging process
verfasst von
Mei-Cen Fan
John Wozny
Jue Gong
Yu-Qiong Kang
Xian-Shu Wang
Zhe-Xu Zhang
Guang-Min Zhou
Yun Zhao
Bao-Hua Li
Fei-Yu Kang
Publikationsdatum
21.02.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 6/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01918-7

Weitere Artikel der Ausgabe 6/2022

Rare Metals 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.