Skip to main content
Erschienen in: Engineering with Computers 1/2023

11.01.2022 | Original Article

Local vs. nonlocal integral elasticity-based phase field models including surface tension and simulations of single and two variant martensitic transformations and twinning

verfasst von: Mahdi Javanbakht, Sam Mirzakhani, Mohammad Silani

Erschienen in: Engineering with Computers | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, single and two variant martensitic transformations including twinning are studied using the phase field approach based on local elasticity and nonlocal integral elasticity including the surface tension. In contrast to the well-known two-phase (TP) kernel, the compensated TP (CTP) kernel fulfills the normalization condition for the boundary region and removes boundary effects. The coupled local/nonlocal integral elasticity and Ginzburg–Landau equations are solved using the FEM and the verification of numerical procedure is presented. The local and nonlocal models with both kernels are compared for various phase transformation examples. For a single variant in a homogeneous sample under uniform applied stress, the TP kernel resolves an unphysically heterogeneous growth and consequently, the surface tension appears. In contrast, the CTP kernel and local model predict a similar homogeneous growth with zero surface tension since no interface appears. Including a boundary layer with a lower Young’s modulus than the bulk region results in a heterogeneous growth for all the models. For the creation of a stationary austenite–martensite interface, both kernels show the same solution different than that of the local model. For the formation of a martensite–martensite interface, all the models show the same solution, where the angle between the martensitic planes is in a very good agreement with existing MD simulations and analytical solution. For the embryo growth of both martensitic variants, a similar evolution occurs for the local model and the CTP kernel. Generally, the CTP kernel gives a maximum stress larger than the TP kernel and lower than the local model. However, the kernel can predict larger stresses than the local model if their morphologies are not similar at the same time. For the creation of twin structures, both kernels lead to a larger number of twins since they resolve lower stresses than the local model and their twin structures are the same since they are not affected by the boundaries due to their large distance. The ratio of the characteristic length to the martensite–martensite interface width is also found as a key parameter in resolving the twin structure. For the two variant martensitic transformation in the presence of a crack, despite a similar evolution, the TP kernel and the local model show the fastest and slowest transformations, as well as the lowest and highest stress concentrations at the crack tip, respectively. However, the local model shows a lower stress concentration when austenite appears at the crack tip. In all the given examples, the surface tension is found generally much smaller than the total stress; thus, it shows no practical effect on the PT.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhattacharya K (2004) Microstructure of Martensite. Why it forms and how it gives rise to the shape-memory effect. University Press, OxfordMATH Bhattacharya K (2004) Microstructure of Martensite. Why it forms and how it gives rise to the shape-memory effect. University Press, OxfordMATH
2.
Zurück zum Zitat Wayman CM (1964) Introduction to the crystallography of martensitic transformation. Macmillan, New York Wayman CM (1964) Introduction to the crystallography of martensitic transformation. Macmillan, New York
3.
Zurück zum Zitat Mamivand M, Asle Zaeem M, El Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304–311 Mamivand M, Asle Zaeem M, El Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304–311
4.
Zurück zum Zitat Geijselaers HJM, Hilkhuijsen P, Bor TC, Perdahcioǧlu ES, Van Den Boogaard AH (2013) Modelling of the austenite-martensite transformation in stainless and TRIP steels. AIP Conf Proc 1532:175–182 Geijselaers HJM, Hilkhuijsen P, Bor TC, Perdahcioǧlu ES, Van Den Boogaard AH (2013) Modelling of the austenite-martensite transformation in stainless and TRIP steels. AIP Conf Proc 1532:175–182
5.
Zurück zum Zitat Wen YH, Denis S, Gautier E (1996) Computer simulation of martensitic transformation under stress. J Phys IV JP 6:475–483 Wen YH, Denis S, Gautier E (1996) Computer simulation of martensitic transformation under stress. J Phys IV JP 6:475–483
6.
Zurück zum Zitat Hemanth Y, Lookman T, Saxena A (2014) Mesoscale modeling of the martensitic transformations coupled with plasticity in engineering materials. Society of Engineering Science 51st Annual Technical Meeting. Purdue University, West Lafayette, Indiana, USA 2014 Hemanth Y, Lookman T, Saxena A (2014) Mesoscale modeling of the martensitic transformations coupled with plasticity in engineering materials. Society of Engineering Science 51st Annual Technical Meeting. Purdue University, West Lafayette, Indiana, USA 2014
7.
Zurück zum Zitat Chen Y, Schuh CA (2015) A coupled kinetic Monte Carlo-finite element mesoscale model for thermoelastic martensitic phase transformations in shape memory alloys. Acta Mater 83:431–447 Chen Y, Schuh CA (2015) A coupled kinetic Monte Carlo-finite element mesoscale model for thermoelastic martensitic phase transformations in shape memory alloys. Acta Mater 83:431–447
8.
Zurück zum Zitat Levitas VI, Idesman AV, Preston DL (2004) Microscale simulation of martensitic microstructure evolution. Phys Rev Lett 93:1–4 Levitas VI, Idesman AV, Preston DL (2004) Microscale simulation of martensitic microstructure evolution. Phys Rev Lett 93:1–4
9.
Zurück zum Zitat Mamivand M, Asle Zaeem M, El Kadiri H (2015) Effect of variant strain accommodation on the three-dimensional microstructure formation during martensitic transformation: application to zirconia. Acta Mater 87:45–55 Mamivand M, Asle Zaeem M, El Kadiri H (2015) Effect of variant strain accommodation on the three-dimensional microstructure formation during martensitic transformation: application to zirconia. Acta Mater 87:45–55
10.
Zurück zum Zitat She H, Liu Y, Wang B, Ma D (2013) Finite element simulation of phase field model for nanoscale martensitic transformation. Comput Mech 52:949–958MATH She H, Liu Y, Wang B, Ma D (2013) Finite element simulation of phase field model for nanoscale martensitic transformation. Comput Mech 52:949–958MATH
11.
Zurück zum Zitat Ko WS, Maisel SB, Grabowski B, Jeon JB, Neugebauer J (2016) Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys. Acta Mater 123:90–101 Ko WS, Maisel SB, Grabowski B, Jeon JB, Neugebauer J (2016) Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys. Acta Mater 123:90–101
12.
Zurück zum Zitat Ma GF, Qin SJ, Shang JX, Wang FH, Chen Y (2017) Atomistic study on the phase transformation in NiTi under thermal cycling. J Alloys Compound 705:218–225 Ma GF, Qin SJ, Shang JX, Wang FH, Chen Y (2017) Atomistic study on the phase transformation in NiTi under thermal cycling. J Alloys Compound 705:218–225
13.
Zurück zum Zitat Mortazavi B, Silani M, Podryabinkin EV et al (2021) First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials. Adv Mater 33:2102507 Mortazavi B, Silani M, Podryabinkin EV et al (2021) First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials. Adv Mater 33:2102507
14.
Zurück zum Zitat Kastner O, Eggeler G, Weiss W, Ackland GJ (2011) Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations. J Mech Phys Solids 59:1888–1908MATH Kastner O, Eggeler G, Weiss W, Ackland GJ (2011) Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations. J Mech Phys Solids 59:1888–1908MATH
15.
Zurück zum Zitat Wong SL, Madivala M, Prahl U, Roters F, Raabe D (2016) A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater 118:140–151 Wong SL, Madivala M, Prahl U, Roters F, Raabe D (2016) A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater 118:140–151
16.
Zurück zum Zitat Iwamoto T, Cherkaoui M, Busso EP (2007) A numerical investigation of interface dynamics during martensitic transformation in a shape memory alloy using the level-set method. Key Eng Mater 340–341:1199–1204 Iwamoto T, Cherkaoui M, Busso EP (2007) A numerical investigation of interface dynamics during martensitic transformation in a shape memory alloy using the level-set method. Key Eng Mater 340–341:1199–1204
17.
Zurück zum Zitat Hildebrand F, Miehe C (2010) A regularized sharp interface model for phase transformation accounting for prescribed sharp interface kinetics. Pamm 10:673–676 Hildebrand F, Miehe C (2010) A regularized sharp interface model for phase transformation accounting for prescribed sharp interface kinetics. Pamm 10:673–676
18.
Zurück zum Zitat Mamivand M, Asle Zaeem M, El Kadiri H, Chen LQ (2013) Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia. Acta Mater 61:5223–5235 Mamivand M, Asle Zaeem M, El Kadiri H, Chen LQ (2013) Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia. Acta Mater 61:5223–5235
19.
Zurück zum Zitat Jacobs AE, Curnoe SH, Desai RC (2003) Simulations of cubic-tetragonal ferroelastics. Phys Rev B 68:224104 Jacobs AE, Curnoe SH, Desai RC (2003) Simulations of cubic-tetragonal ferroelastics. Phys Rev B 68:224104
20.
Zurück zum Zitat Artemev A, Jin Y, Khachaturyan AG (2001) Three-dimensional phase field model of proper martensitic transformation. Acta Mater 49:1165–1177 Artemev A, Jin Y, Khachaturyan AG (2001) Three-dimensional phase field model of proper martensitic transformation. Acta Mater 49:1165–1177
21.
Zurück zum Zitat Levitas VI, Javanbakht M (2011) Phase-field approach to martensitic phase transformations: effect of martensite-martensite interface energy. Int J Mater Res 102:652–665 Levitas VI, Javanbakht M (2011) Phase-field approach to martensitic phase transformations: effect of martensite-martensite interface energy. Int J Mater Res 102:652–665
22.
Zurück zum Zitat Krill CE, Chen LQ (2002) Computer simulation of 3-D grain growth using a phase-field model. Acta Mater 50:3057–3073 Krill CE, Chen LQ (2002) Computer simulation of 3-D grain growth using a phase-field model. Acta Mater 50:3057–3073
23.
Zurück zum Zitat Mikula J, Joshi SP, Tay TE, Ahluwalia R, Quek SS (2019) A phase field model of grain boundary migration and grain rotation under elasto–plastic anisotropies. Int J Solids Struct 178–179:1–18 Mikula J, Joshi SP, Tay TE, Ahluwalia R, Quek SS (2019) A phase field model of grain boundary migration and grain rotation under elasto–plastic anisotropies. Int J Solids Struct 178–179:1–18
24.
Zurück zum Zitat Rodney D, Le Bouar Y, Finel A (2003) Phase field methods and dislocations. Acta Mater 51(1):17–30 Rodney D, Le Bouar Y, Finel A (2003) Phase field methods and dislocations. Acta Mater 51(1):17–30
25.
Zurück zum Zitat Levitas VI, Jafarzadeh H, Farrahi GH, Javanbakht M (2018) Thermodynamically consistent and scale-dependent phase field approach for crack propagation allowing for surface stresses. Int J Plast 111:1–35 Levitas VI, Jafarzadeh H, Farrahi GH, Javanbakht M (2018) Thermodynamically consistent and scale-dependent phase field approach for crack propagation allowing for surface stresses. Int J Plast 111:1–35
26.
Zurück zum Zitat Yu F, Wei Y, Ji Y, Chen LQ (2018) Phase field modeling of solidification microstructure evolution during welding. J Mater Process Technol 255:285–293 Yu F, Wei Y, Ji Y, Chen LQ (2018) Phase field modeling of solidification microstructure evolution during welding. J Mater Process Technol 255:285–293
27.
Zurück zum Zitat Park J, Kang J-H, Oh C-S (2020) Phase-field simulations and microstructural analysis of epitaxial growth during rapid solidification of additively manufactured AlSi10Mg alloy. Mater Des 195:108985 Park J, Kang J-H, Oh C-S (2020) Phase-field simulations and microstructural analysis of epitaxial growth during rapid solidification of additively manufactured AlSi10Mg alloy. Mater Des 195:108985
28.
Zurück zum Zitat Javanbakht M, Ghaedi MS (2020) Phase field approach for void dynamics with interface stresses at the nanoscale. Int J Eng Sci 154:103279MathSciNetMATH Javanbakht M, Ghaedi MS (2020) Phase field approach for void dynamics with interface stresses at the nanoscale. Int J Eng Sci 154:103279MathSciNetMATH
29.
Zurück zum Zitat Danesh H, Javanbakht M, Mirzakhani S (2021) Nonlocal integral elasticity based phase field modelling and simulations of nanoscale thermal- and stress-induced martensitic transformations using a boundary effect compensation kernel. Comput Mater Sci 194:110429 Danesh H, Javanbakht M, Mirzakhani S (2021) Nonlocal integral elasticity based phase field modelling and simulations of nanoscale thermal- and stress-induced martensitic transformations using a boundary effect compensation kernel. Comput Mater Sci 194:110429
30.
Zurück zum Zitat Mirzakhani S, Javanbakht M (2018) Phase field-elasticity analysis of austenite–martensite phase transformation at the nanoscale: finite element modeling. Comput Mater Sci 154:41–52 Mirzakhani S, Javanbakht M (2018) Phase field-elasticity analysis of austenite–martensite phase transformation at the nanoscale: finite element modeling. Comput Mater Sci 154:41–52
31.
Zurück zum Zitat Wen YH, Wang Y, Chen LQ (1999) Effect of elastic interaction on the formation of a complex multi-domain microstructural pattern during a coherent hexagonal to orthorhombic transformation. Acta Mater 147:4375–4386 Wen YH, Wang Y, Chen LQ (1999) Effect of elastic interaction on the formation of a complex multi-domain microstructural pattern during a coherent hexagonal to orthorhombic transformation. Acta Mater 147:4375–4386
32.
Zurück zum Zitat Wang YU, Jin YM, Khachaturyan AG (2003) The effects of free surfaces on martensite microstructures: 3D phase field microelasticity simulation study. Acta Mater 52:1039–1050 Wang YU, Jin YM, Khachaturyan AG (2003) The effects of free surfaces on martensite microstructures: 3D phase field microelasticity simulation study. Acta Mater 52:1039–1050
33.
Zurück zum Zitat Seol DJ, Hu SY, Li YL, Chen LQ, Oh KH (2003) Cubic to tetragonal martensitic transformation in a thin film elastically constrained by a substrate. Met Mater Int 9:221–226 Seol DJ, Hu SY, Li YL, Chen LQ, Oh KH (2003) Cubic to tetragonal martensitic transformation in a thin film elastically constrained by a substrate. Met Mater Int 9:221–226
34.
Zurück zum Zitat Levitas VI, Preston DL (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite-martensite. Phys Rev B Condens Matter Mater Phys 66:1–9 Levitas VI, Preston DL (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite-martensite. Phys Rev B Condens Matter Mater Phys 66:1–9
35.
Zurück zum Zitat Levitas VI, Preston DL (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis. Phys Rev B Condens Matter Mater Phys 66:1–15 Levitas VI, Preston DL (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis. Phys Rev B Condens Matter Mater Phys 66:1–15
36.
Zurück zum Zitat Levitas VI, Preston DL, Lee DW (2003) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Phys Rev B Condens Matter Mater Phys 68:1–24 Levitas VI, Preston DL, Lee DW (2003) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Phys Rev B Condens Matter Mater Phys 68:1–24
37.
Zurück zum Zitat Levitas VI, Javanbakht M (2010) Surface tension and energy in multivariant martensitic transformations: Phase-field theory, simulations, and model of coherent interface. Phys Rev Lett 105:165701 Levitas VI, Javanbakht M (2010) Surface tension and energy in multivariant martensitic transformations: Phase-field theory, simulations, and model of coherent interface. Phys Rev Lett 105:165701
38.
Zurück zum Zitat Levitas VI, Javanbakht M (2011) Surface-induced phase transformations: multiple scale and mechanics effects and morphological transitions. Phys Rev Lett 107:175701 Levitas VI, Javanbakht M (2011) Surface-induced phase transformations: multiple scale and mechanics effects and morphological transitions. Phys Rev Lett 107:175701
39.
Zurück zum Zitat Levin VA, Levitas VI, Zingerman KM, Freiman EI (2013) Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int J Solids Struct 50:2914–2928 Levin VA, Levitas VI, Zingerman KM, Freiman EI (2013) Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int J Solids Struct 50:2914–2928
40.
Zurück zum Zitat Javanbakht M, Adaei M (2019) Formation of stress- and thermal-induced martensitic nanostructures in a single crystal with phase-dependent elastic properties. J Mater Sci 55:2544–2563 Javanbakht M, Adaei M (2019) Formation of stress- and thermal-induced martensitic nanostructures in a single crystal with phase-dependent elastic properties. J Mater Sci 55:2544–2563
41.
Zurück zum Zitat Javanbakht M, Levitas VI (2015) Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples. J Mech Phys Solids 82:164–185MathSciNet Javanbakht M, Levitas VI (2015) Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples. J Mech Phys Solids 82:164–185MathSciNet
42.
Zurück zum Zitat Javanbakht M, Ghaedi MS (2020) Nanovoid induced multivariant martensitic growth under negative pressure: effect of misfit strain and temperature on PT threshold stress and phase evolution. Mech Mater 151:103627 Javanbakht M, Ghaedi MS (2020) Nanovoid induced multivariant martensitic growth under negative pressure: effect of misfit strain and temperature on PT threshold stress and phase evolution. Mech Mater 151:103627
43.
Zurück zum Zitat Levitas VI, Jafarzadeh H, Farrahi GH, Javanbakht M (2018) Thermodynamically consistent and scale-dependent phase field approach for crack propagation allowing for surface stresses. Int I Plast. 111:1–35 Levitas VI, Jafarzadeh H, Farrahi GH, Javanbakht M (2018) Thermodynamically consistent and scale-dependent phase field approach for crack propagation allowing for surface stresses. Int I Plast. 111:1–35
44.
Zurück zum Zitat dell’Isola F, Andreaus U, Placidi L (2013) At the origins and in the vanguard of peridynamics, nonlocal and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20:887–928MATH dell’Isola F, Andreaus U, Placidi L (2013) At the origins and in the vanguard of peridynamics, nonlocal and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20:887–928MATH
45.
Zurück zum Zitat Spagnuolo M, Yildizdag ME, Andreaus U, Cazzani AM (2021) Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures? Math Mech Solids 26(1):18–29MathSciNetMATH Spagnuolo M, Yildizdag ME, Andreaus U, Cazzani AM (2021) Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures? Math Mech Solids 26(1):18–29MathSciNetMATH
46.
Zurück zum Zitat Placidi L, Misra A, Barchiesi E (2018) Two-dimensional strain gradient damage modeling: a variational approach. Z Angew Math Phys 69(3):1–19MathSciNetMATH Placidi L, Misra A, Barchiesi E (2018) Two-dimensional strain gradient damage modeling: a variational approach. Z Angew Math Phys 69(3):1–19MathSciNetMATH
47.
Zurück zum Zitat Placidi L, Barchiesi E, Misra A (2018) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math Mech Compl Sys 6(2):77–100MathSciNetMATH Placidi L, Barchiesi E, Misra A (2018) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math Mech Compl Sys 6(2):77–100MathSciNetMATH
48.
Zurück zum Zitat Eremeyev VA, Pietraszkiewicz W (2012) Material symmetry group of the non-linear polar-elastic continuum. Int J Solids Struct 49(14):1993–2005 Eremeyev VA, Pietraszkiewicz W (2012) Material symmetry group of the non-linear polar-elastic continuum. Int J Solids Struct 49(14):1993–2005
49.
Zurück zum Zitat Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48:2496–2510 Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48:2496–2510
50.
Zurück zum Zitat Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508MATH Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508MATH
51.
Zurück zum Zitat Andreaus U, dell’Isola F, Giorgio I, Placidi L, Lekszycki T, Rizzi NL (2016) Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int J Eng Sci 108:34–50MathSciNetMATH Andreaus U, dell’Isola F, Giorgio I, Placidi L, Lekszycki T, Rizzi NL (2016) Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int J Eng Sci 108:34–50MathSciNetMATH
52.
Zurück zum Zitat Turco E, Barchiesi E, Giorgio I, dell’Isola F (2020) A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory. Int J Non-Lin Mech 123:103481 Turco E, Barchiesi E, Giorgio I, dell’Isola F (2020) A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory. Int J Non-Lin Mech 123:103481
53.
Zurück zum Zitat Giorgio I, Grygoruk R, dell’Isola F, Steigmann DJ (2015) Pattern formation in the three-dimensional deformations of fibered sheets. Mech Res Commun 69:164–171 Giorgio I, Grygoruk R, dell’Isola F, Steigmann DJ (2015) Pattern formation in the three-dimensional deformations of fibered sheets. Mech Res Commun 69:164–171
54.
Zurück zum Zitat Andreaus U, Spagnuolo M, Lekszycki T, Eugster SR (2018) A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Cont Mech Thermodyn 30(5):1103–1123MathSciNetMATH Andreaus U, Spagnuolo M, Lekszycki T, Eugster SR (2018) A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Cont Mech Thermodyn 30(5):1103–1123MathSciNetMATH
55.
Zurück zum Zitat Nguyen-Thanh VM, Anitescu C, Alajlan N, Rabczuk T, Zhuang X (2021) Parametric deep energy approach for elasticity accounting for strain gradient effects. Comput Methods Appl Mech Eng 386:114096MathSciNetMATH Nguyen-Thanh VM, Anitescu C, Alajlan N, Rabczuk T, Zhuang X (2021) Parametric deep energy approach for elasticity accounting for strain gradient effects. Comput Methods Appl Mech Eng 386:114096MathSciNetMATH
56.
Zurück zum Zitat Areias P, Rabczuk T, Msekh M (2016) Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 312(C):322–350MathSciNetMATH Areias P, Rabczuk T, Msekh M (2016) Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 312(C):322–350MathSciNetMATH
57.
Zurück zum Zitat Eringen AC, Speziale CG, Kim BS (1977) Crack-tip problem in non-local elasticity. J Mech Phys Solids 25:339–355MathSciNetMATH Eringen AC, Speziale CG, Kim BS (1977) Crack-tip problem in non-local elasticity. J Mech Phys Solids 25:339–355MathSciNetMATH
58.
Zurück zum Zitat Altan SB (1989) Uniqueness of initial-boundary value problems in nonlocal elasticity. Int J Solids Struct 25:1271–1278MathSciNetMATH Altan SB (1989) Uniqueness of initial-boundary value problems in nonlocal elasticity. Int J Solids Struct 25:1271–1278MathSciNetMATH
59.
Zurück zum Zitat Farajpour A, Ghayesh MH, Farokhi H (2018) A review on the mechanics of nanostructures. Int J Eng Sci 133:231–263MathSciNetMATH Farajpour A, Ghayesh MH, Farokhi H (2018) A review on the mechanics of nanostructures. Int J Eng Sci 133:231–263MathSciNetMATH
60.
Zurück zum Zitat Polizzotto C, Fuschi P, Pisano AA (2004) A strain-difference-based nonlocal elasticity model. Int J Solids Struct 41:2383–2401MATH Polizzotto C, Fuschi P, Pisano AA (2004) A strain-difference-based nonlocal elasticity model. Int J Solids Struct 41:2383–2401MATH
61.
Zurück zum Zitat Polizzotto C, Fuschi P, Pisano AA (2006) A nonhomogeneous nonlocal elasticity model. Eur J Mech A/Solids 25:308–333MathSciNetMATH Polizzotto C, Fuschi P, Pisano AA (2006) A nonhomogeneous nonlocal elasticity model. Eur J Mech A/Solids 25:308–333MathSciNetMATH
62.
Zurück zum Zitat Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128:1119–1149 Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128:1119–1149
63.
Zurück zum Zitat Borino G, Failla B, Parrinello F (2003) A symmetric nonlocal damage theory. Int J Solids Struct 40:3621–3645MATH Borino G, Failla B, Parrinello F (2003) A symmetric nonlocal damage theory. Int J Solids Struct 40:3621–3645MATH
64.
Zurück zum Zitat Lazar M, Agiasofitou E (2011) Screw dislocation in nonlocal anisotropic elasticity. Int J Eng Sci 49:1404–1414MathSciNetMATH Lazar M, Agiasofitou E (2011) Screw dislocation in nonlocal anisotropic elasticity. Int J Eng Sci 49:1404–1414MathSciNetMATH
65.
Zurück zum Zitat Pan K-L (1996) Interaction of a dislocation and an inclusion in nonlocal elasticity. Int J Eng Sci 34:1675–1688MATH Pan K-L (1996) Interaction of a dislocation and an inclusion in nonlocal elasticity. Int J Eng Sci 34:1675–1688MATH
66.
Zurück zum Zitat Doğgan A (1995) Effect of nonlocal elasticity on internal friction peaks observed during martensite transformation. Pramana 44:397–404 Doğgan A (1995) Effect of nonlocal elasticity on internal friction peaks observed during martensite transformation. Pramana 44:397–404
67.
Zurück zum Zitat Martowicz A, Bryła J, Staszewski WJ, Ruzzene M, Uhl T (2019) Nonlocal elasticity in shape memory alloys modeled using peridynamics for solving dynamic problems. Nonlinear Dyn 97:1911–1935 Martowicz A, Bryła J, Staszewski WJ, Ruzzene M, Uhl T (2019) Nonlocal elasticity in shape memory alloys modeled using peridynamics for solving dynamic problems. Nonlinear Dyn 97:1911–1935
71.
Zurück zum Zitat Yang X, Sahmani S, Safaei B (2021) Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng Comput 37:1549–1564 Yang X, Sahmani S, Safaei B (2021) Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng Comput 37:1549–1564
72.
Zurück zum Zitat Yang WD, Wang X, Lu G (2014) The evolution of void defects in metallic films based on a nonlocal phase field model. Eng Fract Mech 127:12–20 Yang WD, Wang X, Lu G (2014) The evolution of void defects in metallic films based on a nonlocal phase field model. Eng Fract Mech 127:12–20
73.
Zurück zum Zitat Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theor Appl Fract Mech 106:102447 Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theor Appl Fract Mech 106:102447
74.
Zurück zum Zitat Ren H, Zhuang X, Anitescu C, Rabczuk T (2019) An explicit phase field method for brittle dynamic fracture. Comput Struct 217:45–56 Ren H, Zhuang X, Anitescu C, Rabczuk T (2019) An explicit phase field method for brittle dynamic fracture. Comput Struct 217:45–56
79.
Zurück zum Zitat Javanbakht M, Barati E (2016) Martensitic phase transformations in shape memory alloy: phase field modeling with surface tension effect. Comput Mater Sci 115:137–144 Javanbakht M, Barati E (2016) Martensitic phase transformations in shape memory alloy: phase field modeling with surface tension effect. Comput Mater Sci 115:137–144
80.
Zurück zum Zitat Levitas VI, Lee DW, Preston DL (2010) Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int J Plast 26:395–422MATH Levitas VI, Lee DW, Preston DL (2010) Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int J Plast 26:395–422MATH
83.
Zurück zum Zitat Abdollahi R, Boroomand B (2013) Benchmarks in nonlocal elasticity defined by Eringen’s integral model. Int J Solids Struct 50:2758–2771 Abdollahi R, Boroomand B (2013) Benchmarks in nonlocal elasticity defined by Eringen’s integral model. Int J Solids Struct 50:2758–2771
84.
Zurück zum Zitat Purja Pun GP, Mishin Y (2010) Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys. J Phys: Condens Matter 22:395403 Purja Pun GP, Mishin Y (2010) Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys. J Phys: Condens Matter 22:395403
Metadaten
Titel
Local vs. nonlocal integral elasticity-based phase field models including surface tension and simulations of single and two variant martensitic transformations and twinning
verfasst von
Mahdi Javanbakht
Sam Mirzakhani
Mohammad Silani
Publikationsdatum
11.01.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 1/2023
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-021-01598-y

Weitere Artikel der Ausgabe 1/2023

Engineering with Computers 1/2023 Zur Ausgabe

Neuer Inhalt