Skip to main content
Erschienen in: Wireless Personal Communications 4/2019

24.04.2019

Loss Differentiated Channel Aware Rate Adaptation for IEEE 802.11n Wireless Links

verfasst von: R. G. Purandare, S. P. Kshirsagar, S. M. Koli

Erschienen in: Wireless Personal Communications | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rate adaptation in wireless network adapts the transmission rate to the estimated quality of the channel as a single rate is not suitable over large period of time. Key limitation of existing closed loop Rate Adaptation Algorithm is its slow speed of adaptation due to the analysis of several frames for a reliable judgment, especially when the error rate is low. This is detrimental to the real time multimedia streaming applications. Implementation of a closed loop system is challenging in heterogeneous, power constrained networks. Adaptation is affected by collisions, faded channel and hidden nodes, which contribute differently to loss of data. Absence of loss differentiation may increase the transmission time, congesting the network further. This paper proposes an open loop, per packet, Loss Differentiated-Channel Aware Rate Adaptation (LD-CARA) for IEEE 802.11n. It uses block acknowledgement and other inherent features of 802.11n to differentiate losses and optimize the system throughput. Signal to noise ratio of the received signal, the raw measurement of the link, is directly related to the bit/frame error rate in the link. Use of SNR measurements characterize the instantaneous channel behavior and make the design agile. The performance is evaluated using network simulator NS3, and compared prevalent adaptations. It is found that LD-CARA is a stable algorithm and improves network throughput in static, mobile and interfered channels; however node mobility has an adverse effect on the protocol and the dropping ratio of mobile nodes deteriorates in the congested environment and results for the same are comparable to other protocols.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Catreux, S., Erceg, V., Gesbert, D., & Heath, R. W. (2002). Adaptive modulation and MIMO coding for broadband wireless data networks. IEEE Communications Magazine, 40(6), 108–115.CrossRef Catreux, S., Erceg, V., Gesbert, D., & Heath, R. W. (2002). Adaptive modulation and MIMO coding for broadband wireless data networks. IEEE Communications Magazine, 40(6), 108–115.CrossRef
2.
Zurück zum Zitat Wong, S. H. Y., et al. (2006). Robust rate adaptation for 802.11 wireless networks. In Proceedings of the 12th annual international conference on Mobile computing and networking. ACM. Wong, S. H. Y., et al. (2006). Robust rate adaptation for 802.11 wireless networks. In Proceedings of the 12th annual international conference on Mobile computing and networking. ACM.
3.
Zurück zum Zitat Rappaport, T. S. (1996). Wireless communications: Principles and practice (Vol. 2). Upper Saddle River, NJ: Prentice Hall PTR.MATH Rappaport, T. S. (1996). Wireless communications: Principles and practice (Vol. 2). Upper Saddle River, NJ: Prentice Hall PTR.MATH
4.
Zurück zum Zitat IEEE Std 802.11™-2012 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (2012). IEEE Std 802.11™-2012 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (2012).
5.
Zurück zum Zitat Karmakar, R., Chattopadhyay, S., & Chakraborty, S. (2017). Impact of IEEE 802.11 n/ac PHY/MAC high throughput enhancement over Transport/Application Layer Protocols—A Survey. IEEE Communications Surveys & Tutorials, 19, 2050–2091.CrossRef Karmakar, R., Chattopadhyay, S., & Chakraborty, S. (2017). Impact of IEEE 802.11 n/ac PHY/MAC high throughput enhancement over Transport/Application Layer Protocols—A Survey. IEEE Communications Surveys & Tutorials, 19, 2050–2091.CrossRef
6.
Zurück zum Zitat Zhao, Z., Zhang, F., Guo, S., Li, X.-Y., & Han, J. (2014). RainbowRate: MIMO rate adaptation in 802.11 n WiLD links. In Performance computing and communications conference (IPCCC), 2014 IEEE international (pp. 1–8). IEEE. Zhao, Z., Zhang, F., Guo, S., Li, X.-Y., & Han, J. (2014). RainbowRate: MIMO rate adaptation in 802.11 n WiLD links. In Performance computing and communications conference (IPCCC), 2014 IEEE international (pp. 1–8). IEEE.
7.
Zurück zum Zitat Nguyen, D., & Garcia-Luna-Aceves, J. J. (2011). A practical approach to rate adaptation for multi-antenna systems. In 19th IEEE international conference on network protocols (ICNP). IEEE. Nguyen, D., & Garcia-Luna-Aceves, J. J. (2011). A practical approach to rate adaptation for multi-antenna systems. In 19th IEEE international conference on network protocols (ICNP). IEEE.
8.
Zurück zum Zitat Xia, D., Hart, J., & Fu, Q. (2012). On the performance of rate control algorithm minstrel. In 2012 IEEE 23rd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 406–412). IEEE. Xia, D., Hart, J., & Fu, Q. (2012). On the performance of rate control algorithm minstrel. In 2012 IEEE 23rd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 406–412). IEEE.
9.
Zurück zum Zitat Pefkianakis, I., Hu, Y., Wong, S. H. Y., Yng, H., & Lu, S. (2010). MIMO rate adaptation in 802.11n wireless networks. In MobiCom. Pefkianakis, I., Hu, Y., Wong, S. H. Y., Yng, H., & Lu, S. (2010). MIMO rate adaptation in 802.11n wireless networks. In MobiCom.
10.
Zurück zum Zitat Pefkianakis, I., Lee, S.-B., & Songwu, L. (2013). Towards MIMO-aware 802.11 n rate adaptation. IEEE/ACM Transactions on Networking, 21(3), 692–705.CrossRef Pefkianakis, I., Lee, S.-B., & Songwu, L. (2013). Towards MIMO-aware 802.11 n rate adaptation. IEEE/ACM Transactions on Networking, 21(3), 692–705.CrossRef
11.
Zurück zum Zitat Pefkianakis, I., et al. (2013). Window-based rate adaptation in 802.11 n wireless networks. Mobile Networks and Applications, 18(1), 156–169.CrossRef Pefkianakis, I., et al. (2013). Window-based rate adaptation in 802.11 n wireless networks. Mobile Networks and Applications, 18(1), 156–169.CrossRef
12.
Zurück zum Zitat Zhang, J., et al. (2008). A practical SNR-guided rate adaptation. In INFOCOM 2008. The 27th conference on computer communications. IEEE. Zhang, J., et al. (2008). A practical SNR-guided rate adaptation. In INFOCOM 2008. The 27th conference on computer communications. IEEE.
13.
Zurück zum Zitat Crepaldi, R., Lee, J., Etkin, R., Lee, S.-J., & Kravets, R. (2012). CSI-SF: Estimating wireless channel state using CSI sampling & fusion. In INFOCOM, 2012 proceedings IEEE. IEEE. Crepaldi, R., Lee, J., Etkin, R., Lee, S.-J., & Kravets, R. (2012). CSI-SF: Estimating wireless channel state using CSI sampling & fusion. In INFOCOM, 2012 proceedings IEEE. IEEE.
14.
Zurück zum Zitat Deek, L., et al. (2015). A practical framework for 802.11 MIMO rate adaptation. Computer Networks, 83(2015), 332–348.CrossRef Deek, L., et al. (2015). A practical framework for 802.11 MIMO rate adaptation. Computer Networks, 83(2015), 332–348.CrossRef
15.
Zurück zum Zitat Haratcherev, I., Langendoen, K., Lagendijk, R. L., & Sips, H. J. (2004). Hybrid rate control for IEEE 802.11. In Mobility management & wireless access protocols. Haratcherev, I., Langendoen, K., Lagendijk, R. L., & Sips, H. J. (2004). Hybrid rate control for IEEE 802.11. In Mobility management & wireless access protocols.
16.
Zurück zum Zitat Judd, G., Wang, X., & Steenkiste, P. (2008). Efficient channel-aware rate adaptation in dynamic environment. In Proceedings of the ACM international conference on mobile systems, applications, and services (MobiSys). Judd, G., Wang, X., & Steenkiste, P. (2008). Efficient channel-aware rate adaptation in dynamic environment. In Proceedings of the ACM international conference on mobile systems, applications, and services (MobiSys).
17.
Zurück zum Zitat Vutukuru, M., Balakrishnan, H., & Jamieson, K. (2009). Cross-layer wireless bit rate adaptation. In ACM SIGCOMM. Vutukuru, M., Balakrishnan, H., & Jamieson, K. (2009). Cross-layer wireless bit rate adaptation. In ACM SIGCOMM.
18.
Zurück zum Zitat Bjerke, B. A., Ketchum, J., Walton, R., Nanda, S., Medvedev, I., Wallace, M., & Howard, S. (2005). Packet error probability prediction for system level simulations MIMO-OFDM based 802.11 n WLANs. In IEEE international conference on communications, 2005. ICC 2005 (Vol. 4, pp. 2538–2542). IEEE. Bjerke, B. A., Ketchum, J., Walton, R., Nanda, S., Medvedev, I., Wallace, M., & Howard, S. (2005). Packet error probability prediction for system level simulations MIMO-OFDM based 802.11 n WLANs. In IEEE international conference on communications, 2005. ICC 2005 (Vol. 4, pp. 2538–2542). IEEE.
19.
Zurück zum Zitat Rahul, H., Edalat, F., Katabi, D., & Sodini, C. G. (2009). Frequency-aware rate adaptation and MAC protocols. In Proceedings of the 15th annual international conference on mobile computing and networking (pp. 193–204). ACM. Rahul, H., Edalat, F., Katabi, D., & Sodini, C. G. (2009). Frequency-aware rate adaptation and MAC protocols. In Proceedings of the 15th annual international conference on mobile computing and networking (pp. 193–204). ACM.
20.
Zurück zum Zitat Purandare, R. G., Kshirsagar, S. P., & Koli, S. M. (2016). Analysis of various parameters for link adaptation in wireless transmission. In Innovations in computer science and engineering (pp. 9–19). Springer: Singapore. Purandare, R. G., Kshirsagar, S. P., & Koli, S. M. (2016). Analysis of various parameters for link adaptation in wireless transmission. In Innovations in computer science and engineering (pp. 9–19). Springer: Singapore.
21.
Zurück zum Zitat Sthapit, P., & Pyun, J.-Y. (2016). Implicit block ACK scheme for IEEE 802.11 WLANs. Sensors (Basel), 16(2), 167.CrossRef Sthapit, P., & Pyun, J.-Y. (2016). Implicit block ACK scheme for IEEE 802.11 WLANs. Sensors (Basel), 16(2), 167.CrossRef
22.
Zurück zum Zitat Anwar, R., Nishat, K., Ali, M., Akhtar, Z., Niaz, H., & Qazi, I. A. (2014) Loss differentiation: Moving onto high-speed wireless LANs. In INFOCOM, 2014 proceedings IEEE (pp. 2463–2471). IEEE. Anwar, R., Nishat, K., Ali, M., Akhtar, Z., Niaz, H., & Qazi, I. A. (2014) Loss differentiation: Moving onto high-speed wireless LANs. In INFOCOM, 2014 proceedings IEEE (pp. 2463–2471). IEEE.
23.
Zurück zum Zitat Lee, H., Tinnirello, I., Jeonggyun, Y., & Choi, S. (2010). A performance analysis of block ACK scheme for IEEE 802.11 e networks. Computer Networks, 54(14), 2468–2481.CrossRefMATH Lee, H., Tinnirello, I., Jeonggyun, Y., & Choi, S. (2010). A performance analysis of block ACK scheme for IEEE 802.11 e networks. Computer Networks, 54(14), 2468–2481.CrossRefMATH
24.
Zurück zum Zitat Baik, E., Pande, A., & Mohapatra, P. (2015). Efficient mac for real-time video streaming over wireless lan. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 11(4), 50. Baik, E., Pande, A., & Mohapatra, P. (2015). Efficient mac for real-time video streaming over wireless lan. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 11(4), 50.
25.
Zurück zum Zitat Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive MAC protocol for multi-hop wireless networks. In Proceedings of ACM MOBICOM’01. Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive MAC protocol for multi-hop wireless networks. In Proceedings of ACM MOBICOM’01.
26.
Zurück zum Zitat Martorell, G., Riera-Palou, F., & Femenias, G. (2011). Cross-layer fast link adaptation for MIMO-OFDM based WLANs. Wireless Personal Communications, 56, 599–609.CrossRef Martorell, G., Riera-Palou, F., & Femenias, G. (2011). Cross-layer fast link adaptation for MIMO-OFDM based WLANs. Wireless Personal Communications, 56, 599–609.CrossRef
27.
Zurück zum Zitat Rayanchu, S., Mishra, A., Agrawal, D., Saha, S., & Banerjee, S. Diagnosing wireless packet losses in 802.11: Separating collision from weak signal. In INFOCOM 2008. The 27th conference on computer communications (pp. 735–743). IEEE. Rayanchu, S., Mishra, A., Agrawal, D., Saha, S., & Banerjee, S. Diagnosing wireless packet losses in 802.11: Separating collision from weak signal. In INFOCOM 2008. The 27th conference on computer communications (pp. 735–743). IEEE.
28.
Zurück zum Zitat Biaz, S., & Wu, S. (2008). Loss differentiated rate adaptation in wireless networks. In Wireless communications and networking conference, 2008. WCNC 2008 (pp. 1639–1644). IEEE. Biaz, S., & Wu, S. (2008). Loss differentiated rate adaptation in wireless networks. In Wireless communications and networking conference, 2008. WCNC 2008 (pp. 1639–1644). IEEE.
29.
Zurück zum Zitat Giustiniano, D., Malone, D., Leith, D. J., & Papagiannaki, K. (2010). Measuring transmission opportunities in 802.11 links. IEEE/ACM Transactions on Networking (TON), 18(5), 1516–1529.CrossRef Giustiniano, D., Malone, D., Leith, D. J., & Papagiannaki, K. (2010). Measuring transmission opportunities in 802.11 links. IEEE/ACM Transactions on Networking (TON), 18(5), 1516–1529.CrossRef
30.
Zurück zum Zitat Kim, S., Verma, L., Choi, S., & Qiao, D. (2010). Collision-aware rate adaptation in multi-rate WLANs: Design and implementation. Computer Networks, 54(17), 3011–3030.CrossRef Kim, S., Verma, L., Choi, S., & Qiao, D. (2010). Collision-aware rate adaptation in multi-rate WLANs: Design and implementation. Computer Networks, 54(17), 3011–3030.CrossRef
31.
Zurück zum Zitat Acharya, P. A. K., Sharma, A., Belding, E. M., Almeroth, K. C., & Papagiannaki, K. (2008). Congestion-aware rate adaptation in wireless networks: a measurement-driven approach. In 5th IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2008. SECON’08 (pp. 1–9). IEEE. Acharya, P. A. K., Sharma, A., Belding, E. M., Almeroth, K. C., & Papagiannaki, K. (2008). Congestion-aware rate adaptation in wireless networks: a measurement-driven approach. In 5th IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2008. SECON’08 (pp. 1–9). IEEE.
32.
Zurück zum Zitat Xia, Q., Hamdi, M., & Letaief, K. B. (2009). Open-loop link adaptation for next-generation IEEE 802.11 n wireless networks. IEEE Transactions on Vehicular Technology, 58(7), 3713–3725.CrossRef Xia, Q., Hamdi, M., & Letaief, K. B. (2009). Open-loop link adaptation for next-generation IEEE 802.11 n wireless networks. IEEE Transactions on Vehicular Technology, 58(7), 3713–3725.CrossRef
33.
Zurück zum Zitat Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef
34.
Zurück zum Zitat Halperin, D., Wenjun, H., Sheth, A., & Wetherall, D. (2011). Predictable 802.11 packet delivery from wireless channel measurements. ACM SIGCOMM Computer Communication Review, 41(4), 159–170.CrossRef Halperin, D., Wenjun, H., Sheth, A., & Wetherall, D. (2011). Predictable 802.11 packet delivery from wireless channel measurements. ACM SIGCOMM Computer Communication Review, 41(4), 159–170.CrossRef
35.
Zurück zum Zitat Kant, S., & Jensen, T. L. (2007). Fast link adaptation for IEEE 802.11n. Master’s thesis, Aalborg University. Kant, S., & Jensen, T. L. (2007). Fast link adaptation for IEEE 802.11n. Master’s thesis, Aalborg University.
36.
Zurück zum Zitat Nanda, S., & Rege, K. M. (1998). Frame error rates for convolutional codes on fading channels and the concept of effective Eb/N0. IEEE Transactions on Vehicular Technology, 47(4), 1245–1250.CrossRef Nanda, S., & Rege, K. M. (1998). Frame error rates for convolutional codes on fading channels and the concept of effective Eb/N0. IEEE Transactions on Vehicular Technology, 47(4), 1245–1250.CrossRef
37.
Zurück zum Zitat Guha, R. K., & Sarkar, S. (2008). Characterizing temporal SNR variation in 802.11 networks. IEEE Transactions on Vehicular Technology, 57(4), 2002–2013.CrossRef Guha, R. K., & Sarkar, S. (2008). Characterizing temporal SNR variation in 802.11 networks. IEEE Transactions on Vehicular Technology, 57(4), 2002–2013.CrossRef
39.
Zurück zum Zitat Purandare, R. G., Kshirsagar, S. P., Koli, S. M. (2018). CLARA: Channel quality based adaptive rate frame work for IEEE 802.11 wireless LANs. IRACST—International Journal of Computer Networks and Wireless Communications (IJCNWC), 8(2), ISSN: 2250-3501. Purandare, R. G., Kshirsagar, S. P., Koli, S. M. (2018). CLARA: Channel quality based adaptive rate frame work for IEEE 802.11 wireless LANs. IRACST—International Journal of Computer Networks and Wireless Communications (IJCNWC), 8(2), ISSN: 2250-3501.
Metadaten
Titel
Loss Differentiated Channel Aware Rate Adaptation for IEEE 802.11n Wireless Links
verfasst von
R. G. Purandare
S. P. Kshirsagar
S. M. Koli
Publikationsdatum
24.04.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06379-x

Weitere Artikel der Ausgabe 4/2019

Wireless Personal Communications 4/2019 Zur Ausgabe

Neuer Inhalt