Skip to main content
Erschienen in: Wireless Personal Communications 4/2021

14.05.2021

Low Complexity Carrier Frequency Offset and Channel Estimation for Multiuser OFDMA Networks

verfasst von: Yao-Jen Liang, Kwang-Cheng Chen

Erschienen in: Wireless Personal Communications | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multiple carrier frequency offsets exist in the orthogonal frequency-division multiple access (OFDMA) uplink receivers, and consequently induce inter-carrier interference and multiple-access interferences simultaneously. We therefore propose a joint carrier frequency offset (CFO) and channel estimation scheme by leveraging the characteristic of transmission signals in the OFDMA uplink systems. A fully loaded assignment of subcarriers to active users is also supported by the proposed method. By modeling the system in a Hadamard product form, we develop an iterative algorithm wherein a closed-form estimate of CFO and channel is applied in each updating iteration. Different from the traditional expectation-maximization type methods, which update only a single CFO and channel of one user while keeping the other users’ CFOs and channels constant in each iteration, our proposed scheme updates the CFOs and channels of all active users simultaneously. Therefore, the proposed CFO and channel estimator enjoys faster convergence and lower complexity. Through numerical results, the proposed scheme is demonstrated to be robust to large CFOs and perform comparably well to the conventional approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For clarity, m and n stand for the subcarrier and time-domain sample index of DFT matrix, respectively, while k is the user index.
 
2
The detailed derivation can be found in Appendix A of [28] and is omitted here for brevity.
 
3
The detailed derivation of \({\mathbf {R}}\) can be found in Appendix A of [29] and is omitted here for brevity.
 
4
Any other even value except zero for M can be used with the leading factor being changed to \(\frac{1}{M\pi }\).
 
5
Note that the definition of one iteration for both AH and LSAGE algorithms is counting K updates, since only one user is updated each time and there are K users. While we count one iteration as the same definition for our proposed parallel updating scheme.
 
6
The CRLB derivation is similar to [22] and [29], and the CRLB plots are averaged over 10,000 trials and over different CFOs.
 
7
It is noteworthy that the extension of cascaded orthogonality to the cases of \(K\ge M>2\) is similar and straightforward.
$$\begin{aligned} {\mathbf {U}}_k^H{\mathbf {U}}_k&= ({\mathbf {U}}^0_k)^H{\mathbf {U}}^0_k + ({\mathbf {U}}^1_k)^H{\mathbf {U}}^1_k \qquad \qquad \qquad \qquad \qquad \qquad \qquad (31)\\&= \left( \begin{array}{cccc} ||{\mathbf {u}}_k||^2 &{} \sum ^{N-1}_{i=0} u_iu_{(i-1)_N} &{} \cdots &{} \sum _i u_iu_{(i-L+1)_N} \\ \sum _i u_iu_{(i-1)_N} &{} ||{\mathbf {u}}_k||^2 &{} \cdots &{} \sum _i u_iu_{(i-L+2)_N} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \sum _i u_iu_{(i-L+1)_N} &{} \sum _i u_iu_{(i-L+2)_N} &{} \cdots &{} ||{\mathbf {u}}_k||^2 \\ \end{array} \right) \\&{\mathop {=}\limits ^{(28)}} \left( \begin{array}{cccc} 2||{\mathbf {u}}^0_{k}||^2 &{} 2\sum ^{N/2-1}_{l=0} u_lu_{(l-1)_{N/2}} &{} \cdots &{} 2\sum _l u_lu_{(l-L+1)_{N/2}} \\ 2\sum _l u_lu_{(l-1)_{N/2}} &{} 2||{\mathbf {u}}^0_{k}||^2 &{} \cdots &{} 2\sum _l u_lu_{(l-L+2)_N} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 2\sum _l u_lu_{(l-L+1)_{N/2}} &{} 2\sum _l u_lu_{(l-L+2)_{N/2}} &{} \cdots &{} 2||{\mathbf {u}}^0_{k}||^2 \\ \end{array} \right) . \quad \quad \quad \quad (32)\end{aligned}$$
 
Literatur
1.
Zurück zum Zitat Benfarah, A., Laurenti, N., & Tomasin, S. (2016). Resource allocation for downlink of 5g systems with OFDMA under secrecy outage constraints. Proc. IEEE Globecom Workshops (GC Wkshps), 1–6. Benfarah, A., Laurenti, N., & Tomasin, S. (2016). Resource allocation for downlink of 5g systems with OFDMA under secrecy outage constraints. Proc. IEEE Globecom Workshops (GC Wkshps), 1–6.
2.
Zurück zum Zitat Liu, H., Liu, G., Ma, Z., Tang, Y., & Lin, Y. (2018). Dynamic virtual resource allocation in 5g vehicular communication networks with mixed scma/OFDMA. In Proc. IEEE 87th Vehicular Technology Conf. (VTC Spring) (pp. 1–7). Liu, H., Liu, G., Ma, Z., Tang, Y., & Lin, Y. (2018). Dynamic virtual resource allocation in 5g vehicular communication networks with mixed scma/OFDMA. In Proc. IEEE 87th Vehicular Technology Conf. (VTC Spring) (pp. 1–7).
3.
Zurück zum Zitat Pun, M.-O., Morelli, M., & Kuo, C.-C.J. (2006). Maximum-likelihood synchronization and channel estimation for OFDMA uplink transmissions. IEEE Transactions on Communications, 54(4), 726–736.CrossRef Pun, M.-O., Morelli, M., & Kuo, C.-C.J. (2006). Maximum-likelihood synchronization and channel estimation for OFDMA uplink transmissions. IEEE Transactions on Communications, 54(4), 726–736.CrossRef
4.
Zurück zum Zitat Morelli, M., Kuo, C.-C.J., & Pun, M.-O. (2007). Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review. Proceedings of the IEEE, 95(7), 1394–1427.CrossRef Morelli, M., Kuo, C.-C.J., & Pun, M.-O. (2007). Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review. Proceedings of the IEEE, 95(7), 1394–1427.CrossRef
5.
Zurück zum Zitat Choi, J., Lee, C., Jung, H. W., & Lee, Y. H. (2000). Carrier frequency offset compensation for uplink of OFDM-FDMA systems. IEEE Commun Lett, 4(12), 414–416.CrossRef Choi, J., Lee, C., Jung, H. W., & Lee, Y. H. (2000). Carrier frequency offset compensation for uplink of OFDM-FDMA systems. IEEE Commun Lett, 4(12), 414–416.CrossRef
6.
Zurück zum Zitat Barbarossa, S., Pompili, M., & Giannakis, G. B. (2002). Channel-independent synchronization of orthogonal frequency division multiple access systems. IEEE Journal on Selected Areas in Communications, 20(2), 474–486.CrossRef Barbarossa, S., Pompili, M., & Giannakis, G. B. (2002). Channel-independent synchronization of orthogonal frequency division multiple access systems. IEEE Journal on Selected Areas in Communications, 20(2), 474–486.CrossRef
7.
Zurück zum Zitat Cao, Z., Tureli, U., & Yao, Y.-D. (2004). Deterministic multiuser carrier-frequency offset estimation for interleaved OFDMA uplink. IEEE Transactions on Communications, 52(9), 1585–1594.CrossRef Cao, Z., Tureli, U., & Yao, Y.-D. (2004). Deterministic multiuser carrier-frequency offset estimation for interleaved OFDMA uplink. IEEE Transactions on Communications, 52(9), 1585–1594.CrossRef
8.
Zurück zum Zitat Lee, J., Lee, S., Bang, K.-J., Cha, S., & Hong, D. (2007). Carrier frequency offset estimation using ESPRIT for interleaved OFDMA uplink systems. IEEE Transactions on Vehicular Technology, 56(5), 3227–3231.CrossRef Lee, J., Lee, S., Bang, K.-J., Cha, S., & Hong, D. (2007). Carrier frequency offset estimation using ESPRIT for interleaved OFDMA uplink systems. IEEE Transactions on Vehicular Technology, 56(5), 3227–3231.CrossRef
9.
Zurück zum Zitat Hsieh, H.-T., & Wu, W. R. (2011). Blind maximum-likelihood carrier-frequency-offset estimation for interleaved ofdma uplink systems. IEEE Transactions on Vehicular Technology, 60(1), 160–173.CrossRef Hsieh, H.-T., & Wu, W. R. (2011). Blind maximum-likelihood carrier-frequency-offset estimation for interleaved ofdma uplink systems. IEEE Transactions on Vehicular Technology, 60(1), 160–173.CrossRef
10.
Zurück zum Zitat Zhang, W., Gao, F., Yin, Q., & Nallanathan, A. (2012). Blind carrier frequency offset estimation for interleaved ofdma uplink. IEEE transactions on signal processing, 60(7), 3616–3627.MathSciNetCrossRef Zhang, W., Gao, F., Yin, Q., & Nallanathan, A. (2012). Blind carrier frequency offset estimation for interleaved ofdma uplink. IEEE transactions on signal processing, 60(7), 3616–3627.MathSciNetCrossRef
11.
Zurück zum Zitat Cheng, P., Chen, Z., de Hoog, F., & Sung, C. K. (2016). Sparse blind carrier-frequency offset estimation for ofdma uplink. IEEE Transactions on Communications, 64(12), 5254–5265.CrossRef Cheng, P., Chen, Z., de Hoog, F., & Sung, C. K. (2016). Sparse blind carrier-frequency offset estimation for ofdma uplink. IEEE Transactions on Communications, 64(12), 5254–5265.CrossRef
12.
Zurück zum Zitat Huang, M., Huang, L., Guo, C., Zhang, P., Zhang, J., & Yang, L.-L. (2017). Carrier frequency offset estimation in uplink ofdma systems: An approach relying on sparse recovery. IEEE Transactions on Vehicular Technology, 66(10), 9592–9597.CrossRef Huang, M., Huang, L., Guo, C., Zhang, P., Zhang, J., & Yang, L.-L. (2017). Carrier frequency offset estimation in uplink ofdma systems: An approach relying on sparse recovery. IEEE Transactions on Vehicular Technology, 66(10), 9592–9597.CrossRef
13.
Zurück zum Zitat Bai, L., & Yin, Q. (2012). Frequency synchronization for the OFDMA uplink based on the tile structure of IEEE 802.16e. IEEE Transactions on Vehicular Technology, 61(5), 2348–2353.CrossRef Bai, L., & Yin, Q. (2012). Frequency synchronization for the OFDMA uplink based on the tile structure of IEEE 802.16e. IEEE Transactions on Vehicular Technology, 61(5), 2348–2353.CrossRef
14.
Zurück zum Zitat Zhang, W., & Yin, Q. (2014). Blind carrier frequency offset estimation for tile-based orthogonal frequency division multiple access uplink with multi-antenna receiver. IET Communications, 8(8), 1309–1316.CrossRef Zhang, W., & Yin, Q. (2014). Blind carrier frequency offset estimation for tile-based orthogonal frequency division multiple access uplink with multi-antenna receiver. IET Communications, 8(8), 1309–1316.CrossRef
15.
Zurück zum Zitat Morelli, M. (2004). Timing and frequency synchronization for the uplink of an OFDMA system. IEEE Transactions on Communications, 52(2), 296–306.CrossRef Morelli, M. (2004). Timing and frequency synchronization for the uplink of an OFDMA system. IEEE Transactions on Communications, 52(2), 296–306.CrossRef
16.
Zurück zum Zitat Sanguinetti, L., & Morelli, M. (2010). A low-complexity scheme for frequency estimation in uplink OFDMA systems. IEEE Transactions on Wireless Communications, 9(8), 2430–2437.CrossRef Sanguinetti, L., & Morelli, M. (2010). A low-complexity scheme for frequency estimation in uplink OFDMA systems. IEEE Transactions on Wireless Communications, 9(8), 2430–2437.CrossRef
17.
Zurück zum Zitat Wang, Y., & Phoong, S. (2018). Blind cfo estimation in OFDMA uplink transmission with general carrier assignment scheme. IEEE Communications Letters, 22(5), 1014–1017.CrossRef Wang, Y., & Phoong, S. (2018). Blind cfo estimation in OFDMA uplink transmission with general carrier assignment scheme. IEEE Communications Letters, 22(5), 1014–1017.CrossRef
18.
Zurück zum Zitat Sun, P., & Zhang, L. (2009). Low complexity pilot aided frequency synchronization for OFDMA uplink transmission. IEEE Transactions on Wireless Communications, 8(7), 3758–3769.CrossRef Sun, P., & Zhang, L. (2009). Low complexity pilot aided frequency synchronization for OFDMA uplink transmission. IEEE Transactions on Wireless Communications, 8(7), 3758–3769.CrossRef
19.
Zurück zum Zitat Huang, D., & Letaief, K. B. (2005). An interference-cancellation scheme for carrier frequency offsets correction in OFDMA systems. IEEE Transactions on Communications, 53(7), 1155–1165.CrossRef Huang, D., & Letaief, K. B. (2005). An interference-cancellation scheme for carrier frequency offsets correction in OFDMA systems. IEEE Transactions on Communications, 53(7), 1155–1165.CrossRef
20.
Zurück zum Zitat Cao, Z., Tureli, U., Yao, Y.-D., & Honan, P. (2004). Frequency synchronization for generalized OFDMA uplink. In Proc. IEEE Global Telecommunications Conf. (pp. 1071–1075). Cao, Z., Tureli, U., Yao, Y.-D., & Honan, P. (2004). Frequency synchronization for generalized OFDMA uplink. In Proc. IEEE Global Telecommunications Conf. (pp. 1071–1075).
21.
Zurück zum Zitat Gini, F., Greco, M., & Farina, A. (2003). Multiple radar targets estimation by exploiting induced amplitude modulation. IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1316–1332.CrossRef Gini, F., Greco, M., & Farina, A. (2003). Multiple radar targets estimation by exploiting induced amplitude modulation. IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1316–1332.CrossRef
22.
Zurück zum Zitat Fu, X., Minn, H., & Cantrell, C. D. (2008). Two novel iterative joint frequency-offset and channel estimation methods for OFDMA uplink. IEEE Transactions on Communication, 56(3), 474–484.CrossRef Fu, X., Minn, H., & Cantrell, C. D. (2008). Two novel iterative joint frequency-offset and channel estimation methods for OFDMA uplink. IEEE Transactions on Communication, 56(3), 474–484.CrossRef
23.
Zurück zum Zitat Lee, K., Moon, S.-H., & Lee, I. (2010). Low-complexity leakage-based carrier frequency offset estimation techniques for ofdma uplink systems. Proc. IEEE Global Telecommunications Conf., 1–5. Lee, K., Moon, S.-H., & Lee, I. (2010). Low-complexity leakage-based carrier frequency offset estimation techniques for ofdma uplink systems. Proc. IEEE Global Telecommunications Conf., 1–5.
24.
Zurück zum Zitat Abdzadeh-Ziabari, H., Zhu, W., & Swamy, M. N. S. (2018). Joint carrier frequency offset and doubly selective channel estimation for MIMO-OFDMA uplink with Kalman and particle filtering. IEEE Transactions on Signal Processing, 66(15), 4001–4012.MathSciNetCrossRef Abdzadeh-Ziabari, H., Zhu, W., & Swamy, M. N. S. (2018). Joint carrier frequency offset and doubly selective channel estimation for MIMO-OFDMA uplink with Kalman and particle filtering. IEEE Transactions on Signal Processing, 66(15), 4001–4012.MathSciNetCrossRef
25.
Zurück zum Zitat Pun, M.-O., Morelli, M., & Kuo, C.-C.J. (2007). Iterative detection and frequency synchronization for ofdma uplink transmissions. IEEE Transactions on Wireless Communications, 6(2), 629–639.CrossRef Pun, M.-O., Morelli, M., & Kuo, C.-C.J. (2007). Iterative detection and frequency synchronization for ofdma uplink transmissions. IEEE Transactions on Wireless Communications, 6(2), 629–639.CrossRef
26.
Zurück zum Zitat Horn, R. A., & Johnson, C. R. (1991). Matrix analysis. New York: Cambridge University Press.CrossRef Horn, R. A., & Johnson, C. R. (1991). Matrix analysis. New York: Cambridge University Press.CrossRef
27.
Zurück zum Zitat Barhumi, I., Leus, G., & Moonen, M. (2003). Optimal training design for mimo ofdm systems in mobile wireless channels. IEEE Transactions on Signal Processing, 51(6), 1615–1624.CrossRef Barhumi, I., Leus, G., & Moonen, M. (2003). Optimal training design for mimo ofdm systems in mobile wireless channels. IEEE Transactions on Signal Processing, 51(6), 1615–1624.CrossRef
28.
Zurück zum Zitat Liang, Y.-J., Chang, J.-F., & Shiu, D.-S. (2009). Joint carrier frequency offset estimation and signal detection in MIMO BLAST systems. IEEE Transactions on Vehicular Technology, 58(6), 2783–2792.CrossRef Liang, Y.-J., Chang, J.-F., & Shiu, D.-S. (2009). Joint carrier frequency offset estimation and signal detection in MIMO BLAST systems. IEEE Transactions on Vehicular Technology, 58(6), 2783–2792.CrossRef
29.
Zurück zum Zitat Liang, Y.-J., Stüber, G. L., Chang, J.-F., & Yang, D.-N. (2012). A joint channel and frequency offset estimator for the downlink of coordinated mimo-ofdm systems. IEEE Transactions on Wireless Communications, 11(6), 2254–2265.CrossRef Liang, Y.-J., Stüber, G. L., Chang, J.-F., & Yang, D.-N. (2012). A joint channel and frequency offset estimator for the downlink of coordinated mimo-ofdm systems. IEEE Transactions on Wireless Communications, 11(6), 2254–2265.CrossRef
30.
Zurück zum Zitat Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory. Upper Saddle River, NJ: Prentice-Hall.MATH Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory. Upper Saddle River, NJ: Prentice-Hall.MATH
Metadaten
Titel
Low Complexity Carrier Frequency Offset and Channel Estimation for Multiuser OFDMA Networks
verfasst von
Yao-Jen Liang
Kwang-Cheng Chen
Publikationsdatum
14.05.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08558-1

Weitere Artikel der Ausgabe 4/2021

Wireless Personal Communications 4/2021 Zur Ausgabe

Neuer Inhalt