Skip to main content

2024 | OriginalPaper | Buchkapitel

Low-Power LNA in Analog Front End for Biomedical Applications

verfasst von : Pritty, Mansi Jhamb

Erschienen in: Micro and Nanoelectronics Devices, Circuits and Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomedical devices have enormous possibilities in health applications. A low-noise amplifier (LNA) is a crucial circuit in neural recording, ECG, and EEG systems. The performance of LNAs has to vary with the characteristics of their different components. This contribution presents an empirical comparison between the latest state-of-the-art LNAs in health applications. Using the specter tool of MOS technology, LNAs have implemented at 180, 90, and 65 nm and simulated at a wide supply voltage (1–1.8 V) range. There are 99.9% power variation, 103.7% bandwidth range, 93.18% gain range, 91.17% noise figure vary, and IIP3 97.5% area variation for different LNA designs. Different LNAs have used in analog front end (AFE) design/circuits. A comparison of AFE designs has shown that there are 85.07% power saving, 79.78% maximal bandwidth, and 93.54% best performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Yang, J. Holleman, An ultralow-power low-noise CMOS biopotential amplifier for neural recording. IEEE Trans. Circ. Syst. II Express Briefs 62(10), 927–931 (2015) T. Yang, J. Holleman, An ultralow-power low-noise CMOS biopotential amplifier for neural recording. IEEE Trans. Circ. Syst. II Express Briefs 62(10), 927–931 (2015)
2.
Zurück zum Zitat T.Y. Wang, L.H. Liu, S.Y. Peng, A power-efficient highly linear reconfigurable biopotential sensing amplifier using gate-balanced pseudoresistors. IEEE Trans. Circ. Syst. II Express Briefs 62(2), 199–203 (2015) T.Y. Wang, L.H. Liu, S.Y. Peng, A power-efficient highly linear reconfigurable biopotential sensing amplifier using gate-balanced pseudoresistors. IEEE Trans. Circ. Syst. II Express Briefs 62(2), 199–203 (2015)
3.
Zurück zum Zitat R. Nagulapalli, K. Hayatleh, S. Barker, A.A. Tammam, N. Yassine, B. Yassine, M. Ben-Esmael, A Low noise amplifier suitable for biomedical recording analog front-end in 65 nm CMOS technology. J. Circ. Syst. Comput. 28(08), 1950137 (2019)CrossRef R. Nagulapalli, K. Hayatleh, S. Barker, A.A. Tammam, N. Yassine, B. Yassine, M. Ben-Esmael, A Low noise amplifier suitable for biomedical recording analog front-end in 65 nm CMOS technology. J. Circ. Syst. Comput. 28(08), 1950137 (2019)CrossRef
4.
Zurück zum Zitat M. Meghdadi, M. Piri, A. Medi, A highly linear dual-gain CMOS low-noise amplifier for X-band. IEEE Trans. Circ. Syst. II Express Briefs 65(11), 1604–1608 (2017) M. Meghdadi, M. Piri, A. Medi, A highly linear dual-gain CMOS low-noise amplifier for X-band. IEEE Trans. Circ. Syst. II Express Briefs 65(11), 1604–1608 (2017)
5.
Zurück zum Zitat Y. Liu, T. Ma, P. Guan, L. Mao, B. Chi, A G-band wideband bidirectional transceiver front-end in 40-nm CMOS. IEEE Trans. Circ. Syst. II Express Briefs 66(5), 798–802 (2019) Y. Liu, T. Ma, P. Guan, L. Mao, B. Chi, A G-band wideband bidirectional transceiver front-end in 40-nm CMOS. IEEE Trans. Circ. Syst. II Express Briefs 66(5), 798–802 (2019)
6.
Zurück zum Zitat L. Belostotski, E.A. Klumperink, Figures of merit for CMOS low-noise amplifiers and estimates for their theoretical limits (Express Briefs, IEEE Transactions on Circuits and Systems II, 2021) L. Belostotski, E.A. Klumperink, Figures of merit for CMOS low-noise amplifiers and estimates for their theoretical limits (Express Briefs, IEEE Transactions on Circuits and Systems II, 2021)
7.
Zurück zum Zitat S. Dey, M. Pattanaik, G. Kaushal, A low power low noise analog front-end for ECG recording. Analog Integr. Circ. Sig. Proc. 109(2), 449–458 (2021)CrossRef S. Dey, M. Pattanaik, G. Kaushal, A low power low noise analog front-end for ECG recording. Analog Integr. Circ. Sig. Proc. 109(2), 449–458 (2021)CrossRef
8.
Zurück zum Zitat T.Y. Wang, M.R. Lai, C.M. Twigg, S.Y. Peng. A fully reconfigurable low-noise biopotential sensing amplifier with 1.96 noise efficiency factor. IEEE Trans. Biomed. Circ. Syst. 8(3), 411–422 (2013) T.Y. Wang, M.R. Lai, C.M. Twigg, S.Y. Peng. A fully reconfigurable low-noise biopotential sensing amplifier with 1.96 noise efficiency factor. IEEE Trans. Biomed. Circ. Syst. 8(3), 411–422 (2013)
9.
Zurück zum Zitat H.C. Hsieh, A.D. Nguyen, J.S. Lai, Low noise ZVS switch sharing multichannel switching amplifier for magnetic bearing applications. IEEE Trans. Circ. Syst. II Express Briefs 67(10), 1999–2003 (2019) H.C. Hsieh, A.D. Nguyen, J.S. Lai, Low noise ZVS switch sharing multichannel switching amplifier for magnetic bearing applications. IEEE Trans. Circ. Syst. II Express Briefs 67(10), 1999–2003 (2019)
10.
Zurück zum Zitat J. Elkind, E. Socher, Noise figure optimization tool for millimeter-wave receivers at Near- fmax frequencies. IEEE Trans. Circ. Syst. II Express Briefs 63(10), 914–918 (2016) J. Elkind, E. Socher, Noise figure optimization tool for millimeter-wave receivers at Near- fmax frequencies. IEEE Trans. Circ. Syst. II Express Briefs 63(10), 914–918 (2016)
11.
Zurück zum Zitat J.Y. Hsieh, K.Y. Lin. A 0.6-V low-power variable-gain LNA in 0.18-µm CMOS Technology. IEEE Trans. Circ. Syst. II: Express Briefs, 67(1), 23–26 (2019) J.Y. Hsieh, K.Y. Lin. A 0.6-V low-power variable-gain LNA in 0.18-µm CMOS Technology. IEEE Trans. Circ. Syst. II: Express Briefs, 67(1), 23–26 (2019)
12.
Zurück zum Zitat H. Yu, Y. Chen, C.C. Boon, C. Li, P.I. Mak, R.P. Martins. A 0.044-mm 2 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-cancelling LNA achieving a flat NF of 3.3±0.45 dB. IEEE Trans. Circ. Syst. II: Express Briefs 66(1), 71–75 (2018) H. Yu, Y. Chen, C.C. Boon, C. Li, P.I. Mak, R.P. Martins. A 0.044-mm 2 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-cancelling LNA achieving a flat NF of 3.3±0.45 dB. IEEE Trans. Circ. Syst. II: Express Briefs 66(1), 71–75 (2018)
13.
Zurück zum Zitat Y. Yu, J. Zhu, Z. Zong, P. Tang, H. Liu, C. Zhao, Y. Wu, K. Kang, A 21-to-41-GHz high-gain low noise amplifier with triple-coupled technique for multiband wireless applications. IEEE Trans. Circ. Syst. II Express Briefs 68(6), 1857–1861 (2020) Y. Yu, J. Zhu, Z. Zong, P. Tang, H. Liu, C. Zhao, Y. Wu, K. Kang, A 21-to-41-GHz high-gain low noise amplifier with triple-coupled technique for multiband wireless applications. IEEE Trans. Circ. Syst. II Express Briefs 68(6), 1857–1861 (2020)
14.
Zurück zum Zitat S.S. Regulagadda, B.D. Sahoo, A. Dutta, K.Y. Varma, V.S. Rao, A packaged noise-canceling high-gain wideband low noise amplifier. IEEE Trans. Circ. Syst. II Express Briefs 66(1), 11–15 (2018) S.S. Regulagadda, B.D. Sahoo, A. Dutta, K.Y. Varma, V.S. Rao, A packaged noise-canceling high-gain wideband low noise amplifier. IEEE Trans. Circ. Syst. II Express Briefs 66(1), 11–15 (2018)
15.
Zurück zum Zitat T. Ma, F. Hu, A wideband flat gain low noise amplifier using active inductor for input matching. IEEE Trans. Circ. Syst. II Express Briefs 66(6), 904–908 (2018) T. Ma, F. Hu, A wideband flat gain low noise amplifier using active inductor for input matching. IEEE Trans. Circ. Syst. II Express Briefs 66(6), 904–908 (2018)
16.
Zurück zum Zitat L. Ma, Z.G. Wang, J. Xu, N.M. Amin, A high-linearity wideband common-gate LNA with a differential active inductor. IEEE Trans. Circ. Syst. II Express Briefs 64(4), 402–406 (2016) L. Ma, Z.G. Wang, J. Xu, N.M. Amin, A high-linearity wideband common-gate LNA with a differential active inductor. IEEE Trans. Circ. Syst. II Express Briefs 64(4), 402–406 (2016)
17.
Zurück zum Zitat F.D. Baumgratz, C. Saavedra, M. Steyaert, F. Tavernier, S. Bampi. A wideband low-noise variable-gain amplifier with a 3.4 dB NF and up to 45 dB gain tuning range in 130-nm CMOS. IEEE Trans. Circ. Syst. II: Express Briefs, 66(7), 1104–1108 (2018) F.D. Baumgratz, C. Saavedra, M. Steyaert, F. Tavernier, S. Bampi. A wideband low-noise variable-gain amplifier with a 3.4 dB NF and up to 45 dB gain tuning range in 130-nm CMOS. IEEE Trans. Circ. Syst. II: Express Briefs, 66(7), 1104–1108 (2018)
18.
Zurück zum Zitat M. Davulcu, C. Çalışkan, İ Kalyoncu, Y. Gurbuz, An X-Band SiGe BiCMOS Triple-Cascode LNA with boosted gain and P 1dB. IEEE Trans. Circ. Syst. II Express Briefs 65(8), 994–998 (2018) M. Davulcu, C. Çalışkan, İ Kalyoncu, Y. Gurbuz, An X-Band SiGe BiCMOS Triple-Cascode LNA with boosted gain and P 1dB. IEEE Trans. Circ. Syst. II Express Briefs 65(8), 994–998 (2018)
19.
Zurück zum Zitat J. Hu, K. Ma, S. Mou, F. Meng. Analysis and design of a 0.1–23 GHz LNA MMIC using frequency-dependent feedback. IEEE Trans. Circ. Syst. II: Express Briefs 66(9), 1517–1521 (2019) J. Hu, K. Ma, S. Mou, F. Meng. Analysis and design of a 0.1–23 GHz LNA MMIC using frequency-dependent feedback. IEEE Trans. Circ. Syst. II: Express Briefs 66(9), 1517–1521 (2019)
20.
Zurück zum Zitat M.K. Hedayati, A. Abdipour, R.S. Shirazi, C. Cetintepe, R.B. Staszewski, A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS. IEEE Trans. Circuits Syst. II Express Briefs 65(10), 1460–1464 (2018) M.K. Hedayati, A. Abdipour, R.S. Shirazi, C. Cetintepe, R.B. Staszewski, A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS. IEEE Trans. Circuits Syst. II Express Briefs 65(10), 1460–1464 (2018)
21.
Zurück zum Zitat S.J. Jung, S.K. Hong, O.K. Kwon, Low-power low-noise amplifier using attenuation-adaptive noise control for ultrasound imaging systems. IEEE Trans. Biomed. Circuits Syst. 11(1), 108–116 (2016)CrossRef S.J. Jung, S.K. Hong, O.K. Kwon, Low-power low-noise amplifier using attenuation-adaptive noise control for ultrasound imaging systems. IEEE Trans. Biomed. Circuits Syst. 11(1), 108–116 (2016)CrossRef
22.
Zurück zum Zitat A.A. Kumar, B.D. Sahoo, A. Dutta, A wideband 2–5 GHz noise canceling subthreshold low noise amplifier. IEEE Trans. Circ. Syst. II Express Briefs 65(7), 834–838 (2017) A.A. Kumar, B.D. Sahoo, A. Dutta, A wideband 2–5 GHz noise canceling subthreshold low noise amplifier. IEEE Trans. Circ. Syst. II Express Briefs 65(7), 834–838 (2017)
23.
Zurück zum Zitat C.H. Chang, A forward-body-bias CMOS LNA with ultra-low device junction leakage using intrinsic self-balanced pseudo resistor. IEEE Trans. Circuits Syst. II Express Briefs 66(4), 697–701 (2018) C.H. Chang, A forward-body-bias CMOS LNA with ultra-low device junction leakage using intrinsic self-balanced pseudo resistor. IEEE Trans. Circuits Syst. II Express Briefs 66(4), 697–701 (2018)
24.
Zurück zum Zitat D. Lee, C. Nguyen, Dual Q/V-band SiGe BiCMOS low noise amplifiers using Q-enhanced metamaterial transmission lines. IEEE Trans. Circ. Syst. II Express Briefs 68(3), 898–902 (2020) D. Lee, C. Nguyen, Dual Q/V-band SiGe BiCMOS low noise amplifiers using Q-enhanced metamaterial transmission lines. IEEE Trans. Circ. Syst. II Express Briefs 68(3), 898–902 (2020)
25.
Zurück zum Zitat G. Nikandish, A. Medi, A 40-GHz bandwidth tapered distributed LNA. IEEE Trans. Circ. Syst. II Express Briefs 65(11), 1614–1618 (2017) G. Nikandish, A. Medi, A 40-GHz bandwidth tapered distributed LNA. IEEE Trans. Circ. Syst. II Express Briefs 65(11), 1614–1618 (2017)
26.
Zurück zum Zitat R.A. Shaheen, T. Rahkonen, A. Pärssinen, Millimeter-wave frequency reconfigurable low noise amplifiers for 5G. IEEE Trans. Circ. Syst. II Express Briefs 68(2), 642–646 (2020) R.A. Shaheen, T. Rahkonen, A. Pärssinen, Millimeter-wave frequency reconfigurable low noise amplifiers for 5G. IEEE Trans. Circ. Syst. II Express Briefs 68(2), 642–646 (2020)
27.
Zurück zum Zitat C. Zhao, Y. Yu. A K-/Ka-band broadband low-noise amplifier based on the multiple resonant frequency technique. IEEE CAS-I: Regular Papers 69(8) (2022) C. Zhao, Y. Yu. A K-/Ka-band broadband low-noise amplifier based on the multiple resonant frequency technique. IEEE CAS-I: Regular Papers 69(8) (2022)
28.
Zurück zum Zitat L. Lyu, D. Ye, C.J.R. Shi, A 340 nW/Channel 110 dB PSRR neural recording analog front-end using replica-biasing LNA, level-shifter assisted PGA, and averaged LFP servo loop in 65 nm CMOS. IEEE Trans. Biomed. Circuits Syst. 14(4), 811–824 (2020)CrossRef L. Lyu, D. Ye, C.J.R. Shi, A 340 nW/Channel 110 dB PSRR neural recording analog front-end using replica-biasing LNA, level-shifter assisted PGA, and averaged LFP servo loop in 65 nm CMOS. IEEE Trans. Biomed. Circuits Syst. 14(4), 811–824 (2020)CrossRef
29.
Zurück zum Zitat S.-Y. Lee , P.-H. Cheng, C.-F. Tsou, C.-C. Lin, G.-S. Shieh. A 2.4 GHz ISM band OOK transceiver with high energy efficiency for biomedical implantable applications. IEEE Trans. Biomed. Circ. Syst. 14(1) (2020) S.-Y. Lee , P.-H. Cheng, C.-F. Tsou, C.-C. Lin, G.-S. Shieh. A 2.4 GHz ISM band OOK transceiver with high energy efficiency for biomedical implantable applications. IEEE Trans. Biomed. Circ. Syst. 14(1) (2020)
30.
Zurück zum Zitat B. Liu, Y. Zhang, J. Qiu, W. Deng, Z. Xu, H. Zhang, J. Pang, Y. Wang , R. Wu, T. Someya, A. Shirane, K. Okada, An HDL-described Fully-synthesizable Sub-GHz IoT transceiver with ring oscillator based frequency synthesizer and digital background EVM calibration, in IEEE Custom Integrated Circuits Conference, pp. 2152–3630 (2019) B. Liu, Y. Zhang, J. Qiu, W. Deng, Z. Xu, H. Zhang, J. Pang, Y. Wang , R. Wu, T. Someya, A. Shirane, K. Okada, An HDL-described Fully-synthesizable Sub-GHz IoT transceiver with ring oscillator based frequency synthesizer and digital background EVM calibration, in IEEE Custom Integrated Circuits Conference, pp. 2152–3630 (2019)
31.
Zurück zum Zitat D. Martinez-Perez, F. Aznar et al. Design-Window Methodology for Inductorless Noise-Cncelling CMOS LNAs. IEEE Access 10 (2022) D. Martinez-Perez, F. Aznar et al. Design-Window Methodology for Inductorless Noise-Cncelling CMOS LNAs. IEEE Access 10 (2022)
32.
Zurück zum Zitat R. Wang, C. Li, et al. A 18–44 GHz low noise amplifier with input matching and bandwidth extension techniques. IEEE Microwave Wireless Components Lett. (2022) R. Wang, C. Li, et al. A 18–44 GHz low noise amplifier with input matching and bandwidth extension techniques. IEEE Microwave Wireless Components Lett. (2022)
33.
Zurück zum Zitat H.-H. Chen, W.-C. Cheng, C.-H. Hsieh, Design and analysis of high-gain and compact single-input differential-output low noise amplifier for 5G applications. IEEE Microw. Wireless Comp. Lett. 32(6) (2022) H.-H. Chen, W.-C. Cheng, C.-H. Hsieh, Design and analysis of high-gain and compact single-input differential-output low noise amplifier for 5G applications. IEEE Microw. Wireless Comp. Lett. 32(6) (2022)
34.
Zurück zum Zitat Pritty, M. Jhamb. High-performance current mirror-based voltage-controlled oscillator for implantable devices, in Micro and Nanoelectronics Devices, Circuits and Systems Select Proceedings of MNDCS 2021, vol. 32 (Springer, 2021). Pritty, M. Jhamb. High-performance current mirror-based voltage-controlled oscillator for implantable devices, in Micro and Nanoelectronics Devices, Circuits and Systems Select Proceedings of MNDCS 2021, vol. 32 (Springer, 2021).
35.
Zurück zum Zitat Z. Liu, C.C. Boon, A 0.092-mm2 2–12-GHz Noise-cancelling low-noise amplifier with gain improvement and noise reduction. IEEE TCAS-II: Express Briefs 69, 4013–4017 (2022) Z. Liu, C.C. Boon, A 0.092-mm2 2–12-GHz Noise-cancelling low-noise amplifier with gain improvement and noise reduction. IEEE TCAS-II: Express Briefs 69, 4013–4017 (2022)
36.
Zurück zum Zitat M. Tarkhan, M. Sawan, A novel current density based design approach of low noise amplifiers. IEEE Access 10 (2022) M. Tarkhan, M. Sawan, A novel current density based design approach of low noise amplifiers. IEEE Access 10 (2022)
37.
Zurück zum Zitat L. Qiu, J. Liu et al., Ultra low power E-band Low noise amplifier with three stacked current-sharing amplification stages in 28-nm CMOS. IEEE Microwave Wirel. Compon. Lett. 32(6), 732–735 (2022)CrossRef L. Qiu, J. Liu et al., Ultra low power E-band Low noise amplifier with three stacked current-sharing amplification stages in 28-nm CMOS. IEEE Microwave Wirel. Compon. Lett. 32(6), 732–735 (2022)CrossRef
38.
Zurück zum Zitat G. Atzeni, et. al. An impedance-boosted switched-capacitor low-noise amplifier achieving 0.4 NEF, in 2022 IEEE Symposium on VLSI Technology and Circuits (2022), pp. 116–117 G. Atzeni, et. al. An impedance-boosted switched-capacitor low-noise amplifier achieving 0.4 NEF, in 2022 IEEE Symposium on VLSI Technology and Circuits (2022), pp. 116–117
39.
Zurück zum Zitat J. Zhang, H. Zhang, Q. Sun, R. Zhang, A low-noise, low-power amplifier with current-reused OTA for ECG recordings. IEEE Trans. Biomed. Circuits Syst. 12(3), 700–708 (2018)CrossRef J. Zhang, H. Zhang, Q. Sun, R. Zhang, A low-noise, low-power amplifier with current-reused OTA for ECG recordings. IEEE Trans. Biomed. Circuits Syst. 12(3), 700–708 (2018)CrossRef
40.
Zurück zum Zitat L. Liu, D. Gao, Y. Tain, Y. Yu, Z. Qin, A low mismatch and high input impedance multi-channel Tine-division multiplexing analog front end for bio-sensors. IEEE Sens. J. 22(7), 6755–6763 (2022)CrossRef L. Liu, D. Gao, Y. Tain, Y. Yu, Z. Qin, A low mismatch and high input impedance multi-channel Tine-division multiplexing analog front end for bio-sensors. IEEE Sens. J. 22(7), 6755–6763 (2022)CrossRef
41.
Zurück zum Zitat Y. Wang, F. Miao, Qi An, Z. Liu, C. Chen, Y. Li. Wearable multimodal vital sign monitoring sensor with fully integrated analog front end. IEEE Sens. J. 22(3) 13462–13471 (2022) Y. Wang, F. Miao, Qi An, Z. Liu, C. Chen, Y. Li. Wearable multimodal vital sign monitoring sensor with fully integrated analog front end. IEEE Sens. J. 22(3) 13462–13471 (2022)
42.
Zurück zum Zitat Y. Chen, H. Tang, Z. Wang, P. Xu Y. Zhuang. A programmable analog front-end IC applied for Biomedical signal monitoring systems. Circ. Syst. Sig. Proc. 1–25 (2022) Y. Chen, H. Tang, Z. Wang, P. Xu Y. Zhuang. A programmable analog front-end IC applied for Biomedical signal monitoring systems. Circ. Syst. Sig. Proc. 1–25 (2022)
43.
Zurück zum Zitat B.G. Perumana, J.H.C. Zhan, S.S. Taylor, B.R. Carlton, J. Laskar, Resistive-feedback CMOS low-noise amplifiers for multiband applications. IEEE Trans. Microw. Theory Techn. 56(5), 1218–1225 (2008)CrossRef B.G. Perumana, J.H.C. Zhan, S.S. Taylor, B.R. Carlton, J. Laskar, Resistive-feedback CMOS low-noise amplifiers for multiband applications. IEEE Trans. Microw. Theory Techn. 56(5), 1218–1225 (2008)CrossRef
44.
Zurück zum Zitat T. Chang, J. Chen, L.A. Rigge, J. Lin, ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chipon- board packaging. IEEE Trans. Microw. Theory Techn. 56(8), 1817–1826 (2008)CrossRef T. Chang, J. Chen, L.A. Rigge, J. Lin, ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chipon- board packaging. IEEE Trans. Microw. Theory Techn. 56(8), 1817–1826 (2008)CrossRef
45.
Zurück zum Zitat Y. Wang, B. Afshar, T.-Y. Cheng, V. Gaudet, and A. M. Niknejad. A 2.5mW inductor less wideband VGA with dual feedback DC-offset correction in 90 nm CMOS technology in Proceeding IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp 91–94 (2008) Y. Wang, B. Afshar, T.-Y. Cheng, V. Gaudet, and A. M. Niknejad. A 2.5mW inductor less wideband VGA with dual feedback DC-offset correction in 90 nm CMOS technology in Proceeding IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp 91–94 (2008)
46.
Zurück zum Zitat T. Chang, J. Chen, L. Rigge, J. Lin, A packaged and ESD protected inductorless 0.1–8 GHz wideband CMOS LNA. IEEE Microw. Compon. Lett. 18(6), 416–418 (2008)CrossRef T. Chang, J. Chen, L. Rigge, J. Lin, A packaged and ESD protected inductorless 0.1–8 GHz wideband CMOS LNA. IEEE Microw. Compon. Lett. 18(6), 416–418 (2008)CrossRef
47.
Zurück zum Zitat Pritty, M. Jhamb, Low power and highly reliable 8-Bit carry select adder, in Innovations in Elect and Electronic Engineering (Springer, Singapore, 2021), pp. 537–549 Pritty, M. Jhamb, Low power and highly reliable 8-Bit carry select adder, in Innovations in Elect and Electronic Engineering (Springer, Singapore, 2021), pp. 537–549
48.
Zurück zum Zitat Pritty, M. Jhamb. Ultra low power current mirror design with enhanced bandwidth. Microelectronics J. 113, 105063 (2021) Pritty, M. Jhamb. Ultra low power current mirror design with enhanced bandwidth. Microelectronics J. 113, 105063 (2021)
49.
Zurück zum Zitat M. El-Nozahi, A.A. Helmy, E. Sanchez-Sinencio, K. Entesari, An inductor-less noise-canceling broadband low noise amplifier with composite transistor pair in 90 nm CMOS technology. IEEE J. Solid-State Circ. 46(5), 1111–1122 (2011)CrossRef M. El-Nozahi, A.A. Helmy, E. Sanchez-Sinencio, K. Entesari, An inductor-less noise-canceling broadband low noise amplifier with composite transistor pair in 90 nm CMOS technology. IEEE J. Solid-State Circ. 46(5), 1111–1122 (2011)CrossRef
50.
Zurück zum Zitat K.-W. Cheng, W.-W. Chen, S.-D. Yang, A low power sub-GHz wideband LNA employing current-reuse and device-reuse positive shunt-feedback technique. IEEE Microw. Wireless Components Lett. (2022) K.-W. Cheng, W.-W. Chen, S.-D. Yang, A low power sub-GHz wideband LNA employing current-reuse and device-reuse positive shunt-feedback technique. IEEE Microw. Wireless Components Lett. (2022)
Metadaten
Titel
Low-Power LNA in Analog Front End for Biomedical Applications
verfasst von
Pritty
Mansi Jhamb
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4495-8_25

Neuer Inhalt