Skip to main content
Erschienen in: Neural Computing and Applications 9/2020

05.10.2018 | Original Article

Lung nodule detection and classification based on geometric fit in parametric form and deep learning

verfasst von: Syed Muhammad Naqi, Muhammad Sharif, Arfan Jaffar

Erschienen in: Neural Computing and Applications | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study presents an automated detection and classification method to facilitate the radiologists in the diagnosis process. The major problem in these systems is the inclusion of false positives in the results, which may lead to inaccurate diagnosis. A nodule detection and classification method is proposed that consists of four major phases. First, the lung region extraction is performed based on optimal gray level threshold that is computed by fractional-order Darwinian particle swarm optimization. Then, a novel nodule candidate detection method, based on geometric fit in parametric form incorporating the geometric properties of the nodules, is proposed. In the next phase, a hybrid geometric texture feature descriptor is created for better representation of the candidate nodules, which is a combination of 2D as well as 3D information about nodule candidates. Finally, a deep learning approach based on stacked autoencoder and softmax for feature reduction and classification is applied to reduce false positives. Performance analysis on the largest publically available dataset, Lung Image Database Consortium and Image Database Resource Initiative, depicts that the proposed method has significantly reduced the number of false positives to 2.8 per scan with a promising sensitivity of 95.6%. The results demonstrate the significance of the methodology in automatic lung nodule detection and classification. Furthermore, it will facilitate and provide assistance to radiologists in precise nodule detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30 Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30
3.
Zurück zum Zitat Petkovska I, Brown MS, Goldin JG, Kim HJ, McNitt-Gray MF, Abtin FG, Ghurabi RJ, Aberle DR (2007) The effect of lung volume on nodule size on CT. Acad Radiol 14(4):476–485 Petkovska I, Brown MS, Goldin JG, Kim HJ, McNitt-Gray MF, Abtin FG, Ghurabi RJ, Aberle DR (2007) The effect of lung volume on nodule size on CT. Acad Radiol 14(4):476–485
4.
Zurück zum Zitat Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, Brawley OW, Byers T, Colditz GA, Gould MK, Jett JR (2012) Benefits and harms of CT screening for lung cancer: a systematic review. JAMA 307(22):2418–2429 Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, Brawley OW, Byers T, Colditz GA, Gould MK, Jett JR (2012) Benefits and harms of CT screening for lung cancer: a systematic review. JAMA 307(22):2418–2429
5.
Zurück zum Zitat Gould MK, Fletcher J, Iannettoni MD, Lynch WR, Midthun DE, Naidich DP, Ost DE (2007) Evaluation of patients with pulmonary nodules: When is it lung cancer? ACCP evidence-based clinical practice guidelines. Chest J 132(3):108S–130S Gould MK, Fletcher J, Iannettoni MD, Lynch WR, Midthun DE, Naidich DP, Ost DE (2007) Evaluation of patients with pulmonary nodules: When is it lung cancer? ACCP evidence-based clinical practice guidelines. Chest J 132(3):108S–130S
6.
Zurück zum Zitat Moyer VA (2014) Screening for lung cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med 160(5):330–338 Moyer VA (2014) Screening for lung cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med 160(5):330–338
7.
Zurück zum Zitat Yim Y, Hong H (2008) Correction of segmented lung boundary for inclusion of pleural nodules and pulmonary vessels in chest CT images. Comput Biol Med 38(8):845–857 Yim Y, Hong H (2008) Correction of segmented lung boundary for inclusion of pleural nodules and pulmonary vessels in chest CT images. Comput Biol Med 38(8):845–857
8.
Zurück zum Zitat Naqi SM, Sharif M (2017) Recent developments in computer aided diagnosis for lung nodule detection from CT images: a review. Curr Med Imaging Rev 13(1):3–19 Naqi SM, Sharif M (2017) Recent developments in computer aided diagnosis for lung nodule detection from CT images: a review. Curr Med Imaging Rev 13(1):3–19
9.
Zurück zum Zitat Endo M, Aramaki T, Asakura K, Moriguchi M, Akimaru M, Osawa A, Hisanaga R, Moriya Y, Shimura K, Furukawa H (2012) Content-based image-retrieval system in chest computed tomography for a solitary pulmonary nodule: method and preliminary experiments. Int J Comput Assist Radiol Surg 7(2):331–338 Endo M, Aramaki T, Asakura K, Moriguchi M, Akimaru M, Osawa A, Hisanaga R, Moriya Y, Shimura K, Furukawa H (2012) Content-based image-retrieval system in chest computed tomography for a solitary pulmonary nodule: method and preliminary experiments. Int J Comput Assist Radiol Surg 7(2):331–338
10.
Zurück zum Zitat Taşcı E, Uğur A (2015) Shape and texture based novel features for automated juxtapleural nodule detection in lung cts. J Med Syst 39(5):46 Taşcı E, Uğur A (2015) Shape and texture based novel features for automated juxtapleural nodule detection in lung cts. J Med Syst 39(5):46
11.
Zurück zum Zitat Nibali A, He Z, Wollersheim D (2017) Pulmonary nodule classification with deep residual networks. Int J Comput Assist Radiol Surg 12(10):1799–1808 Nibali A, He Z, Wollersheim D (2017) Pulmonary nodule classification with deep residual networks. Int J Comput Assist Radiol Surg 12(10):1799–1808
12.
Zurück zum Zitat Sun W, Zheng B, Qian W (2017) Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput Biol Med 89:530–539 Sun W, Zheng B, Qian W (2017) Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput Biol Med 89:530–539
13.
Zurück zum Zitat Cascio D, Magro R, Fauci F, Iacomi M, Raso G (2012) Automatic detection of lung nodules in CT datasets based on stable 3D mass–spring models. Comput Biol Med 42(11):1098–1109 Cascio D, Magro R, Fauci F, Iacomi M, Raso G (2012) Automatic detection of lung nodules in CT datasets based on stable 3D mass–spring models. Comput Biol Med 42(11):1098–1109
14.
Zurück zum Zitat Mukhopadhyay S (2016) A segmentation framework of pulmonary nodules in lung CT images. J Digit Imaging 29(1):86–103MathSciNet Mukhopadhyay S (2016) A segmentation framework of pulmonary nodules in lung CT images. J Digit Imaging 29(1):86–103MathSciNet
15.
Zurück zum Zitat Teramoto A, Fujita H (2013) Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. Int J Comput Assist Radiol Surg 8(2):193–205 Teramoto A, Fujita H (2013) Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. Int J Comput Assist Radiol Surg 8(2):193–205
17.
Zurück zum Zitat Dhara AK, Mukhopadhyay S, Dutta A, Garg M, Khandelwal N (2016) A combination of shape and texture features for classification of pulmonary nodules in lung ct images. J Digit Imaging 29(4):466–475 Dhara AK, Mukhopadhyay S, Dutta A, Garg M, Khandelwal N (2016) A combination of shape and texture features for classification of pulmonary nodules in lung ct images. J Digit Imaging 29(4):466–475
18.
Zurück zum Zitat Tan M, Deklerck R, Jansen B, Bister M, Cornelis J (2011) A novel computer-aided lung nodule detection system for CT images. Med Phys 38(10):5630–5645 Tan M, Deklerck R, Jansen B, Bister M, Cornelis J (2011) A novel computer-aided lung nodule detection system for CT images. Med Phys 38(10):5630–5645
19.
Zurück zum Zitat Dou Q, Chen H, Yu L, Qin J, Heng P-A (2017) Multilevel contextual 3-d cnns for false positive reduction in pulmonary nodule detection. IEEE Trans Biomed Eng 64(7):1558–1567 Dou Q, Chen H, Yu L, Qin J, Heng P-A (2017) Multilevel contextual 3-d cnns for false positive reduction in pulmonary nodule detection. IEEE Trans Biomed Eng 64(7):1558–1567
20.
Zurück zum Zitat Riccardi A, Petkov TS, Ferri G, Masotti M, Campanini R (2011) Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Med Phys 38(4):1962–1971 Riccardi A, Petkov TS, Ferri G, Masotti M, Campanini R (2011) Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Med Phys 38(4):1962–1971
21.
Zurück zum Zitat Kuruvilla J, Gunavathi K (2014) Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed 113(1):202–209 Kuruvilla J, Gunavathi K (2014) Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed 113(1):202–209
22.
Zurück zum Zitat Ye X, Lin X, Dehmeshki J, Slabaugh G, Beddoe G (2009) Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans Biomed Eng 56(7):1810–1820 Ye X, Lin X, Dehmeshki J, Slabaugh G, Beddoe G (2009) Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans Biomed Eng 56(7):1810–1820
23.
Zurück zum Zitat Messay T, Hardie RC, Rogers SK (2010) A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3):390–406 Messay T, Hardie RC, Rogers SK (2010) A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3):390–406
24.
Zurück zum Zitat Dehmeshki J, Ye X, Lin X, Valdivieso M, Amin H (2007) Automated detection of lung nodules in CT images using shape-based genetic algorithm. Comput Med Imaging Graph 31(6):408–417 Dehmeshki J, Ye X, Lin X, Valdivieso M, Amin H (2007) Automated detection of lung nodules in CT images using shape-based genetic algorithm. Comput Med Imaging Graph 31(6):408–417
25.
Zurück zum Zitat Choi W-J, Choi T-S (2014) Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor. Comput Methods Programs Biomed 113(1):37–54 Choi W-J, Choi T-S (2014) Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor. Comput Methods Programs Biomed 113(1):37–54
26.
Zurück zum Zitat Brown MS, Lo P, Goldin JG, Barnoy E, Kim GHJ, McNitt-Gray MF, Aberle DR (2014) Toward clinically usable CAD for lung cancer screening with computed tomography. Eur Radiol 24(11):2719–2728 Brown MS, Lo P, Goldin JG, Barnoy E, Kim GHJ, McNitt-Gray MF, Aberle DR (2014) Toward clinically usable CAD for lung cancer screening with computed tomography. Eur Radiol 24(11):2719–2728
27.
Zurück zum Zitat Han H, Li L, Han F, Song B, Moore W, Liang Z (2015) Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantization scheme. IEEE J Biomed Health Inf 19(2):648–659 Han H, Li L, Han F, Song B, Moore W, Liang Z (2015) Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantization scheme. IEEE J Biomed Health Inf 19(2):648–659
29.
Zurück zum Zitat Choi W-J, Choi T-S (2012) Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images. Inf Sci 212:57–78 Choi W-J, Choi T-S (2012) Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images. Inf Sci 212:57–78
30.
Zurück zum Zitat Liao X, Zhao J, Jiao C, Lei L, Qiang Y, Cui Q (2016) A segmentation method for lung parenchyma image sequences based on superpixels and a self-generating neural forest. PLoS ONE 11(8):e0160556 Liao X, Zhao J, Jiao C, Lei L, Qiang Y, Cui Q (2016) A segmentation method for lung parenchyma image sequences based on superpixels and a self-generating neural forest. PLoS ONE 11(8):e0160556
31.
Zurück zum Zitat Jaffar MA, Hussain A, Mirza AM (2010) Fuzzy entropy based optimization of clusters for the segmentation of lungs in CT scanned images. Knowl Inf Syst 24(1):91–111 Jaffar MA, Hussain A, Mirza AM (2010) Fuzzy entropy based optimization of clusters for the segmentation of lungs in CT scanned images. Knowl Inf Syst 24(1):91–111
32.
Zurück zum Zitat Couceiro M, Ghamisi P (2016) Fractional order Darwinian particle swarm optimization. Springer International Publishing, Berlin, pp 11–20MATH Couceiro M, Ghamisi P (2016) Fractional order Darwinian particle swarm optimization. Springer International Publishing, Berlin, pp 11–20MATH
33.
Zurück zum Zitat Gander W, Golub GH, Strebel R (1994) Least-squares fitting of circles and ellipses. BIT Numer Math 34(4):558–578MathSciNetMATH Gander W, Golub GH, Strebel R (1994) Least-squares fitting of circles and ellipses. BIT Numer Math 34(4):558–578MathSciNetMATH
34.
Zurück zum Zitat Jiang F, Grigorev A, Rho S, Tian Z, Fu Y, Jifara W, Adil K, Liu S (2018) Medical image semantic segmentation based on deep learning. Neural Comput Appl 29(5):1257–1265 Jiang F, Grigorev A, Rho S, Tian Z, Fu Y, Jifara W, Adil K, Liu S (2018) Medical image semantic segmentation based on deep learning. Neural Comput Appl 29(5):1257–1265
35.
Zurück zum Zitat Yang X, Shen X, Long J, Chen H (2012) An improved median-based Otsu image thresholding algorithm. Aasri Procedia 3:468–473 Yang X, Shen X, Long J, Chen H (2012) An improved median-based Otsu image thresholding algorithm. Aasri Procedia 3:468–473
36.
Zurück zum Zitat Arora S, Acharya J, Verma A, Panigrahi PK (2008) Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recogn Lett 29(2):119–125 Arora S, Acharya J, Verma A, Panigrahi PK (2008) Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recogn Lett 29(2):119–125
37.
Zurück zum Zitat Yu J, Wang S, Xi L (2008) Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 71(4–6):1054–1060 Yu J, Wang S, Xi L (2008) Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 71(4–6):1054–1060
38.
Zurück zum Zitat Couceiro M, Sivasundaram S (2016) Novel fractional order particle swarm optimization. Appl Math Comput 283:36–54MathSciNetMATH Couceiro M, Sivasundaram S (2016) Novel fractional order particle swarm optimization. Appl Math Comput 283:36–54MathSciNetMATH
39.
Zurück zum Zitat Žalik B, Mongus D, Lukač N, Žalik KR (2018) Efficient chain code compression with interpolative coding. Inf Sci 439:39–49MathSciNet Žalik B, Mongus D, Lukač N, Žalik KR (2018) Efficient chain code compression with interpolative coding. Inf Sci 439:39–49MathSciNet
40.
Zurück zum Zitat Duggan N, Bae E, Shen S, Hsu W, Bui A, Jones E, Glavin M, Vese L (2015) A technique for lung nodule candidate detection in CT using global minimization methods. In: International Workshop on energy minimization methods in computer vision and pattern recognition. Springer, pp 478–491 Duggan N, Bae E, Shen S, Hsu W, Bui A, Jones E, Glavin M, Vese L (2015) A technique for lung nodule candidate detection in CT using global minimization methods. In: International Workshop on energy minimization methods in computer vision and pattern recognition. Springer, pp 478–491
41.
Zurück zum Zitat Boroczky L, Zhao L, Lee KP (2006) Feature subset selection for improving the performance of false positive reduction in lung nodule CAD. IEEE Trans Inf Technol Biomed 10(3):504–511 Boroczky L, Zhao L, Lee KP (2006) Feature subset selection for improving the performance of false positive reduction in lung nodule CAD. IEEE Trans Inf Technol Biomed 10(3):504–511
42.
Zurück zum Zitat Cao P, Yang J, Li W, Zhao D, Zaiane O (2014) Ensemble-based hybrid probabilistic sampling for imbalanced data learning in lung nodule CAD. Comput Med Imaging Graph 38(3):137–150 Cao P, Yang J, Li W, Zhao D, Zaiane O (2014) Ensemble-based hybrid probabilistic sampling for imbalanced data learning in lung nodule CAD. Comput Med Imaging Graph 38(3):137–150
43.
Zurück zum Zitat Ananda A, Purnama I, Purnomo M (2011) CT Lung image filtering based on Max-Tree method. In: 2011 2nd International conference on instrumentation, communications, information technology, and biomedical engineering (ICICI-BME). IEEE, pp 137–140 Ananda A, Purnama I, Purnomo M (2011) CT Lung image filtering based on Max-Tree method. In: 2011 2nd International conference on instrumentation, communications, information technology, and biomedical engineering (ICICI-BME). IEEE, pp 137–140
44.
Zurück zum Zitat Moraru L, Moldovanu S, Biswas A (2014) Optimization of breast lesion segmentation in texture feature space approach. Med Eng Phys 36(1):129–135 Moraru L, Moldovanu S, Biswas A (2014) Optimization of breast lesion segmentation in texture feature space approach. Med Eng Phys 36(1):129–135
45.
Zurück zum Zitat Han F, Wang H, Zhang G, Han H, Song B, Li L, Moore W, Lu H, Zhao H, Liang Z (2015) Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imaging 28(1):99–115 Han F, Wang H, Zhang G, Han H, Song B, Li L, Moore W, Lu H, Zhao H, Liang Z (2015) Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imaging 28(1):99–115
46.
Zurück zum Zitat Bibicu D, Moraru L, Biswas A (2013) Thyroid nodule recognition based on feature selection and pixel classification methods. J Digit Imaging 26(1):119–128 Bibicu D, Moraru L, Biswas A (2013) Thyroid nodule recognition based on feature selection and pixel classification methods. J Digit Imaging 26(1):119–128
47.
Zurück zum Zitat Han F, Zhang G, Wang H, Song B, Lu H, Zhao D, Zhao H, Liang Z (2013) A texture feature analysis for diagnosis of pulmonary nodules using LIDC–IDRI database. In: 2013 IEEE international conference on medical imaging physics and engineering (ICMIPE). IEEE, pp 14-–8 Han F, Zhang G, Wang H, Song B, Lu H, Zhao D, Zhao H, Liang Z (2013) A texture feature analysis for diagnosis of pulmonary nodules using LIDC–IDRI database. In: 2013 IEEE international conference on medical imaging physics and engineering (ICMIPE). IEEE, pp 14-–8
48.
Zurück zum Zitat Naqi S, Sharif M, Yasmin M, Fernandes SL (2018) Lung nodule detection using polygon approximation and hybrid features from CT images. Curr Med Imaging Rev 14(1):108–117 Naqi S, Sharif M, Yasmin M, Fernandes SL (2018) Lung nodule detection using polygon approximation and hybrid features from CT images. Curr Med Imaging Rev 14(1):108–117
49.
Zurück zum Zitat Farag A, Ali A, Graham J, Farag A, Elshazly S, Falk R (2011) Evaluation of geometric feature descriptors for detection and classification of lung nodules in low dose CT scans of the chest. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 169–172 Farag A, Ali A, Graham J, Farag A, Elshazly S, Falk R (2011) Evaluation of geometric feature descriptors for detection and classification of lung nodules in low dose CT scans of the chest. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 169–172
50.
Zurück zum Zitat Yang J, J-y Yang, Zhang D, J-f Lu (2003) Feature fusion: parallel strategy versus serial strategy. Pattern Recogn 36(6):1369–1381MATH Yang J, J-y Yang, Zhang D, J-f Lu (2003) Feature fusion: parallel strategy versus serial strategy. Pattern Recogn 36(6):1369–1381MATH
51.
Zurück zum Zitat Sudha D, Ramakrishna M (2017) Comparative study of features fusion techniques. In: 2017 International conference on recent advances in electronics and communication technology (ICRAECT). IEEE, pp 235–239 Sudha D, Ramakrishna M (2017) Comparative study of features fusion techniques. In: 2017 International conference on recent advances in electronics and communication technology (ICRAECT). IEEE, pp 235–239
52.
Zurück zum Zitat de Carvalho Filho AO, de Sampaio WB, Silva AC, de Paiva AC, Nunes RA, Gattass M (2014) Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. Artif Intell Med 60(3):165–177 de Carvalho Filho AO, de Sampaio WB, Silva AC, de Paiva AC, Nunes RA, Gattass M (2014) Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. Artif Intell Med 60(3):165–177
53.
Zurück zum Zitat Meng L, Ding S, Zhang N, Zhang J (2016) Research of stacked denoising sparse autoencoder. Neural Comput Appl 30(7):2083–2100 Meng L, Ding S, Zhang N, Zhang J (2016) Research of stacked denoising sparse autoencoder. Neural Comput Appl 30(7):2083–2100
54.
Zurück zum Zitat Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533 Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533
55.
Zurück zum Zitat Armato SG III, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931 Armato SG III, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931
56.
Zurück zum Zitat Reeves AP, Biancardi AM, Apanasovich TV, Meyer CR, MacMahon H, van Beek EJ, Kazerooni EA, Yankelevitz D, McNitt-Gray MF, McLennan G (2007) The lung image database consortium (LIDC): a comparison of different size metrics for pulmonary nodule measurements. Acad Radiol 14(12):1475–1485 Reeves AP, Biancardi AM, Apanasovich TV, Meyer CR, MacMahon H, van Beek EJ, Kazerooni EA, Yankelevitz D, McNitt-Gray MF, McLennan G (2007) The lung image database consortium (LIDC): a comparison of different size metrics for pulmonary nodule measurements. Acad Radiol 14(12):1475–1485
57.
Zurück zum Zitat Jacobs C, Rikxoort EM, Murphy K, Prokop M, Schaefer-Prokop CM, Ginneken B (2016) Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Eur Radiol 26(7):2139–2147 Jacobs C, Rikxoort EM, Murphy K, Prokop M, Schaefer-Prokop CM, Ginneken B (2016) Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Eur Radiol 26(7):2139–2147
58.
Zurück zum Zitat McGuinness K, O’connor NE (2010) A comparative evaluation of interactive segmentation algorithms. Pattern Recogn 43(2):434–444MATH McGuinness K, O’connor NE (2010) A comparative evaluation of interactive segmentation algorithms. Pattern Recogn 43(2):434–444MATH
59.
Zurück zum Zitat Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 6:929–944 Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 6:929–944
60.
Zurück zum Zitat Mignotte M (2014) A label field fusion model with a variation of information estimator for image segmentation. Inf Fusion 20:7–20 Mignotte M (2014) A label field fusion model with a variation of information estimator for image segmentation. Inf Fusion 20:7–20
61.
Zurück zum Zitat Vapnik V, Izmailov R (2017) Knowledge transfer in SVM and neural networks. Ann Math Artif Intell 81(1–2):3–19MathSciNetMATH Vapnik V, Izmailov R (2017) Knowledge transfer in SVM and neural networks. Ann Math Artif Intell 81(1–2):3–19MathSciNetMATH
62.
Zurück zum Zitat Zhang S, Li X, Zong M, Zhu X, Cheng D (2017) Learning k for knn classification. ACM Trans Intell Syst Technol (TIST) 8(3):43 Zhang S, Li X, Zong M, Zhu X, Cheng D (2017) Learning k for knn classification. ACM Trans Intell Syst Technol (TIST) 8(3):43
63.
Zurück zum Zitat Liu X, Lu R, Ma J, Chen L, Qin B (2016) Privacy-preserving patient-centric clinical decision support system on naive Bayesian classification. IEEE J Biomed Health Inf 20(2):655–668 Liu X, Lu R, Ma J, Chen L, Qin B (2016) Privacy-preserving patient-centric clinical decision support system on naive Bayesian classification. IEEE J Biomed Health Inf 20(2):655–668
64.
Zurück zum Zitat Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–674MathSciNet Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–674MathSciNet
Metadaten
Titel
Lung nodule detection and classification based on geometric fit in parametric form and deep learning
verfasst von
Syed Muhammad Naqi
Muhammad Sharif
Arfan Jaffar
Publikationsdatum
05.10.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 9/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3773-x

Weitere Artikel der Ausgabe 9/2020

Neural Computing and Applications 9/2020 Zur Ausgabe

Emerging Trends of Applied Neural Computation - E_TRAINCO

Improved zeroing neural networks for finite time solving nonlinear equations

Premium Partner