Skip to main content
Erschienen in: Journal of Materials Science 5/2019

09.11.2018 | Metals

Macrodeformation twinning in a textured aluminum alloy via dynamic equal channel angular pressing

verfasst von: D. K. Qi, M. X. Tang, L. Lu, F. Zhao, L. Wang, S. N. Luo

Erschienen in: Journal of Materials Science | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic equal channel angular pressing experiments are conducted on an aluminum alloy with impact directions (ID) parallel to the rolling direction (RD), transverse direction (TD) and normal direction (ND), referred to as the ID\(\parallel \)RD, ID\(\parallel \)TD and ID\(\parallel \)ND loading, respectively. Anisotropic deformation twinning is observed as a result of texture and grain elongation along RD, and the deformation twins can be activated both at grain boundaries and within grain interiors. Large-sized deformation twins (tens of \(\mu \)m long) form in the ID\(\parallel \)RD sample, while few twins are observed in the ID\(\parallel \)TD and ID\(\parallel \)ND samples during rapid severe plastic deformation. Molecular dynamics simulations are conducted to explain the effects of crystallographic orientations and grain geometry on deformation twinning. The resolved shear stress analysis shows that deformation twinning is easier to occur when the impact direction is along [001] and [110] than [111], and a larger grain dimension along the impact direction leads to a bigger twin size.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mahajan S, Williams DF (1973) Deformation twinning in metals and alloys. Inter Metall Rev 18:43–61CrossRef Mahajan S, Williams DF (1973) Deformation twinning in metals and alloys. Inter Metall Rev 18:43–61CrossRef
2.
Zurück zum Zitat Hull D, Bacon DJ (2001) Introduction to dislocations. Butterworth-Heinemann, Oxford Hull D, Bacon DJ (2001) Introduction to dislocations. Butterworth-Heinemann, Oxford
3.
Zurück zum Zitat Partridge PG (1967) The crystallography and deformation modes of hexagonal close-packed metals. Metall Rev 12:169–194 Partridge PG (1967) The crystallography and deformation modes of hexagonal close-packed metals. Metall Rev 12:169–194
4.
Zurück zum Zitat Lu L, Huang JW, Fan D, Bie BX, Sun T, Fezzaa K, Gong XL, Luo SN (2016) Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: a study with simultaneous in situ synchrotron x-ray imaging and diffraction. Acta Mater 120:86–94CrossRef Lu L, Huang JW, Fan D, Bie BX, Sun T, Fezzaa K, Gong XL, Luo SN (2016) Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: a study with simultaneous in situ synchrotron x-ray imaging and diffraction. Acta Mater 120:86–94CrossRef
5.
Zurück zum Zitat Wang M, Lu L, Li C, Xiao XH, Zhou XM, Zhu J, Luo SN (2016) Deformation and spallation of a magnesium alloy under high strain rate loading. Mater Sci Eng A 661:126–131CrossRef Wang M, Lu L, Li C, Xiao XH, Zhou XM, Zhu J, Luo SN (2016) Deformation and spallation of a magnesium alloy under high strain rate loading. Mater Sci Eng A 661:126–131CrossRef
7.
Zurück zum Zitat Lu L, Bie BX, Li QH, Sun T, Fezzaa K, Gong XL, Luo SN (2017) Multiscale measurements on temperature-dependent deformation of a textured magnesium alloy with synchrotron X-ray imaging and diffraction. Acta Mater 132:389–394CrossRef Lu L, Bie BX, Li QH, Sun T, Fezzaa K, Gong XL, Luo SN (2017) Multiscale measurements on temperature-dependent deformation of a textured magnesium alloy with synchrotron X-ray imaging and diffraction. Acta Mater 132:389–394CrossRef
8.
Zurück zum Zitat Venables JA (1961) Deformation twinning in face-centred cubic metals. Philos Mag 6:379–396CrossRef Venables JA (1961) Deformation twinning in face-centred cubic metals. Philos Mag 6:379–396CrossRef
10.
Zurück zum Zitat Van Swygenhoven H, Derlet PM, Frøseth AG (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399–403CrossRef Van Swygenhoven H, Derlet PM, Frøseth AG (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399–403CrossRef
11.
Zurück zum Zitat Huang JY, Wu YK, Ye HQ (1996) Deformation structures in ball milled copper. Acta Mater 44:1211–1221CrossRef Huang JY, Wu YK, Ye HQ (1996) Deformation structures in ball milled copper. Acta Mater 44:1211–1221CrossRef
12.
Zurück zum Zitat Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl Phys Lett 84:592–594CrossRef Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl Phys Lett 84:592–594CrossRef
13.
Zurück zum Zitat Haasen P (1958) Plastic deformation of nickel single crystals at low temperatures. Philos Mag 3:384–418CrossRef Haasen P (1958) Plastic deformation of nickel single crystals at low temperatures. Philos Mag 3:384–418CrossRef
14.
Zurück zum Zitat Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405CrossRef Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405CrossRef
16.
Zurück zum Zitat Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277CrossRef Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277CrossRef
17.
Zurück zum Zitat Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Deformation twins in nanocrystalline al. Appl Phys Lett 83:5062–5064CrossRef Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Deformation twins in nanocrystalline al. Appl Phys Lett 83:5062–5064CrossRef
18.
Zurück zum Zitat Han WZ, Cheng GM, Li SX, Wu SD, Zhang ZF (2008) Deformation induced microtwins and stacking faults in aluminum single crystal. Phys Rev Lett 101:115505CrossRef Han WZ, Cheng GM, Li SX, Wu SD, Zhang ZF (2008) Deformation induced microtwins and stacking faults in aluminum single crystal. Phys Rev Lett 101:115505CrossRef
19.
Zurück zum Zitat Jin S, Zhang K, Bjørge R, Tao N, Marthinsen K, Lu K, Li Y (2015) Formation of incoherent deformation twin boundaries in a coarse-grained Al-7Mg alloy. Appl Phys Lett 107:091901CrossRef Jin S, Zhang K, Bjørge R, Tao N, Marthinsen K, Lu K, Li Y (2015) Formation of incoherent deformation twin boundaries in a coarse-grained Al-7Mg alloy. Appl Phys Lett 107:091901CrossRef
20.
Zurück zum Zitat Zhao F, Wang L, Fan D, Bie BX, Zhou XM, Suo T, Li YL, Chen MW, Liu CL, Qi ML, Zhu MH, Luo SN (2016) Macrodeformation twins in single-crystal aluminum. Phys Rev Lett 116:075501CrossRef Zhao F, Wang L, Fan D, Bie BX, Zhou XM, Suo T, Li YL, Chen MW, Liu CL, Qi ML, Zhu MH, Luo SN (2016) Macrodeformation twins in single-crystal aluminum. Phys Rev Lett 116:075501CrossRef
21.
Zurück zum Zitat Zolotorevsky N, Rybin V, Ushanova E, Brodova I, Petrova A, Ermakova NY (2017) Twinning in polycrystalline aluminium deformed by dynamic channel angular pressing. Lett Mater 7:363CrossRef Zolotorevsky N, Rybin V, Ushanova E, Brodova I, Petrova A, Ermakova NY (2017) Twinning in polycrystalline aluminium deformed by dynamic channel angular pressing. Lett Mater 7:363CrossRef
23.
Zurück zum Zitat El-Danaf E, Kalidindi SR, Doherty RD (1999) Influence of grain size and stacking-fault energy on deformation twinning in FCC metals. Metall Mater Trans A 30:1223–1233CrossRef El-Danaf E, Kalidindi SR, Doherty RD (1999) Influence of grain size and stacking-fault energy on deformation twinning in FCC metals. Metall Mater Trans A 30:1223–1233CrossRef
24.
Zurück zum Zitat Meyers M, Vöhringer O, Lubarda V (2001) The onset of twinning in metals: a constitutive description. Acta Mater 49:4025–4039CrossRef Meyers M, Vöhringer O, Lubarda V (2001) The onset of twinning in metals: a constitutive description. Acta Mater 49:4025–4039CrossRef
25.
Zurück zum Zitat Rohatgi A, Vecchio KS, Gray GT (2001) The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: deformation twinning, work hardening, and dynamic recovery. Metall Mater Trans A 32:135–145CrossRef Rohatgi A, Vecchio KS, Gray GT (2001) The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: deformation twinning, work hardening, and dynamic recovery. Metall Mater Trans A 32:135–145CrossRef
26.
Zurück zum Zitat Han W, Zhang Z, Wu S, Li S (2008) Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in fcc crystals. Philos Mag 88:3011–3029CrossRef Han W, Zhang Z, Wu S, Li S (2008) Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in fcc crystals. Philos Mag 88:3011–3029CrossRef
27.
Zurück zum Zitat Reed-Hill RE, Hirth JP, Rogers HC (1965) Deformation twinning: proceedings. Gordon & Breach, New York Reed-Hill RE, Hirth JP, Rogers HC (1965) Deformation twinning: proceedings. Gordon & Breach, New York
28.
Zurück zum Zitat Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater 35:143–146CrossRef Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater 35:143–146CrossRef
29.
Zurück zum Zitat Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) The process of grain refinement in equal-channel angular pressing. Acta Mater 46:3317–3331CrossRef Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) The process of grain refinement in equal-channel angular pressing. Acta Mater 46:3317–3331CrossRef
30.
Zurück zum Zitat Nakashima K, Horita Z, Nemoto M, Langdon TG (1998) Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Mater 46:1589–1599CrossRef Nakashima K, Horita Z, Nemoto M, Langdon TG (1998) Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Mater 46:1589–1599CrossRef
31.
Zurück zum Zitat Segal V (1999) Equal channel angular extrusion: from macromechanics to structure formation. Mater Sci Eng A 271:322–333CrossRef Segal V (1999) Equal channel angular extrusion: from macromechanics to structure formation. Mater Sci Eng A 271:322–333CrossRef
32.
Zurück zum Zitat Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans A 31:691–701CrossRef Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans A 31:691–701CrossRef
34.
Zurück zum Zitat Kim W, Hong S, Kim Y, Min S, Jeong H, Lee J (2003) Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater 51:3293–3307CrossRef Kim W, Hong S, Kim Y, Min S, Jeong H, Lee J (2003) Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater 51:3293–3307CrossRef
35.
Zurück zum Zitat Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981CrossRef Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981CrossRef
36.
Zurück zum Zitat Langdon TG (2007) The principles of grain refinement in equal-channel angular pressing. Mater Sci Eng A 462:3–11CrossRef Langdon TG (2007) The principles of grain refinement in equal-channel angular pressing. Mater Sci Eng A 462:3–11CrossRef
40.
Zurück zum Zitat Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li SX (2006) Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater 54:655–665CrossRef Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li SX (2006) Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater 54:655–665CrossRef
41.
Zurück zum Zitat Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat Mater 1:45–49CrossRef Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat Mater 1:45–49CrossRef
42.
Zurück zum Zitat Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater 50:5005–5020CrossRef Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater 50:5005–5020CrossRef
43.
Zurück zum Zitat Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3:43–47CrossRef Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3:43–47CrossRef
44.
Zurück zum Zitat Kibey S, Liu JB, Johnson DD, Sehitoglu H (2007) Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater 55:6843–6851CrossRef Kibey S, Liu JB, Johnson DD, Sehitoglu H (2007) Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater 55:6843–6851CrossRef
45.
Zurück zum Zitat Li BQ, Sui ML, Li B, Ma E, Mao SX (2009) Reversible twinning in pure aluminum. Phys Rev Lett 102:205504CrossRef Li BQ, Sui ML, Li B, Ma E, Mao SX (2009) Reversible twinning in pure aluminum. Phys Rev Lett 102:205504CrossRef
46.
Zurück zum Zitat Li B, Cao BY, Ramesh KT, Ma E (2009) A nucleation mechanism of deformation twins in pure aluminum. Acta Mate 57:4500–4507CrossRef Li B, Cao BY, Ramesh KT, Ma E (2009) A nucleation mechanism of deformation twins in pure aluminum. Acta Mate 57:4500–4507CrossRef
47.
Zurück zum Zitat Shao YF, Wang SQ (2010) Quasicontinuum study on formation of fivefold deformation twin in nanocrystalline aluminum. Scripta Mater 62:419–422CrossRef Shao YF, Wang SQ (2010) Quasicontinuum study on formation of fivefold deformation twin in nanocrystalline aluminum. Scripta Mater 62:419–422CrossRef
48.
Zurück zum Zitat Suzuki H, Barrett C (1958) Deformation twinning in silver-gold alloys. Acta Metall 6:156–165CrossRef Suzuki H, Barrett C (1958) Deformation twinning in silver-gold alloys. Acta Metall 6:156–165CrossRef
49.
Zurück zum Zitat Naeita N, Takamura J (1971) Deformation twinning in silver- and copper-alloy crystals. Philos Mag 29:1001–1028CrossRef Naeita N, Takamura J (1971) Deformation twinning in silver- and copper-alloy crystals. Philos Mag 29:1001–1028CrossRef
50.
Zurück zum Zitat Xu Z, Li N, Jiang H, Liu L (2015) Deformation nanotwins in coarse-grained aluminum alloy at ambient temperature and low strain rate. Mater Sci Eng A 621:272–276CrossRef Xu Z, Li N, Jiang H, Liu L (2015) Deformation nanotwins in coarse-grained aluminum alloy at ambient temperature and low strain rate. Mater Sci Eng A 621:272–276CrossRef
51.
Zurück zum Zitat Gray G (1988) Deformation twinning in Al-4.8 wt% Mg. Acta Metall 36:1745–1754CrossRef Gray G (1988) Deformation twinning in Al-4.8 wt% Mg. Acta Metall 36:1745–1754CrossRef
52.
Zurück zum Zitat Xue S, Kuo W, Li Q, Fan Z, Ding J, Su R, Wang H, Zhang X (2018) Texture-directed twin formation propensity in Al with high stacking fault energy. Acta Mater 144:226–234CrossRef Xue S, Kuo W, Li Q, Fan Z, Ding J, Su R, Wang H, Zhang X (2018) Texture-directed twin formation propensity in Al with high stacking fault energy. Acta Mater 144:226–234CrossRef
53.
Zurück zum Zitat Liu XY, Ercolessi F, Adams JB (2004) Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy. Model Simul Mater Sci 12:665CrossRef Liu XY, Ercolessi F, Adams JB (2004) Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy. Model Simul Mater Sci 12:665CrossRef
54.
Zurück zum Zitat Ercolessi F, Adams JB (1994) Interatomic potentials from first-principles calculations: the force-matching method. EPL-Europhys Lett 26:583CrossRef Ercolessi F, Adams JB (1994) Interatomic potentials from first-principles calculations: the force-matching method. EPL-Europhys Lett 26:583CrossRef
55.
Zurück zum Zitat Ackland GJ, Thetford R (1987) An improved N-body semi-empirical model for body-centred cubic transition metals. Phil Mag A 56:15–30CrossRef Ackland GJ, Thetford R (1987) An improved N-body semi-empirical model for body-centred cubic transition metals. Phil Mag A 56:15–30CrossRef
56.
Zurück zum Zitat Tang MX, E JC, Wang L, Luo SN (2017) Loading-path dependent deformation of nanocrystalline Ta under single-and double-shock, and quasi-isentropic compression. J Appl Phys 121:115901CrossRef Tang MX, E JC, Wang L, Luo SN (2017) Loading-path dependent deformation of nanocrystalline Ta under single-and double-shock, and quasi-isentropic compression. J Appl Phys 121:115901CrossRef
57.
Zurück zum Zitat Wang L, E JC, Cai Y, Zhao F, Fan D, Luo SN (2015) Shock-induced deformation of nanocrystalline Al: characterization with orientation mapping and selected area electron diffraction. J Appl Phys 117:084301CrossRef Wang L, E JC, Cai Y, Zhao F, Fan D, Luo SN (2015) Shock-induced deformation of nanocrystalline Al: characterization with orientation mapping and selected area electron diffraction. J Appl Phys 117:084301CrossRef
Metadaten
Titel
Macrodeformation twinning in a textured aluminum alloy via dynamic equal channel angular pressing
verfasst von
D. K. Qi
M. X. Tang
L. Lu
F. Zhao
L. Wang
S. N. Luo
Publikationsdatum
09.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3102-x

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Science 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.