Skip to main content
Erschienen in: Neural Processing Letters 3/2018

20.02.2017

Majorization Minimization Technique for Optimally Solving Deep Dictionary Learning

verfasst von: Vanika Singhal, Angshul Majumdar

Erschienen in: Neural Processing Letters | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The concept of deep dictionary learning (DDL) has been recently proposed. Unlike shallow dictionary learning which learns single level of dictionary to represent the data, it uses multiple layers of dictionaries. So far, the problem could only be solved in a greedy fashion; this was achieved by learning a single layer of dictionary in each stage where the coefficients from the previous layer acted as inputs to the subsequent layer (only the first layer used the training samples as inputs). This was not optimal; there was feedback from shallower to deeper layers but not the other way. This work proposes an optimal solution to DDL whereby all the layers of dictionaries are solved simultaneously. We employ the Majorization Minimization approach. Experiments have been carried out on benchmark datasets; it shows that optimal learning indeed improves over greedy piecemeal learning. Comparison with other unsupervised deep learning tools (stacked denoising autoencoder, deep belief network, contractive autoencoder and K-sparse autoencoder) show that our method supersedes their performance both in accuracy and speed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tariyal S, Majumdar A, Singh R, Vatsa M (2016) Deep dictionary learning. IEEE Access 4:10096–10109 Tariyal S, Majumdar A, Singh R, Vatsa M (2016) Deep dictionary learning. IEEE Access 4:10096–10109
2.
Zurück zum Zitat Singhal V, Gogna A, Majumdar A (2016) Deep dictionary learning versus Deep belief network versus stacked autoencoder: an empirical analysis. In: International conference on neural information processing, pp 337–344 Singhal V, Gogna A, Majumdar A (2016) Deep dictionary learning versus Deep belief network versus stacked autoencoder: an empirical analysis. In: International conference on neural information processing, pp 337–344
3.
Zurück zum Zitat Tariyal S, Aggarwal HK, Majumdar A (2016) Greedy deep dictionary learning for hyperspectral image classification. IEEE Whisp Tariyal S, Aggarwal HK, Majumdar A (2016) Greedy deep dictionary learning for hyperspectral image classification. IEEE Whisp
4.
Zurück zum Zitat Salakhutdinov R, Mnih A, Hinton G (2007) Restricted Boltzmann machines for collaborative filtering. In: ACM international conference on machine learning, pp 791–798 Salakhutdinov R, Mnih A, Hinton G (2007) Restricted Boltzmann machines for collaborative filtering. In: ACM international conference on machine learning, pp 791–798
5.
Zurück zum Zitat Cho K, Ilin A, Raiko T (2011) Improved learning of Gaussian-Bernoulli restricted Boltzmann machines. In: International conference on artificial neural networks, pp 10–17 Cho K, Ilin A, Raiko T (2011) Improved learning of Gaussian-Bernoulli restricted Boltzmann machines. In: International conference on artificial neural networks, pp 10–17
6.
Zurück zum Zitat Salakhutdinov R, Hinton GE (2009) Deep Boltzmann machines. In: AISTATS, p 3 Salakhutdinov R, Hinton GE (2009) Deep Boltzmann machines. In: AISTATS, p 3
7.
Zurück zum Zitat Cho KH, Raiko T, Ilin A (2013) Gaussian-Bernoulli deep Boltzmann machine. In: International joint conference on neural networks, pp 1–7 Cho KH, Raiko T, Ilin A (2013) Gaussian-Bernoulli deep Boltzmann machine. In: International joint conference on neural networks, pp 1–7
8.
Zurück zum Zitat Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: ICML workshop on unsupervised and transfer learning, pp 37–50 Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: ICML workshop on unsupervised and transfer learning, pp 37–50
9.
Zurück zum Zitat Japkowicz N, Hanson SJ, Gluck MA (2000) Nonlinear autoassociation is not equivalent to PCA. Neural Comput 12(3):531–545CrossRef Japkowicz N, Hanson SJ, Gluck MA (2000) Nonlinear autoassociation is not equivalent to PCA. Neural Comput 12(3):531–545CrossRef
10.
Zurück zum Zitat Yu J, Zhang B, Kuang Z, Lin D, Fan J (2016) iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans Inf Forensics Secur. doi:10.1109/TIFS.2016.2636090 Yu J, Zhang B, Kuang Z, Lin D, Fan J (2016) iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans Inf Forensics Secur. doi:10.​1109/​TIFS.​2016.​2636090
12.
Zurück zum Zitat Qiao M, Liu L, Yu J, Xu C, Tao D (2017) Diversified dictionaries for multi-instance learning. Pattern Recognit 64:407–416CrossRef Qiao M, Liu L, Yu J, Xu C, Tao D (2017) Diversified dictionaries for multi-instance learning. Pattern Recognit 64:407–416CrossRef
13.
Zurück zum Zitat Bengio Y (2009) Learning deep architectures for AI. Foundations and Trends\(\textregistered \) in Machine Learning 2(1):1–127 Bengio Y (2009) Learning deep architectures for AI. Foundations and Trends\(\textregistered \) in Machine Learning 2(1):1–127
14.
Zurück zum Zitat Wu F, Jing XY, Yue D (2016) Multi-view discriminant dictionary learning via learning view-specific and shared structured dictionaries for image classification. Neural Process Lett. doi:10.1007/s11063-016-9545-7 Wu F, Jing XY, Yue D (2016) Multi-view discriminant dictionary learning via learning view-specific and shared structured dictionaries for image classification. Neural Process Lett. doi:10.​1007/​s11063-016-9545-7
15.
Zurück zum Zitat Peng Y, Long X, Lu BL (2015) Graph based semi-supervised learning via structure preserving low-rank representation. Neural Process Lett 41(3):389–406CrossRef Peng Y, Long X, Lu BL (2015) Graph based semi-supervised learning via structure preserving low-rank representation. Neural Process Lett 41(3):389–406CrossRef
16.
Zurück zum Zitat Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98(6):1045–1057CrossRef Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98(6):1045–1057CrossRef
17.
Zurück zum Zitat Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791CrossRefMATH Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791CrossRefMATH
18.
Zurück zum Zitat Engan K, Aase SO, Husoy J H (1999) Method of optimal directions for frame design. In: IEEE international conference on acoustics, speech, and signal processing, pp 2443–2446 Engan K, Aase SO, Husoy J H (1999) Method of optimal directions for frame design. In: IEEE international conference on acoustics, speech, and signal processing, pp 2443–2446
19.
Zurück zum Zitat Trigeorgis G, Bousmalis K, Zafeiriou S, Schuller B (2014) A deep semi-NMF model for learning hidden representations. In: ACM international conference on machine learning, pp 1692–1700 Trigeorgis G, Bousmalis K, Zafeiriou S, Schuller B (2014) A deep semi-NMF model for learning hidden representations. In: ACM international conference on machine learning, pp 1692–1700
20.
Zurück zum Zitat Figueiredo MA, Bioucas-Dias JM, Nowak RD (2007) Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans Image Process 16(12):2980–2991MathSciNetCrossRef Figueiredo MA, Bioucas-Dias JM, Nowak RD (2007) Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans Image Process 16(12):2980–2991MathSciNetCrossRef
21.
Zurück zum Zitat Févotte C (2011) Majorization-minimization algorithm for smooth Itakura-Saito nonnegative matrix factorization. In: IEEE international conference on acoustics, speech and signal processing, pp 1980–1983 Févotte C (2011) Majorization-minimization algorithm for smooth Itakura-Saito nonnegative matrix factorization. In: IEEE international conference on acoustics, speech and signal processing, pp 1980–1983
22.
Zurück zum Zitat Mairal J (2015) Incremental majorization-minimization optimization with application to large-scale machine learning. SIAM J Optim 25(2):829–855MathSciNetCrossRefMATH Mairal J (2015) Incremental majorization-minimization optimization with application to large-scale machine learning. SIAM J Optim 25(2):829–855MathSciNetCrossRefMATH
23.
Zurück zum Zitat Sriperumbudur BK, Torres DA, Lanckriet GR (2011) A majorization-minimization approach to the sparse generalized eigenvalue problem. Mach Learn 85(1–2):3–39MathSciNetCrossRefMATH Sriperumbudur BK, Torres DA, Lanckriet GR (2011) A majorization-minimization approach to the sparse generalized eigenvalue problem. Mach Learn 85(1–2):3–39MathSciNetCrossRefMATH
24.
Zurück zum Zitat Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: ACM international conference on machine learning, pp 473–480 Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: ACM international conference on machine learning, pp 473–480
26.
Zurück zum Zitat Larochelle H, Bengio Y (2008) Classification using discriminative restricted Boltzmann machines. In: ACM international conference on machine learning, pp 536–543 Larochelle H, Bengio Y (2008) Classification using discriminative restricted Boltzmann machines. In: ACM international conference on machine learning, pp 536–543
27.
Zurück zum Zitat Tzanetakis G, Cook P (2002) Musical genre classification of audio signals. IEEE Trans Speech Audio Process 10(5):293–302CrossRef Tzanetakis G, Cook P (2002) Musical genre classification of audio signals. IEEE Trans Speech Audio Process 10(5):293–302CrossRef
29.
Zurück zum Zitat Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408MathSciNetMATH Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408MathSciNetMATH
31.
Zurück zum Zitat Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: ACM international conference on machine learning, pp 833–840 Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: ACM international conference on machine learning, pp 833–840
32.
33.
Zurück zum Zitat Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef
34.
Zurück zum Zitat Tian F, Gao B, Cui Q, Chen E, Liu T-Y (2014) Learning deep representations for graph clustering. In: AAAI Tian F, Gao B, Cui Q, Chen E, Liu T-Y (2014) Learning deep representations for graph clustering. In: AAAI
35.
Zurück zum Zitat Peng X, Xiao S, Feng J, Yau WY, Yi Z (2016) Deep subspace clustering with sparsity prior. In: The 25th international joint conference on artificial intelligence Peng X, Xiao S, Feng J, Yau WY, Yi Z (2016) Deep subspace clustering with sparsity prior. In: The 25th international joint conference on artificial intelligence
Metadaten
Titel
Majorization Minimization Technique for Optimally Solving Deep Dictionary Learning
verfasst von
Vanika Singhal
Angshul Majumdar
Publikationsdatum
20.02.2017
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2018
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-017-9603-9

Weitere Artikel der Ausgabe 3/2018

Neural Processing Letters 3/2018 Zur Ausgabe

EditorialNotes

Preface

Neuer Inhalt