Skip to main content
Erschienen in: Wireless Personal Communications 4/2021

21.05.2021

Manifestation of Flexible p–i–n Solar Cells Fabricated Using HWCVD in WSN Application

verfasst von: Mohit Agarwal, Amit Munjal, Nilesh Wadibhasme, Rajiv Dusane

Erschienen in: Wireless Personal Communications | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wireless sensor network (WSN) consist of battery-powered sensor nodes which are self-configured and are deployed for monitoring several physical or environmental conditions such as temperature, pressure, humidity, vibration, pollutants etc. The major constraint in most of the WSN applications is the replacement/recharging of the battery contained by the node once it gets exhausted. This limitation reduces the lifetime of WSN. The placement of energy harvesting device within the sensor node may be the best probable solution to recharge the exhausted battery. In this paper, the integration of low cost, light weight and foldable flexible solar cells with WSN has been focused. The aim of this paper is to fabricate the flexible solar cells and showing the potential use of them in WSN. Moreover, the use of flexible solar cell is the better selection for emerging wearable WSN. This paper also describes the various issues in the already developed energy harvesting models and suggested a self-powered model for energy management based on finite state machine (FSM). The proposed models completely avoid the overcharging and the frequent charging of the batteries. This optimal utilization of the battery maximizes the lifetime of WSN network. In the proposed model, the flexible p–i–n solar cells are used to convert solar energy into electrical energy that can charge the battery of the WSN node. Finally, it can be concluded that the node will continue to function actively till the battery lifetime i.e. approximately 25–30 years.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ezzedine, T., & Zrelli, A. (2017). Efficient measurement of temperature, humidity and strain variation by modeling reflection Bragg grating spectrum in WSN. Optik, 135, 454–462.CrossRef Ezzedine, T., & Zrelli, A. (2017). Efficient measurement of temperature, humidity and strain variation by modeling reflection Bragg grating spectrum in WSN. Optik, 135, 454–462.CrossRef
2.
Zurück zum Zitat Putzenlechner, B., Marzahn, P., Kiese, R., Ludwig, R., & Sanchez-Azofeifa, A. (2019). Assessing the variability and uncertainty of two-flux FAPAR measurements in a conifer-dominated forest. Agricultural and Forest Meteorology, 264, 149–163.CrossRef Putzenlechner, B., Marzahn, P., Kiese, R., Ludwig, R., & Sanchez-Azofeifa, A. (2019). Assessing the variability and uncertainty of two-flux FAPAR measurements in a conifer-dominated forest. Agricultural and Forest Meteorology, 264, 149–163.CrossRef
3.
Zurück zum Zitat Manes, G., Collodi, G., Gelpi, L., Fusco, R., Ricci, G., Manes, A., & Passafiume, M. (2016). Realtime gas emission monitoring at hazardous sites using a distributed point-source sensing infrastructure. Sensors, 16(1), 121.CrossRef Manes, G., Collodi, G., Gelpi, L., Fusco, R., Ricci, G., Manes, A., & Passafiume, M. (2016). Realtime gas emission monitoring at hazardous sites using a distributed point-source sensing infrastructure. Sensors, 16(1), 121.CrossRef
4.
Zurück zum Zitat Adame, T., Bel, A., Carreras, A., Melià-Seguí, J., Oliver, M., & Pous, R. (2018). CUIDATS: An RFID–WSN hybrid monitoring system for smart health care environments. Future Generation Computer Systems, 78, 602–615.CrossRef Adame, T., Bel, A., Carreras, A., Melià-Seguí, J., Oliver, M., & Pous, R. (2018). CUIDATS: An RFID–WSN hybrid monitoring system for smart health care environments. Future Generation Computer Systems, 78, 602–615.CrossRef
7.
Zurück zum Zitat Javadi, M., Mostafaei, H., Chowdhurry, M. U., & Abawajy, J. H. (2018). Learning automaton based topology control protocol for extending wireless sensor networks lifetime. Journal of Network and Computer Applications, 122, 128–136.CrossRef Javadi, M., Mostafaei, H., Chowdhurry, M. U., & Abawajy, J. H. (2018). Learning automaton based topology control protocol for extending wireless sensor networks lifetime. Journal of Network and Computer Applications, 122, 128–136.CrossRef
9.
Zurück zum Zitat Elappila, M., Chinara, S., & Parhi, D. R. (2018). Survivable path routing in WSN for IoT applications. Pervasive and Mobile Computing, 43, 49–63.CrossRef Elappila, M., Chinara, S., & Parhi, D. R. (2018). Survivable path routing in WSN for IoT applications. Pervasive and Mobile Computing, 43, 49–63.CrossRef
10.
Zurück zum Zitat Liu, A., Huang, M., Zhao, M., & Wang, T. (2018). A smart high-speed backbone path construction approach for energy and delay optimization in WSNs. IEEE Access, 6, 13836–13854.CrossRef Liu, A., Huang, M., Zhao, M., & Wang, T. (2018). A smart high-speed backbone path construction approach for energy and delay optimization in WSNs. IEEE Access, 6, 13836–13854.CrossRef
11.
Zurück zum Zitat Gopikrishnan, S., & Priakanth, P. (2018). Lifetime enhancement in wireless sensor networks using binary search tree based data aggregation. Journal of Applied Research and Technology, 16(6), 524–543. Gopikrishnan, S., & Priakanth, P. (2018). Lifetime enhancement in wireless sensor networks using binary search tree based data aggregation. Journal of Applied Research and Technology, 16(6), 524–543.
12.
Zurück zum Zitat Liu, X., & Zhang, P. (2018). Data drainage: A novel load balancing strategy for wireless sensor networks. IEEE Communications Letters, 22(1), 125–128.MathSciNetCrossRef Liu, X., & Zhang, P. (2018). Data drainage: A novel load balancing strategy for wireless sensor networks. IEEE Communications Letters, 22(1), 125–128.MathSciNetCrossRef
13.
Zurück zum Zitat Zhong, H., Shao, L., Cui, J., & Xu, Y. (2018). An efficient and secure recoverable data aggregation scheme for heterogeneous wireless sensor networks. Journal of Parallel and Distributed Computing, 111, 1–12.CrossRef Zhong, H., Shao, L., Cui, J., & Xu, Y. (2018). An efficient and secure recoverable data aggregation scheme for heterogeneous wireless sensor networks. Journal of Parallel and Distributed Computing, 111, 1–12.CrossRef
14.
Zurück zum Zitat Dhall, R., & Agrawal, H. (2018). An improved energy efficient duty cycling algorithm for IoT based precision agriculture. Procedia Computer Science, 141, 135–142.CrossRef Dhall, R., & Agrawal, H. (2018). An improved energy efficient duty cycling algorithm for IoT based precision agriculture. Procedia Computer Science, 141, 135–142.CrossRef
15.
Zurück zum Zitat Priya, I. L., Lalitha, S., & Paul, P. V. (2018). Energy efficient routing models in wireless sensor networks—A recent trend survey. International Journal of Pure and Applied Mathematics, 118(16), 443–458. Priya, I. L., Lalitha, S., & Paul, P. V. (2018). Energy efficient routing models in wireless sensor networks—A recent trend survey. International Journal of Pure and Applied Mathematics, 118(16), 443–458.
16.
Zurück zum Zitat Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: Challenges and tradeoffs. Ad Hoc Networks, 71, 117–134.CrossRef Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: Challenges and tradeoffs. Ad Hoc Networks, 71, 117–134.CrossRef
17.
Zurück zum Zitat Mahima, V., & Chitra, A. (2019). A novel energy harvesting: cluster head rotation scheme (EH-CHRS) for green wireless sensor network (GWSN). Wireless Personal Communications, 107, 813–827.CrossRef Mahima, V., & Chitra, A. (2019). A novel energy harvesting: cluster head rotation scheme (EH-CHRS) for green wireless sensor network (GWSN). Wireless Personal Communications, 107, 813–827.CrossRef
18.
Zurück zum Zitat Srinivasan, R., & Kannan, E. (2018). Energy harvesting based efficient routing scheme for wireless sensor network. Wireless Personal Communications, 101, 1457–1468.CrossRef Srinivasan, R., & Kannan, E. (2018). Energy harvesting based efficient routing scheme for wireless sensor network. Wireless Personal Communications, 101, 1457–1468.CrossRef
19.
Zurück zum Zitat Adu-Manu, K. S., Adam, N., Tapparello, C., Ayatollahi, H., & Heinzelman, W. (2018). Energy-harvesting wireless sensor networks (EH-WSNs): A review. ACM Transactions on Sensor Networks (TOSN), 14(2), 10.CrossRef Adu-Manu, K. S., Adam, N., Tapparello, C., Ayatollahi, H., & Heinzelman, W. (2018). Energy-harvesting wireless sensor networks (EH-WSNs): A review. ACM Transactions on Sensor Networks (TOSN), 14(2), 10.CrossRef
20.
Zurück zum Zitat Knight, C., Davidson, J., & Behrens, S. (2008). Energy options for wireless sensor nodes. Sensors, 8(12), 8037–8066.CrossRef Knight, C., Davidson, J., & Behrens, S. (2008). Energy options for wireless sensor nodes. Sensors, 8(12), 8037–8066.CrossRef
21.
Zurück zum Zitat Agarwal, M., Munjal, A., & Dusane, R. (2018). To demonstrate the potential application of “low temperature and high performance silicon heterojunction solar cells fabricated using HWCVD” in wireless sensor network: An initial research. Journal of Solar Energy Engineering, 140(4), 041002.CrossRef Agarwal, M., Munjal, A., & Dusane, R. (2018). To demonstrate the potential application of “low temperature and high performance silicon heterojunction solar cells fabricated using HWCVD” in wireless sensor network: An initial research. Journal of Solar Energy Engineering, 140(4), 041002.CrossRef
22.
Zurück zum Zitat Zhao, J., Wang, A., Altermatt, P. P., Wenham, S. R., & Green, M. A. (1996). 24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research. Solar Energy Materials and Solar Cells, 41, 87–99.CrossRef Zhao, J., Wang, A., Altermatt, P. P., Wenham, S. R., & Green, M. A. (1996). 24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research. Solar Energy Materials and Solar Cells, 41, 87–99.CrossRef
24.
Zurück zum Zitat Dusane, R. O. (2011). Opportunities for new materials synthesis by hot wire chemical vapor process. Thin Solid Films, 519(14), 4555–4560.CrossRef Dusane, R. O. (2011). Opportunities for new materials synthesis by hot wire chemical vapor process. Thin Solid Films, 519(14), 4555–4560.CrossRef
25.
Zurück zum Zitat Eu, Z. A., Tan, H. P., & Seah, W. K. (2011). Design and performance analysis of MAC schemes for wireless sensor networks powered by ambient energy harvesting. Ad Hoc Networks, 9(3), 300–323.CrossRef Eu, Z. A., Tan, H. P., & Seah, W. K. (2011). Design and performance analysis of MAC schemes for wireless sensor networks powered by ambient energy harvesting. Ad Hoc Networks, 9(3), 300–323.CrossRef
26.
Zurück zum Zitat Saggini, S., Ongaro, F., Galperti, C., & Mattavelli, P. (2010). Supercapacitor-based hybrid storage systems for energy harvesting in wireless sensor networks. In 2010 twenty-fifth annual IEEE applied power electronics conference and exposition (APEC), (pp. 2281–2287). IEEE. https://doi.org/10.1109/APEC.2010.5433554. Saggini, S., Ongaro, F., Galperti, C., & Mattavelli, P. (2010). Supercapacitor-based hybrid storage systems for energy harvesting in wireless sensor networks. In 2010 twenty-fifth annual IEEE applied power electronics conference and exposition (APEC), (pp. 2281–2287). IEEE. https://​doi.​org/​10.​1109/​APEC.​2010.​5433554.
27.
Zurück zum Zitat Del-Valle-Soto, C., Mex-Perera, C., Nolazco-Flores, J. A., Velázquez, R., & Rossa-Sierra, A. (2020). Wireless sensor network energy model and its use in the optimization of routing protocols. Energies, 13(3), 728.CrossRef Del-Valle-Soto, C., Mex-Perera, C., Nolazco-Flores, J. A., Velázquez, R., & Rossa-Sierra, A. (2020). Wireless sensor network energy model and its use in the optimization of routing protocols. Energies, 13(3), 728.CrossRef
Metadaten
Titel
Manifestation of Flexible p–i–n Solar Cells Fabricated Using HWCVD in WSN Application
verfasst von
Mohit Agarwal
Amit Munjal
Nilesh Wadibhasme
Rajiv Dusane
Publikationsdatum
21.05.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08599-6

Weitere Artikel der Ausgabe 4/2021

Wireless Personal Communications 4/2021 Zur Ausgabe

Neuer Inhalt