Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 17/2023

28.11.2022 | Technical Article

Manufacturing and Characterization of Plasma Gas Tungsten Arc-Welded Pipes Made of a Ni-Reduced Austenitic Stainless CrMnNi Steel

verfasst von: Caroline Quitzke, Christian Hempel, Christina Schröder, Christian Schmidt, Benjamin Arlet, Stefan Hinz, Marcel Mandel, Lutz Krüger, Olena Volkova, Marco Wendler

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 17/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a Ni-reduced austenitic stainless TRIP/TWIP steel with < 5 vol.% δ-ferrite was investigated before and after plasma arc welding and gas tungsten arc welding. The 4-mm-thick hot-rolled sheet was produced as hot-rolled heavy plate on an industrial scale and manufactured as longitudinally welded pipes without filler metal. Microstructural characterization was done using light optical microscope and scanning electron microscope with electron backscatter diffraction (EBSD). The microstructure consisted of non-recrystallized austenite with a small amount of δ-ferrite. The welds exhibited skeletal and lacy δ-ferrite morphologies. ε-martensite and α´-martensite were found in the weld seam after pipe expansion. Further, the mechanical properties were evaluated using tensile test. The results showed a tensile strength of 823 MPa with a uniform elongation of 69% at room temperature. The change of hardness in the weld seam was studied for welded pipe, welded expanded pipe and welded, post-weld heat-treated (PWHT) pipe with Vickers hardness testing. The lowest hardness was achieved after PWHT. The corrosion resistance tests were conducted in chloride containing environment. The results showed that the susceptibility to pitting corrosion increased with the degree of deformation. Furthermore, the weld metal and heat-affected zone exhibited local attack whereas the base metal seemed unaffected.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Behjati, A. Kermanpur, and A. Najafizadeh, Influence of Nitrogen Alloying on Properties of Fe-18Cr-12Mn-XN Austenitic Stainless Steels, Mater. Sci. Eng. A, 2013, 588, p 43–48.CrossRef P. Behjati, A. Kermanpur, and A. Najafizadeh, Influence of Nitrogen Alloying on Properties of Fe-18Cr-12Mn-XN Austenitic Stainless Steels, Mater. Sci. Eng. A, 2013, 588, p 43–48.CrossRef
5.
Zurück zum Zitat T.D. Anderson, M.J. Perricone, J.N. DuPont, and A.R. Marder, The Influence of Molybdenum on Stainless Steel Weld Microstructures, Weld. J., 2007, 86, p 281-s-292-s. T.D. Anderson, M.J. Perricone, J.N. DuPont, and A.R. Marder, The Influence of Molybdenum on Stainless Steel Weld Microstructures, Weld. J., 2007, 86, p 281-s-292-s.
6.
Zurück zum Zitat M. Sabzi, S.H. MousaviAnijdan, A.R. Eivani, N. Park, and H.R. Jafarian, The Effect of Pulse Current Changes in PCGTAW on Microstructural Evolution, Drastic Improvement in Mechanical Properties, and Fracture Mode of Dissimilar Welded Joint of AISI 316L-AISI 310S Stainless Steels, Mater. Sci. Eng. A, 2021, 823(July), p 141700. https://doi.org/10.1016/j.msea.2021.141700CrossRef M. Sabzi, S.H. MousaviAnijdan, A.R. Eivani, N. Park, and H.R. Jafarian, The Effect of Pulse Current Changes in PCGTAW on Microstructural Evolution, Drastic Improvement in Mechanical Properties, and Fracture Mode of Dissimilar Welded Joint of AISI 316L-AISI 310S Stainless Steels, Mater. Sci. Eng. A, 2021, 823(July), p 141700. https://​doi.​org/​10.​1016/​j.​msea.​2021.​141700CrossRef
8.
9.
Zurück zum Zitat M. Sabzi, A.H. Jozani, F. Zeidvandi, M. Sadeghi, and S.M. Dezfuli, Effect of 2-Mercaptobenzothiazole Concentration on Sour-Corrosion Behavior of API X60 Pipeline Steel: Electrochemical Parameters and Adsorption Mechanism, Int. J. Miner. Metall. Mater., 2022, 29(2), p 271–282.CrossRef M. Sabzi, A.H. Jozani, F. Zeidvandi, M. Sadeghi, and S.M. Dezfuli, Effect of 2-Mercaptobenzothiazole Concentration on Sour-Corrosion Behavior of API X60 Pipeline Steel: Electrochemical Parameters and Adsorption Mechanism, Int. J. Miner. Metall. Mater., 2022, 29(2), p 271–282.CrossRef
10.
Zurück zum Zitat C. Lemaitre, A. Abdel Moneim, R. Djoudjou, B. Baroux, and G. Beranger, A Statistical Study of the Role of Molybdenum in the Pitting Resistance of Stainless Steels, Corros. Sci., 1993, 34(11), p 1913–1922.CrossRef C. Lemaitre, A. Abdel Moneim, R. Djoudjou, B. Baroux, and G. Beranger, A Statistical Study of the Role of Molybdenum in the Pitting Resistance of Stainless Steels, Corros. Sci., 1993, 34(11), p 1913–1922.CrossRef
11.
Zurück zum Zitat R.F.A. Jargelius-Pettersson, Electrochemical Investigation of the Influence of Nitrogen Alloying on Pitting Corrosion of Austenitic Stainless Steels, Corros. Sci., 1999, 41(8), p 1639–1664.CrossRef R.F.A. Jargelius-Pettersson, Electrochemical Investigation of the Influence of Nitrogen Alloying on Pitting Corrosion of Austenitic Stainless Steels, Corros. Sci., 1999, 41(8), p 1639–1664.CrossRef
12.
Zurück zum Zitat J.C. Lippold and D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, 1st ed. Wiley, New Jersey, 2005. J.C. Lippold and D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, 1st ed. Wiley, New Jersey, 2005.
13.
Zurück zum Zitat B. Mateša, I. Samardžić, and M. Dunder, The Influence of the Heat Treatment on Delta Ferrite Transformation in Austenitic Stainless Steel Welds, Metalurgija, 2012, 51(2), p 229–232. B. Mateša, I. Samardžić, and M. Dunder, The Influence of the Heat Treatment on Delta Ferrite Transformation in Austenitic Stainless Steel Welds, Metalurgija, 2012, 51(2), p 229–232.
14.
Zurück zum Zitat DIN 50125, Prüfung Metallischer Werkstoffe-Zugproben. Deutsch. Insti.für Norm. (2022) DIN 50125, Prüfung Metallischer Werkstoffe-Zugproben. Deutsch. Insti.für Norm. (2022)
15.
Zurück zum Zitat M. Hauser, M. Wendler, A. Weiß, O. Volkova, and J. Mola, On the Critical Driving Force for Deformation-Induced α′-Martensite Formation in Austenitic Cr–Mn–Ni Steels, Adv. Eng. Mater., 2019, 21(5), p 1–6.CrossRef M. Hauser, M. Wendler, A. Weiß, O. Volkova, and J. Mola, On the Critical Driving Force for Deformation-Induced α′-Martensite Formation in Austenitic Cr–Mn–Ni Steels, Adv. Eng. Mater., 2019, 21(5), p 1–6.CrossRef
16.
Zurück zum Zitat M. Hauser, M. Wendler, A. Weiß, and J. Mola, Quantification of Deformation-Induced α’-Martensite Content in Fe-19Cr-3Mn-4Ni-0.15C-0.17N Austenitic Stainless Steel by in-Situ Magnetic Measurements, in 8th European Stainless Steel and Duplex Stainless Steel Conference 2015 (2015), p 19–26 M. Hauser, M. Wendler, A. Weiß, and J. Mola, Quantification of Deformation-Induced α’-Martensite Content in Fe-19Cr-3Mn-4Ni-0.15C-0.17N Austenitic Stainless Steel by in-Situ Magnetic Measurements, in 8th European Stainless Steel and Duplex Stainless Steel Conference 2015 (2015), p 19–26
17.
Zurück zum Zitat DIN EN ISO 643, Stahl - Mikrophotographische Bestimmung der erkennbaren Korngröße. Deutsch. Inst. für Norm. (2020) DIN EN ISO 643, Stahl - Mikrophotographische Bestimmung der erkennbaren Korngröße. Deutsch. Inst. für Norm. (2020)
18.
Zurück zum Zitat DIN EN ISO 9015-1, Zerstörende Prüfung von Schweißverbindungen an metallischen Werkstoffen - Härteprüfung - Teil 1: Härteprüfung für Lichtbogenschweißverbindungen. Deutsch. Inst. für Norm. (2011) DIN EN ISO 9015-1, Zerstörende Prüfung von Schweißverbindungen an metallischen Werkstoffen - Härteprüfung - Teil 1: Härteprüfung für Lichtbogenschweißverbindungen. Deutsch. Inst. für Norm. (2011)
19.
Zurück zum Zitat G. Stein and J. Menzel, Nitrogen Alloyed Steels—a New Generation of Materials with Extraordinary Properties, Int. J. Mater. Prod. Technol., 1995, 10(3–6), p 290–302. G. Stein and J. Menzel, Nitrogen Alloyed Steels—a New Generation of Materials with Extraordinary Properties, Int. J. Mater. Prod. Technol., 1995, 10(3–6), p 290–302.
20.
Zurück zum Zitat F. Lecroisey and A. Pineau, Martensitic Transformations Induced by Plastic Deformation in the Fe-Ni-Cr-C System, Metall. Trans., 1972, 3(2), p 391–400.CrossRef F. Lecroisey and A. Pineau, Martensitic Transformations Induced by Plastic Deformation in the Fe-Ni-Cr-C System, Metall. Trans., 1972, 3(2), p 391–400.CrossRef
21.
Zurück zum Zitat C. Quitzke, C. Schröder, C. Ullrich, M. Mandel, L. Krüger, O. Volkova, and M. Wendler, Evaluation of Strain-Induced Martensite Formation and Mechanical Properties in N-Alloyed Austenitic Stainless Steels by in Situ Tensile Tests, Mater. Sci. Eng. A, 2021, 808(February), p 140930.CrossRef C. Quitzke, C. Schröder, C. Ullrich, M. Mandel, L. Krüger, O. Volkova, and M. Wendler, Evaluation of Strain-Induced Martensite Formation and Mechanical Properties in N-Alloyed Austenitic Stainless Steels by in Situ Tensile Tests, Mater. Sci. Eng. A, 2021, 808(February), p 140930.CrossRef
22.
Zurück zum Zitat S. Marich and R. Player, Sulfide Inclusions in Iron, Metall. Trans., 1970, 1(7), p 1853–1857.CrossRef S. Marich and R. Player, Sulfide Inclusions in Iron, Metall. Trans., 1970, 1(7), p 1853–1857.CrossRef
23.
Zurück zum Zitat M. Nabeel, M. Alba, and N. Dogan, Influence of Al and n Content and Cooling Rate on the Characteristics of Complex Mns Inclusions in AHSS, Crystals, 2020, 10(11), p 1–14.CrossRef M. Nabeel, M. Alba, and N. Dogan, Influence of Al and n Content and Cooling Rate on the Characteristics of Complex Mns Inclusions in AHSS, Crystals, 2020, 10(11), p 1–14.CrossRef
24.
Zurück zum Zitat S. Kozuh, M. Gojic, and L. Kose, Mechanical Properties and Microstructure of Austenitic Stainless Steel after Welding and Post-Weld Heat Treatment, Kov. Mater., 2009, 47(4), p 253–262. S. Kozuh, M. Gojic, and L. Kose, Mechanical Properties and Microstructure of Austenitic Stainless Steel after Welding and Post-Weld Heat Treatment, Kov. Mater., 2009, 47(4), p 253–262.
25.
Zurück zum Zitat S.A. David, S.S. Babu, and J.M. Vitek, Welding: Solidification and Microstructure, J Miner. Met Mater Soc, 2003, 55(6), p 14–20.CrossRef S.A. David, S.S. Babu, and J.M. Vitek, Welding: Solidification and Microstructure, J Miner. Met Mater Soc, 2003, 55(6), p 14–20.CrossRef
27.
Zurück zum Zitat S. Kou, Welding Metallurgy, 3rd ed. Wiley, New Jersey, 2021. S. Kou, Welding Metallurgy, 3rd ed. Wiley, New Jersey, 2021.
28.
Zurück zum Zitat A. Kromm and T. Kannengießer, Influence of Local Weld Deformation on the Solidification Cracking Susceptibility of a Fully Austenitic Stainless Steel, in Hot Cracking Phenomena in Welds II, 1th edn, eds by T. Böllinghaus, H. Herold, C.E. Cross, and J.C. Lippold (Springer, Berlin, Heidelberg, 2008) p. 127–146 A. Kromm and T. Kannengießer, Influence of Local Weld Deformation on the Solidification Cracking Susceptibility of a Fully Austenitic Stainless Steel, in Hot Cracking Phenomena in Welds II, 1th edn, eds by T. Böllinghaus, H. Herold, C.E. Cross, and J.C. Lippold (Springer, Berlin, Heidelberg, 2008) p. 127–146
29.
Zurück zum Zitat B. Zakaria, H. Soumia, and J. Vincent, Effect of Heat Treatment on the Microstructural Evolution in Weld Region of 304L Pipeline Steel, J. Therm. Eng., 2016, 2(6), p 1017–1022. B. Zakaria, H. Soumia, and J. Vincent, Effect of Heat Treatment on the Microstructural Evolution in Weld Region of 304L Pipeline Steel, J. Therm. Eng., 2016, 2(6), p 1017–1022.
30.
Zurück zum Zitat A. Rodrigues and A. Loureiro, Effect of Cooling Rate on the Microstructure and Hardness of Austenitic Stainless Steel Welds, Mater. Sci. Forum, 2004, 455–456, p 312–316.CrossRef A. Rodrigues and A. Loureiro, Effect of Cooling Rate on the Microstructure and Hardness of Austenitic Stainless Steel Welds, Mater. Sci. Forum, 2004, 455–456, p 312–316.CrossRef
31.
Zurück zum Zitat T. Wegrzyn, Delta Ferrite in Stainless Steel Weld Metals, Weld. Int., 1992, 6(9), p 690–694.CrossRef T. Wegrzyn, Delta Ferrite in Stainless Steel Weld Metals, Weld. Int., 1992, 6(9), p 690–694.CrossRef
32.
Zurück zum Zitat A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, and S. Tarafder, Morphologies and Characteristics of Deformation Induced Martensite During Tensile Deformation of 304 LN Stainless Steel, Mater. Sci. Eng. A., 2008, 486(1–2), p 283–286.CrossRef A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, and S. Tarafder, Morphologies and Characteristics of Deformation Induced Martensite During Tensile Deformation of 304 LN Stainless Steel, Mater. Sci. Eng. A., 2008, 486(1–2), p 283–286.CrossRef
33.
Zurück zum Zitat G.B. Olson and M. Cohen, Kinetics of Strain-Induced Martensitic Nucleation, Metall. Trans. A, 1975, 6A, p 791–795.CrossRef G.B. Olson and M. Cohen, Kinetics of Strain-Induced Martensitic Nucleation, Metall. Trans. A, 1975, 6A, p 791–795.CrossRef
34.
35.
Zurück zum Zitat J.F. Breedis, Influence of Dislocation Substructure on the Martensitic Transformation in Stainless Steel, Acta Metall., 1965, 13(3), p 239–250.CrossRef J.F. Breedis, Influence of Dislocation Substructure on the Martensitic Transformation in Stainless Steel, Acta Metall., 1965, 13(3), p 239–250.CrossRef
37.
Zurück zum Zitat A. Kovalev, M. Wendler, A. Jahn, A. Weiß, and H. Biermann, Thermodynamic-Mechanical Modeling of Strain-Induced α′- Martensite Formation in Austenitic Cr-Mn-Ni As-Cast Steel, Adv. Eng. Mater., 2013, 15(7), p 609–617.CrossRef A. Kovalev, M. Wendler, A. Jahn, A. Weiß, and H. Biermann, Thermodynamic-Mechanical Modeling of Strain-Induced α′- Martensite Formation in Austenitic Cr-Mn-Ni As-Cast Steel, Adv. Eng. Mater., 2013, 15(7), p 609–617.CrossRef
38.
Zurück zum Zitat I. Chattoraj, A.K. Bhattamishra, S. Jana, S.K. Das, S.P. Chakraborty, and P.K. De, The Association of Potentiokinetic Reactivation and Electrochemical Pitting Tests on a Nitrogen Bearing 19 Cr-17 Mn Steel with Its Thermal History, Corros. Sci., 1996, 38(6), p 957–969.CrossRef I. Chattoraj, A.K. Bhattamishra, S. Jana, S.K. Das, S.P. Chakraborty, and P.K. De, The Association of Potentiokinetic Reactivation and Electrochemical Pitting Tests on a Nitrogen Bearing 19 Cr-17 Mn Steel with Its Thermal History, Corros. Sci., 1996, 38(6), p 957–969.CrossRef
39.
Zurück zum Zitat P. Schmuki and H. Böhni, Metastable Pitting and Semiconductive Properties of Passive Films, J. Electrochem. Soc., 1992, 139(7), p 1908–1913.CrossRef P. Schmuki and H. Böhni, Metastable Pitting and Semiconductive Properties of Passive Films, J. Electrochem. Soc., 1992, 139(7), p 1908–1913.CrossRef
40.
Zurück zum Zitat U. Kamachi Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, and B. Raj, On the Pitting Corrosion Resistance of Nitrogen Alloyed Cold Worked Austenitic Stainless Steels, Corros. Sci., 2002, 44(10), p 2183–2198.CrossRef U. Kamachi Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, and B. Raj, On the Pitting Corrosion Resistance of Nitrogen Alloyed Cold Worked Austenitic Stainless Steels, Corros. Sci., 2002, 44(10), p 2183–2198.CrossRef
41.
Zurück zum Zitat L. Peguet, B. Malki, and B. Baroux, Influence of Cold Working on the Pitting Corrosion Resistance of Stainless Steels, Corros. Sci., 2007, 49(4), p 1933–1948.CrossRef L. Peguet, B. Malki, and B. Baroux, Influence of Cold Working on the Pitting Corrosion Resistance of Stainless Steels, Corros. Sci., 2007, 49(4), p 1933–1948.CrossRef
42.
Zurück zum Zitat E.M. Gutman, G. Solovioff, and D. Eliezer, The Mechanochemical Behavior of Type 316L Stainless Steel, Corros. Sci., 1996, 38(7), p 1141–1145.CrossRef E.M. Gutman, G. Solovioff, and D. Eliezer, The Mechanochemical Behavior of Type 316L Stainless Steel, Corros. Sci., 1996, 38(7), p 1141–1145.CrossRef
43.
Zurück zum Zitat B.I. Kolodii, Theoretical Investigation of the Interaction of a Deformed Metal with a Corrosion Medium, Mater. Sci., 2000, 36(6), p 884–891.CrossRef B.I. Kolodii, Theoretical Investigation of the Interaction of a Deformed Metal with a Corrosion Medium, Mater. Sci., 2000, 36(6), p 884–891.CrossRef
44.
Zurück zum Zitat E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publishing Company, Hackensack, 1994.CrossRef E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publishing Company, Hackensack, 1994.CrossRef
45.
Zurück zum Zitat B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, and Z.H. Xu, Pitting and Stress Corrosion Cracking Behavior in Welded Austenitic Stainless Steel, Electrochim. Acta, 2005, 50(6), p 1391–1403.CrossRef B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, and Z.H. Xu, Pitting and Stress Corrosion Cracking Behavior in Welded Austenitic Stainless Steel, Electrochim. Acta, 2005, 50(6), p 1391–1403.CrossRef
46.
Zurück zum Zitat M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, and A. Saatchi, Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel, Mater. Lett., 2007, 61(11–12), p 2343–2346.CrossRef M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, and A. Saatchi, Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel, Mater. Lett., 2007, 61(11–12), p 2343–2346.CrossRef
47.
Zurück zum Zitat M.A. Baker and J.E. Castle, The Initiation of Pitting Corrosion at MnS Inclusions, Corros. Sci., 1993, 34(4), p 667–682.CrossRef M.A. Baker and J.E. Castle, The Initiation of Pitting Corrosion at MnS Inclusions, Corros. Sci., 1993, 34(4), p 667–682.CrossRef
48.
Zurück zum Zitat E.M.F. de Souza Silva, G.S. da Fonseca, and E.A. Ferreira, Microstructural and Selective Dissolution Analysis of 316L Austenitic Stainless Steel, J. Mater. Res. Technol., 2021, 15, p 4317–4329.CrossRef E.M.F. de Souza Silva, G.S. da Fonseca, and E.A. Ferreira, Microstructural and Selective Dissolution Analysis of 316L Austenitic Stainless Steel, J. Mater. Res. Technol., 2021, 15, p 4317–4329.CrossRef
49.
Zurück zum Zitat Y. Cui and C.D. Lundin, Austenite-Preferential Corrosion Attack in 316 Austenitic Stainless Steel Weld Metals, Mater. Des., 2007, 28(1), p 324–328.CrossRef Y. Cui and C.D. Lundin, Austenite-Preferential Corrosion Attack in 316 Austenitic Stainless Steel Weld Metals, Mater. Des., 2007, 28(1), p 324–328.CrossRef
50.
Zurück zum Zitat P.E. Manning, C.E. Lyman, and D.J. Duquette, A STEM Examination of the Localized Corrosion Behavior of a Duplex Stainless Steel, Corrosion, 1980, 36(5), p 246–251.CrossRef P.E. Manning, C.E. Lyman, and D.J. Duquette, A STEM Examination of the Localized Corrosion Behavior of a Duplex Stainless Steel, Corrosion, 1980, 36(5), p 246–251.CrossRef
Metadaten
Titel
Manufacturing and Characterization of Plasma Gas Tungsten Arc-Welded Pipes Made of a Ni-Reduced Austenitic Stainless CrMnNi Steel
verfasst von
Caroline Quitzke
Christian Hempel
Christina Schröder
Christian Schmidt
Benjamin Arlet
Stefan Hinz
Marcel Mandel
Lutz Krüger
Olena Volkova
Marco Wendler
Publikationsdatum
28.11.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 17/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07676-6

Weitere Artikel der Ausgabe 17/2023

Journal of Materials Engineering and Performance 17/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.