Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

Many-Body Perturbation Theory (MBPT) and Time-Dependent Density-Functional Theory (TD-DFT): MBPT Insights About What Is Missing In, and Corrections To, the TD-DFT Adiabatic Approximation

verfasst von : Mark E. Casida, Miquel Huix-Rotllant

Erschienen in: Density-Functional Methods for Excited States

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In their famous paper, Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of N interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays, however, the realization that Nature is not always so nearsighted has driven us up Perdew’s Jacob’s ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very similar to what the local density approximation (LDA) is to conventional ground-state DFT. Although some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body corrections to LR-TD-DFT as one way to build hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The term ab initio is used here as it is typically used in quantum chemistry. That is, ab initio refers to first-principles Hartree–Fock-based theory, excluding DFT. In contrast, the term ab initio used in the solid state physics literature usually encompasses DFT.
 
2
“Jacob set out from Beersheba and went on his way towards Harran. He came to a certain place and stopped there for the night, because the sun had set; and, taking one of the stones there, he made it a pillow for his head and lay down to sleep. He dreamt that he saw a ladder, which rested on the ground with its top reaching to heaven, and angels of God were going up and down it.” – The Bible, Genesis 28:10–13
 
3
This is formalized in mathematical logic theory by Gödel’s incompleteness theorem which basically says that there are always more things that are true than can be proven to be true.
 
4
Remember that  = 1 in the atomic units used here.
 
5
This equation is not infrequently called the “Casida equation” in the TD-DFT literature (e.g., as in [24], pp. 145–153.)
 
6
Sometimes we call this the FORTRAN index convention in reference to the default variable names for integers in that computer language.
 
7
Technically this is not a metric, because the overlap matrix is symplectic rather than positive definite. However, we will call it a metric as it can be used in much the same way as a true metric.
 
Literatur
1.
Zurück zum Zitat Rowlinson JS (2009) The border between physics and chemistry. Bull Hist Chem 34:1 Rowlinson JS (2009) The border between physics and chemistry. Bull Hist Chem 34:1
2.
Zurück zum Zitat Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439CrossRef Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439CrossRef
3.
Zurück zum Zitat Casida ME (2002) Jacob’s ladder for time-dependent density-functional theory: some rungs on the way to photochemical heaven. In: Hoffmann MRH, Dyall KG (eds) Accurate description of low-lying molecular states and potential energy surfaces. ACS, Washington, p 199CrossRef Casida ME (2002) Jacob’s ladder for time-dependent density-functional theory: some rungs on the way to photochemical heaven. In: Hoffmann MRH, Dyall KG (eds) Accurate description of low-lying molecular states and potential energy surfaces. ACS, Washington, p 199CrossRef
4.
Zurück zum Zitat Doltsinis NL, Marx D (2002) First principles molecular dynamics involving excited states and nonadiabatic transitions. J Theo Comput Chem 1:319CrossRef Doltsinis NL, Marx D (2002) First principles molecular dynamics involving excited states and nonadiabatic transitions. J Theo Comput Chem 1:319CrossRef
5.
Zurück zum Zitat Cordova F, Doriol LJ, Ipatov A, Casida ME, Filippi C, Vela A (2007) Troubleshooting time-dependent density-functional theory for photochemical applications: oxirane. J Chem Phys 127:164111CrossRef Cordova F, Doriol LJ, Ipatov A, Casida ME, Filippi C, Vela A (2007) Troubleshooting time-dependent density-functional theory for photochemical applications: oxirane. J Chem Phys 127:164111CrossRef
6.
Zurück zum Zitat Tapavicza E, Tavernelli I, Rothlisberger U, Filippi C, Casida ME (2008) Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry. J Chem Phys 129(12):124108CrossRef Tapavicza E, Tavernelli I, Rothlisberger U, Filippi C, Casida ME (2008) Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry. J Chem Phys 129(12):124108CrossRef
7.
Zurück zum Zitat Casida ME, Natarajan B, Deutsch T (2011) Non-Born-Oppenheimer dynamics and conical intersections. In: Marques M, Maitra N, Noguiera F, Gross EKU, Rubio A (eds) Fundamentals of time-dependent density-functional theory, Lecture Notes in Physics, vol 837. Springer, Berlin, p 279 Casida ME, Natarajan B, Deutsch T (2011) Non-Born-Oppenheimer dynamics and conical intersections. In: Marques M, Maitra N, Noguiera F, Gross EKU, Rubio A (eds) Fundamentals of time-dependent density-functional theory, Lecture Notes in Physics, vol 837. Springer, Berlin, p 279
8.
Zurück zum Zitat Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287CrossRef Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287CrossRef
9.
Zurück zum Zitat Hohenberg P, Kohn W (1964) Inhomogenous electron gas. Phys Rev 136:B864CrossRef Hohenberg P, Kohn W (1964) Inhomogenous electron gas. Phys Rev 136:B864CrossRef
10.
Zurück zum Zitat Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRef Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRef
11.
Zurück zum Zitat Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York
12.
Zurück zum Zitat Dreizler DM, Gross EKU (1990) Density functional theory, an approach to the quantum many-body problem. Springer, New York Dreizler DM, Gross EKU (1990) Density functional theory, an approach to the quantum many-body problem. Springer, New York
13.
Zurück zum Zitat Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, New York Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, New York
14.
Zurück zum Zitat Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. In: Doren VEV, Alseoy KV, Geerlings P (eds) Density functional theory and its applications to materials. American Institute of Physics, Melville, New York, p 1 Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. In: Doren VEV, Alseoy KV, Geerlings P (eds) Density functional theory and its applications to materials. American Institute of Physics, Melville, New York, p 1
15.
Zurück zum Zitat Perdew JP, Ruzsinsky A, Constantin LA, Sun J, Csonka GI (2009) Some fundamental issues in ground-state density functional theory: a guide for the perplexed. J Chem Theor Comput 5:902CrossRef Perdew JP, Ruzsinsky A, Constantin LA, Sun J, Csonka GI (2009) Some fundamental issues in ground-state density functional theory: a guide for the perplexed. J Chem Theor Comput 5:902CrossRef
16.
Zurück zum Zitat Perdew JP, Constantin LA (2007) Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy. Phys Rev B 75:155109CrossRef Perdew JP, Constantin LA (2007) Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy. Phys Rev B 75:155109CrossRef
17.
Zurück zum Zitat Gill PM (2001) Obituary: density-functional theory (1927–1993). Aust J Chem 54:661CrossRef Gill PM (2001) Obituary: density-functional theory (1927–1993). Aust J Chem 54:661CrossRef
18.
Zurück zum Zitat Becke A (1993) A new mixing of HartreeFock and local density functional theories. J Chem Phys 98:1372CrossRef Becke A (1993) A new mixing of HartreeFock and local density functional theories. J Chem Phys 98:1372CrossRef
19.
Zurück zum Zitat Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982 Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982
20.
Zurück zum Zitat Savin A (1995) Beyond the Kohn–Sham determinant. In: Chong DP (ed) Recent advances in density functional theory. World Scientific, Singapore, p 129CrossRef Savin A (1995) Beyond the Kohn–Sham determinant. In: Chong DP (ed) Recent advances in density functional theory. World Scientific, Singapore, p 129CrossRef
21.
Zurück zum Zitat Baer R, Livshits E, Salzner U (2010) Tuned range-separated hybrids in density functional theory. Annu Rev Phys Chem 61:85CrossRef Baer R, Livshits E, Salzner U (2010) Tuned range-separated hybrids in density functional theory. Annu Rev Phys Chem 61:85CrossRef
22.
Zurück zum Zitat Marques MAL, Ullrich C, Nogueira F, Rubio A, Gross EKU (eds) (2006) Time-dependent density-functional theory, Lecture Notes in Physics, vol 706. Springer, Berlin Marques MAL, Ullrich C, Nogueira F, Rubio A, Gross EKU (eds) (2006) Time-dependent density-functional theory, Lecture Notes in Physics, vol 706. Springer, Berlin
23.
Zurück zum Zitat Marques M, Maitra N, Noguiera F, Gross EKU, Rubio A (2011) Fundamentals of time-dependent density-functional theory, Lecture Notes in Physics, vol 837. Springer, Berlin Marques M, Maitra N, Noguiera F, Gross EKU, Rubio A (2011) Fundamentals of time-dependent density-functional theory, Lecture Notes in Physics, vol 837. Springer, Berlin
24.
Zurück zum Zitat Ullrich CA (2012) Time-dependent density-functional theory: concepts and applications. Oxford University Press, Oxford Ullrich CA (2012) Time-dependent density-functional theory: concepts and applications. Oxford University Press, Oxford
25.
Zurück zum Zitat Runge E, Gross EKU (1984) Density functional theory for time-dependent systems. Phys Rev Lett 52:997CrossRef Runge E, Gross EKU (1984) Density functional theory for time-dependent systems. Phys Rev Lett 52:997CrossRef
26.
Zurück zum Zitat van Leeuwen R (1999) Mapping from densities to potentials in time-dependent density-functional theory. Phys Rev Lett 82:3863CrossRef van Leeuwen R (1999) Mapping from densities to potentials in time-dependent density-functional theory. Phys Rev Lett 82:3863CrossRef
27.
Zurück zum Zitat Maitra NT, Todorov TN, Woodward C, Burke K (2010) Density-potential mapping in time-dependent density-functional theory. Phys Rev A 81:042525 Maitra NT, Todorov TN, Woodward C, Burke K (2010) Density-potential mapping in time-dependent density-functional theory. Phys Rev A 81:042525
28.
Zurück zum Zitat Ruggenthaler M, van Leeuwen R (2011) Global fixed-point proof of time-dependent density-functional theory. Europhys Lett 95:13001CrossRef Ruggenthaler M, van Leeuwen R (2011) Global fixed-point proof of time-dependent density-functional theory. Europhys Lett 95:13001CrossRef
29.
Zurück zum Zitat Ruggenthaler M, Glesbertz KJH, Penz M, van Leeuwen R (2012) Density-potential mappings in quantum dynamics. Phys Rev A 85:052504CrossRef Ruggenthaler M, Glesbertz KJH, Penz M, van Leeuwen R (2012) Density-potential mappings in quantum dynamics. Phys Rev A 85:052504CrossRef
30.
Zurück zum Zitat Ruggenthaler M, Nielsen SEB, van Leeuwen R (2013) Analytic density functionals with initial-state dependence. Phys Rev A 88:022512CrossRef Ruggenthaler M, Nielsen SEB, van Leeuwen R (2013) Analytic density functionals with initial-state dependence. Phys Rev A 88:022512CrossRef
32.
Zurück zum Zitat Messud J, Dinh PM, Reinhard P, Suraud E (2011) The generalized SIC-OEP formalism and the generalized SIC-Slater approximation (stationary and time-dependent cases). Ann Phys (Berlin) 523:270CrossRef Messud J, Dinh PM, Reinhard P, Suraud E (2011) The generalized SIC-OEP formalism and the generalized SIC-Slater approximation (stationary and time-dependent cases). Ann Phys (Berlin) 523:270CrossRef
33.
Zurück zum Zitat Rajagopal AK (1996) Time-dependent variational principle and the effective action in density-functional theory and Berrys phase. Phys Rev A 54:3916CrossRef Rajagopal AK (1996) Time-dependent variational principle and the effective action in density-functional theory and Berrys phase. Phys Rev A 54:3916CrossRef
34.
Zurück zum Zitat van Leeuwen R (1998) Causality and symmetry in time-dependent density-functional theory. Phys Rev Lett 80:1280CrossRef van Leeuwen R (1998) Causality and symmetry in time-dependent density-functional theory. Phys Rev Lett 80:1280CrossRef
35.
Zurück zum Zitat van Leeuwen R (2001) Key concepts in time-dependent density-functional theory. Int J Mod Phys 15:1969CrossRef van Leeuwen R (2001) Key concepts in time-dependent density-functional theory. Int J Mod Phys 15:1969CrossRef
36.
Zurück zum Zitat Mukamel S (2005) Generalized time-dependent density-functional-theory response functions for spontaneous density fluctuations and nonlinear response: resolving the causality paradox. Phys Rev A 024503 Mukamel S (2005) Generalized time-dependent density-functional-theory response functions for spontaneous density fluctuations and nonlinear response: resolving the causality paradox. Phys Rev A 024503
37.
Zurück zum Zitat Mosquera MA (2013) Action formalism in time-dependent density-functional theory. Phys Rev B 88:022515CrossRef Mosquera MA (2013) Action formalism in time-dependent density-functional theory. Phys Rev B 88:022515CrossRef
38.
Zurück zum Zitat Casida ME (1995) Time-dependent density-functional response theory for molecules. In: Chong DP (ed) Recent advances in density functional methods, Part I. World Scientific, Singapore, p 155 Casida ME (1995) Time-dependent density-functional response theory for molecules. In: Chong DP (ed) Recent advances in density functional methods, Part I. World Scientific, Singapore, p 155
39.
Zurück zum Zitat Casida ME (1996) Time-dependent density functional response theory of molecular systems: theory, computational methods, and functionals. In: Seminario J (ed) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam, p 391 Casida ME (1996) Time-dependent density functional response theory of molecular systems: theory, computational methods, and functionals. In: Seminario J (ed) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam, p 391
40.
Zurück zum Zitat Löwdin PO (1964) Studies in perturbation theory. Part VI. Contraction of secular equations. J Mol Spectr 14:112 Löwdin PO (1964) Studies in perturbation theory. Part VI. Contraction of secular equations. J Mol Spectr 14:112
41.
Zurück zum Zitat Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Greens-function approaches. Rev Mod Phys 74:601CrossRef Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Greens-function approaches. Rev Mod Phys 74:601CrossRef
42.
Zurück zum Zitat Reining L, Olevano V, Rubio A, Onida G (2002) Excitonic effects in solids described by time-dependent density-functional theory. Phys Rev Lett 88:066404CrossRef Reining L, Olevano V, Rubio A, Onida G (2002) Excitonic effects in solids described by time-dependent density-functional theory. Phys Rev Lett 88:066404CrossRef
43.
Zurück zum Zitat Sottile F, Olevano V, Reining L (2003) Parameter-free calculation of response functions in time-dependent density-functional theory. Phys Rev Lett 91:056402CrossRef Sottile F, Olevano V, Reining L (2003) Parameter-free calculation of response functions in time-dependent density-functional theory. Phys Rev Lett 91:056402CrossRef
44.
Zurück zum Zitat Marini A, Sole RD, Rubio A (2003) Bound excitons in time-dependent density-functional theory: optical and energy-loss spectra. Phys Rev Lett 91:256402CrossRef Marini A, Sole RD, Rubio A (2003) Bound excitons in time-dependent density-functional theory: optical and energy-loss spectra. Phys Rev Lett 91:256402CrossRef
45.
Zurück zum Zitat Stubner R, Tokatly IV, Pankratov O (2004) Excitonic effects in time-dependent density-functional theory: an analytically solvable model. Phys Rev B 70:245119CrossRef Stubner R, Tokatly IV, Pankratov O (2004) Excitonic effects in time-dependent density-functional theory: an analytically solvable model. Phys Rev B 70:245119CrossRef
46.
Zurück zum Zitat von Barth U, Dahlen NE, van Leeuwen R, Stefanucci G (2005) Conserving approximations in time-dependent density functional theory. Phys Rev B 72:235109CrossRef von Barth U, Dahlen NE, van Leeuwen R, Stefanucci G (2005) Conserving approximations in time-dependent density functional theory. Phys Rev B 72:235109CrossRef
47.
Zurück zum Zitat Romaniello P, Sangalli D, Berger JA, Sottile F, Molinari LG, Reining L, Onida G (2009) Double excitations in finite systems. J Chem Phys 130:044108CrossRef Romaniello P, Sangalli D, Berger JA, Sottile F, Molinari LG, Reining L, Onida G (2009) Double excitations in finite systems. J Chem Phys 130:044108CrossRef
48.
Zurück zum Zitat Oddershede J, Jørgensen P (1977) An order analysis of the particle-hole propagator. J Chem Phys 66:1541CrossRef Oddershede J, Jørgensen P (1977) An order analysis of the particle-hole propagator. J Chem Phys 66:1541CrossRef
49.
Zurück zum Zitat Nielsen ES, Jørgensen P, Oddershede J (1980) Transition moments and dynamic polarizabilities in a second order polarization propagator approach. J Chem Phys 73:6238CrossRef Nielsen ES, Jørgensen P, Oddershede J (1980) Transition moments and dynamic polarizabilities in a second order polarization propagator approach. J Chem Phys 73:6238CrossRef
50.
Zurück zum Zitat Nielsen ES, Jørgensen P, Oddershede J (1980) J Chem Phys 75:499; Erratum (1980): J Chem Phys 73:6238 Nielsen ES, Jørgensen P, Oddershede J (1980) J Chem Phys 75:499; Erratum (1980): J Chem Phys 73:6238
51.
Zurück zum Zitat Jørgensen P, Simons J (1981) Second quantization-based methods in quantum chemistry. Academic, New York Jørgensen P, Simons J (1981) Second quantization-based methods in quantum chemistry. Academic, New York
52.
Zurück zum Zitat Schirmer J (1982) Beyond the random phase approximation: a new approximation scheme for the polarization propagator. Phys Rev A 26:2395CrossRef Schirmer J (1982) Beyond the random phase approximation: a new approximation scheme for the polarization propagator. Phys Rev A 26:2395CrossRef
53.
Zurück zum Zitat Trofimov AB, Stelter G, Schirmer J (1999) A consistent third-order propagator method for electronic excitation. J Chem Phys 111:9982CrossRef Trofimov AB, Stelter G, Schirmer J (1999) A consistent third-order propagator method for electronic excitation. J Chem Phys 111:9982CrossRef
54.
Zurück zum Zitat Fetter AL, Walecka JD (1971) Quantum theory of many-particle systems. McGraw-Hill, New York Fetter AL, Walecka JD (1971) Quantum theory of many-particle systems. McGraw-Hill, New York
55.
Zurück zum Zitat Kobe DH (1966) Linked cluster theorem and the Green’s function equations of motion for a many-fermion system. J Math Phys 7(10):1806CrossRef Kobe DH (1966) Linked cluster theorem and the Green’s function equations of motion for a many-fermion system. J Math Phys 7(10):1806CrossRef
56.
Zurück zum Zitat Wilson S (1984) Electron correlation in molecules. Clarendon, Oxford Wilson S (1984) Electron correlation in molecules. Clarendon, Oxford
57.
Zurück zum Zitat Sangalli D, Romaniello P, Colò G, Marini A, Onida G (2011) Double excitation in correlated systems: a many-body approach. J Chem Phys 134:034115CrossRef Sangalli D, Romaniello P, Colò G, Marini A, Onida G (2011) Double excitation in correlated systems: a many-body approach. J Chem Phys 134:034115CrossRef
58.
Zurück zum Zitat Casida ME (2005) Propagator corrections to adiabatic time-dependent density-functional theory linear response theory. J Chem Phys 122:054111CrossRef Casida ME (2005) Propagator corrections to adiabatic time-dependent density-functional theory linear response theory. J Chem Phys 122:054111CrossRef
59.
Zurück zum Zitat Hirata S, Ivanov S, Bartlett RJ, Grabowski I (2005) Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities. Phys Rev A 71:032507CrossRef Hirata S, Ivanov S, Bartlett RJ, Grabowski I (2005) Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities. Phys Rev A 71:032507CrossRef
60.
Zurück zum Zitat Görling A (1998) Exact exchange kernel for time-dependent density-functional theory. Int J Quant Chem 69:265CrossRef Görling A (1998) Exact exchange kernel for time-dependent density-functional theory. Int J Quant Chem 69:265CrossRef
61.
Zurück zum Zitat Maitra NT, Zhang F, Cave RJ, Burke K (2004) Double excitations within time-dependent density functional theory linear response theory. J Chem Phys 120:5932CrossRef Maitra NT, Zhang F, Cave RJ, Burke K (2004) Double excitations within time-dependent density functional theory linear response theory. J Chem Phys 120:5932CrossRef
62.
Zurück zum Zitat Cave RJ, Zhang F, Maitra NT, Burke K (2004) A dressed TDDFT treatment of the 1Ag states of butadiene and hexatriene. Chem Phys Lett 389:39CrossRef Cave RJ, Zhang F, Maitra NT, Burke K (2004) A dressed TDDFT treatment of the 1Ag states of butadiene and hexatriene. Chem Phys Lett 389:39CrossRef
63.
Zurück zum Zitat Mazur G, Włodarczyk R (2009) Application of the dressed time-dependent density functional theory for the excited states of linear polyenes. J Comput Chem 30:811CrossRef Mazur G, Włodarczyk R (2009) Application of the dressed time-dependent density functional theory for the excited states of linear polyenes. J Comput Chem 30:811CrossRef
64.
Zurück zum Zitat Gritsenko OV, Baerends EJ (2009) Double excitation effect in non-adiabatic time-dependent density functional theory with an analytic construction of the exchange-correlation kernel in the common energy denominator approximation. Phys Chem Chem Phys 11:4640CrossRef Gritsenko OV, Baerends EJ (2009) Double excitation effect in non-adiabatic time-dependent density functional theory with an analytic construction of the exchange-correlation kernel in the common energy denominator approximation. Phys Chem Chem Phys 11:4640CrossRef
65.
Zurück zum Zitat Huix-Rotllant M, Ipatov A, Rubio A, Casida ME (2011) Assessment of dressed time-dependent density-functional theory for the low-lying valence states of 28 organic chromophores. Chem Phys 391:120CrossRef Huix-Rotllant M, Ipatov A, Rubio A, Casida ME (2011) Assessment of dressed time-dependent density-functional theory for the low-lying valence states of 28 organic chromophores. Chem Phys 391:120CrossRef
66.
Zurück zum Zitat Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys 128:134110CrossRef Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys 128:134110CrossRef
67.
Zurück zum Zitat Hsu CP, Hirata S, Head-Gordon M (2001) Excitation energies from time-dependent density functional theory for linear polyene oligomers: butadiene to decapentaene. J Phys Chem A 105:451CrossRef Hsu CP, Hirata S, Head-Gordon M (2001) Excitation energies from time-dependent density functional theory for linear polyene oligomers: butadiene to decapentaene. J Phys Chem A 105:451CrossRef
68.
Zurück zum Zitat Maitra NT, Tempel DG (2006) Long-range excitations in time-dependent density functional theory. J Chem Phys 125:184111CrossRef Maitra NT, Tempel DG (2006) Long-range excitations in time-dependent density functional theory. J Chem Phys 125:184111CrossRef
69.
Zurück zum Zitat Huix-Rotllant M (2011) Improved correlation kernels for linear-response time-dependent density-functional theory. Ph.D. thesis, Université de Grenoble Huix-Rotllant M (2011) Improved correlation kernels for linear-response time-dependent density-functional theory. Ph.D. thesis, Université de Grenoble
70.
Zurück zum Zitat Bokhan D, Schweigert IG, Bartlett RJ (2005) Interconnection between functional derivative and effective operator approaches in ab initio density functional theory. Mol Phys 103:2299CrossRef Bokhan D, Schweigert IG, Bartlett RJ (2005) Interconnection between functional derivative and effective operator approaches in ab initio density functional theory. Mol Phys 103:2299CrossRef
71.
Zurück zum Zitat Bokhan D, Bartlett RJ (2006) Adiabatic ab initio time-dependent density-functional theory employing optimized-effective-potential many-body perturbation theory potentials. Phys Rev A 73:022502CrossRef Bokhan D, Bartlett RJ (2006) Adiabatic ab initio time-dependent density-functional theory employing optimized-effective-potential many-body perturbation theory potentials. Phys Rev A 73:022502CrossRef
72.
Zurück zum Zitat Talman JD, Shadwick WF (1976) Optimized effective atomic central potential. Phys Rev A 14:36CrossRef Talman JD, Shadwick WF (1976) Optimized effective atomic central potential. Phys Rev A 14:36CrossRef
73.
Zurück zum Zitat Talman JD (1989) A program to compute variationally optimized effective atomic potentials. Comp Phys Commun 54:85CrossRef Talman JD (1989) A program to compute variationally optimized effective atomic potentials. Comp Phys Commun 54:85CrossRef
74.
Zurück zum Zitat Görling A (1999) New KS method for molecules based on an exchange charge density generating the exact local KS exchange potential. Phys Rev Lett 83:5459CrossRef Görling A (1999) New KS method for molecules based on an exchange charge density generating the exact local KS exchange potential. Phys Rev Lett 83:5459CrossRef
75.
Zurück zum Zitat Ivanov S, Hirata S, Bartlett RJ (1999) Exact exchange treatment for molecules in finite-basis-set Kohn–Sham theory. Phys Rev Lett 83:5455CrossRef Ivanov S, Hirata S, Bartlett RJ (1999) Exact exchange treatment for molecules in finite-basis-set Kohn–Sham theory. Phys Rev Lett 83:5455CrossRef
76.
Zurück zum Zitat Casida ME (1995) Generalization of the optimized effective potential model to include electron correlation: a variational derivation of the Sham–Schlüter equation for the exact exchange-correlation potential. Phys Rev A 51:2505CrossRef Casida ME (1995) Generalization of the optimized effective potential model to include electron correlation: a variational derivation of the Sham–Schlüter equation for the exact exchange-correlation potential. Phys Rev A 51:2505CrossRef
77.
Zurück zum Zitat Casida ME (1999) Correlated optimized effective potential treatment of the derivative discontinuity and of the highest occupied Kohn–Sham eigenvalue: a Janak-type theorem for the optimized effective potential method. Phys Rev B 59:4694CrossRef Casida ME (1999) Correlated optimized effective potential treatment of the derivative discontinuity and of the highest occupied Kohn–Sham eigenvalue: a Janak-type theorem for the optimized effective potential method. Phys Rev B 59:4694CrossRef
78.
Zurück zum Zitat Hirata S, Ivanov S, Grabowski I, Bartlett RJ (2002) Time-dependent density functional theory employing optimized effective potentials. J Chem Phys 116:6468CrossRef Hirata S, Ivanov S, Grabowski I, Bartlett RJ (2002) Time-dependent density functional theory employing optimized effective potentials. J Chem Phys 116:6468CrossRef
79.
Zurück zum Zitat Bokhan D, Barlett RJ (2007) Exact-exchange density functional theory for hyperpolarizabilities. J Chem Phys 127:174102CrossRef Bokhan D, Barlett RJ (2007) Exact-exchange density functional theory for hyperpolarizabilities. J Chem Phys 127:174102CrossRef
80.
Zurück zum Zitat Tokatly IV, Pankratov O (2001) Many-body diagrammatic expansion in a Kohn–Sham basis: implications for time-dependent density functional theory of excited states. Phys Rev Lett 86:2078CrossRef Tokatly IV, Pankratov O (2001) Many-body diagrammatic expansion in a Kohn–Sham basis: implications for time-dependent density functional theory of excited states. Phys Rev Lett 86:2078CrossRef
81.
Zurück zum Zitat Tokatly IV, Stubner R, Pankratov O (2002) Many-body diagrammatic expansion of the exchange-correlation kernel in time-dependent density-functional theory. Phys Rev B 65:113107CrossRef Tokatly IV, Stubner R, Pankratov O (2002) Many-body diagrammatic expansion of the exchange-correlation kernel in time-dependent density-functional theory. Phys Rev B 65:113107CrossRef
82.
Zurück zum Zitat Gonze X, Scheffler M (1999) Exchange and correlation kernels at the resonance frequency: implications for excitation energies in density-functional theory. Phys Rev Lett 82:4416CrossRef Gonze X, Scheffler M (1999) Exchange and correlation kernels at the resonance frequency: implications for excitation energies in density-functional theory. Phys Rev Lett 82:4416CrossRef
83.
Zurück zum Zitat Harriman JE (1983) Geometry of density-matrices. 4. The relationship between density-matrices and densities. Phys Rev A 27:632CrossRef Harriman JE (1983) Geometry of density-matrices. 4. The relationship between density-matrices and densities. Phys Rev A 27:632CrossRef
84.
Zurück zum Zitat Harriman JE (1986) Densities, operators, and basis sets. Phys Rev A 34:29CrossRef Harriman JE (1986) Densities, operators, and basis sets. Phys Rev A 34:29CrossRef
85.
Zurück zum Zitat Heßelmann A, Ipatov A, Görling A (2009) Charge-transfer excitation energies with a time-dependent density-functional method suitable for orbital-dependent exchange-correlation functionals. Phys Rev A 80:012507CrossRef Heßelmann A, Ipatov A, Görling A (2009) Charge-transfer excitation energies with a time-dependent density-functional method suitable for orbital-dependent exchange-correlation functionals. Phys Rev A 80:012507CrossRef
86.
Zurück zum Zitat Filippi C, Umrigar CJ, Gonze X (1997) Excitation energies from density functional perturbation theory. J Chem Phys 107(23):9994CrossRef Filippi C, Umrigar CJ, Gonze X (1997) Excitation energies from density functional perturbation theory. J Chem Phys 107(23):9994CrossRef
87.
Zurück zum Zitat Görling A (1996) Density-functional theory for excited states. Phys Rev A 54(5):3912CrossRef Görling A (1996) Density-functional theory for excited states. Phys Rev A 54(5):3912CrossRef
88.
Zurück zum Zitat Li SL, Marenich AV, Xu X, Truhlar DG (2014) Configuration interaction-corrected Tamm-Dancoff approximation: a time-dependent density functional method with the correct dimensionality of conical intersections. J Chem Phys Lett 5:322 Li SL, Marenich AV, Xu X, Truhlar DG (2014) Configuration interaction-corrected Tamm-Dancoff approximation: a time-dependent density functional method with the correct dimensionality of conical intersections. J Chem Phys Lett 5:322
89.
Zurück zum Zitat Fromager E, Knecht S, Jensen HJA (2013) Multi-configuration time-dependent density-functional theory based upon range separation. J Chem Phys 138:084101CrossRef Fromager E, Knecht S, Jensen HJA (2013) Multi-configuration time-dependent density-functional theory based upon range separation. J Chem Phys 138:084101CrossRef
90.
Zurück zum Zitat Seidu I, Krykunov M, Ziegler T (2014) The formulation of a constricted variational density functional theory for double excitations. Mol Phys 112:661CrossRef Seidu I, Krykunov M, Ziegler T (2014) The formulation of a constricted variational density functional theory for double excitations. Mol Phys 112:661CrossRef
91.
Zurück zum Zitat Böhm M, Tatchen J, Krügler D, Kleinermanns K, Nix MGD, LaGreve TA, Zwier TS, Schmitt M (2009) High-resolution and dispersed fluorescence examination of vibronic bands of tryptamine: spectroscopic signatures for L a/L b mixing near a conical intersection. J Phys Chem A 113:2456CrossRef Böhm M, Tatchen J, Krügler D, Kleinermanns K, Nix MGD, LaGreve TA, Zwier TS, Schmitt M (2009) High-resolution and dispersed fluorescence examination of vibronic bands of tryptamine: spectroscopic signatures for L a/L b mixing near a conical intersection. J Phys Chem A 113:2456CrossRef
92.
Zurück zum Zitat Minezawa N, Gordon MS (2009) Optimizing conical intersections by spin-flip density-functional theory: application to ethylene. J Phys Chem A 113:12749CrossRef Minezawa N, Gordon MS (2009) Optimizing conical intersections by spin-flip density-functional theory: application to ethylene. J Phys Chem A 113:12749CrossRef
93.
Zurück zum Zitat Huix-Rotllant M, Natarajan B, Ipatov A, Wawire CM, Deutsch T, Casida ME (2010) Assessment of noncollinear spin-flip Tamm-Dancoff approximation time-dependent density-functional theory for the photochemical ring-opening of oxirane. Phys Chem Chem Phys 12:12811CrossRef Huix-Rotllant M, Natarajan B, Ipatov A, Wawire CM, Deutsch T, Casida ME (2010) Assessment of noncollinear spin-flip Tamm-Dancoff approximation time-dependent density-functional theory for the photochemical ring-opening of oxirane. Phys Chem Chem Phys 12:12811CrossRef
94.
Zurück zum Zitat Rinkevicius Z, Vahtras O, Ågren H (2010) Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character. J Chem Phys 133:114104CrossRef Rinkevicius Z, Vahtras O, Ågren H (2010) Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character. J Chem Phys 133:114104CrossRef
95.
Zurück zum Zitat Minezawa N, Gordon MS (2011) Photoisomerization of stilbene: a spin-flip density functional theory approach. J Phys Chem A 115:7901CrossRef Minezawa N, Gordon MS (2011) Photoisomerization of stilbene: a spin-flip density functional theory approach. J Phys Chem A 115:7901CrossRef
96.
Zurück zum Zitat Casanova D (2012) Avoided crossings, conical intersections, and low-lying excited states with a single reference method: the restricted active space spin-flip configuration interaction approach. J Chem Phys 137:084105CrossRef Casanova D (2012) Avoided crossings, conical intersections, and low-lying excited states with a single reference method: the restricted active space spin-flip configuration interaction approach. J Chem Phys 137:084105CrossRef
97.
Zurück zum Zitat Huix-Rotllant M, Filatov F, Gozem S, Schapiro I, Olivucci M, Ferré N (2013) Assessment of density functional theory for describing the correlation effects on the ground and excited state potential energy surfaces of a retinal chromophore model. J Chem Theory Comput 9:3917CrossRef Huix-Rotllant M, Filatov F, Gozem S, Schapiro I, Olivucci M, Ferré N (2013) Assessment of density functional theory for describing the correlation effects on the ground and excited state potential energy surfaces of a retinal chromophore model. J Chem Theory Comput 9:3917CrossRef
98.
Zurück zum Zitat Minezawa N (2014) Optimizing minimum free-energy crossing points in solution: linear-response free energy/spin-flip density functional theory approach. J Chem Phys 141:164118CrossRef Minezawa N (2014) Optimizing minimum free-energy crossing points in solution: linear-response free energy/spin-flip density functional theory approach. J Chem Phys 141:164118CrossRef
99.
Zurück zum Zitat Harabuchi Y, Keipert K, Zahariev F, Taketsugu T, Gordon MS (2014) Dynamics simulations with spin-flip time-dependent density functional theory: photoisomerization and photocyclization mechanisms of cis-stilbene in (π, π*) states. J Phys Chem A 118:11987CrossRef Harabuchi Y, Keipert K, Zahariev F, Taketsugu T, Gordon MS (2014) Dynamics simulations with spin-flip time-dependent density functional theory: photoisomerization and photocyclization mechanisms of cis-stilbene in (π, π*) states. J Phys Chem A 118:11987CrossRef
100.
Zurück zum Zitat Nikiforov A, Gamez JA, Thiel W, Huix-Rotllant M, Filatov M (2014) Assessment of approximate computational methods for conical intersections and branching plane vectors in organic molecules. J Chem Phys 141:124122CrossRef Nikiforov A, Gamez JA, Thiel W, Huix-Rotllant M, Filatov M (2014) Assessment of approximate computational methods for conical intersections and branching plane vectors in organic molecules. J Chem Phys 141:124122CrossRef
101.
Zurück zum Zitat Gozem S, Melaccio F, Valentini A, Filatov M, Huix-Rotllant M, Ferré N, Frutos LM, Angeli C, Krylov AI, Granovsky AA, Lindh R, Olivucci M (2014) Shape of multireference, equation-of-motion coupled-cluster, and density functional theory potential energy surfaces at a conical intersection. J Chem Theory Comput 10:3074 Gozem S, Melaccio F, Valentini A, Filatov M, Huix-Rotllant M, Ferré N, Frutos LM, Angeli C, Krylov AI, Granovsky AA, Lindh R, Olivucci M (2014) Shape of multireference, equation-of-motion coupled-cluster, and density functional theory potential energy surfaces at a conical intersection. J Chem Theory Comput 10:3074
102.
Zurück zum Zitat Zhang X, Herbert JM (2014) Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory. J Chem Phys 141:064104CrossRef Zhang X, Herbert JM (2014) Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory. J Chem Phys 141:064104CrossRef
103.
Zurück zum Zitat Frank I, Damianos K (2007) Restricted open-shell Kohn–Sham theory: simulation. J Chem Phys 126:125105CrossRef Frank I, Damianos K (2007) Restricted open-shell Kohn–Sham theory: simulation. J Chem Phys 126:125105CrossRef
104.
Zurück zum Zitat Friedrichs J, Darnianos K, Frank I (2008) Solving restricted open-shell equations in excited state molecular dynamics simulations. J Chem Phys 347:17 Friedrichs J, Darnianos K, Frank I (2008) Solving restricted open-shell equations in excited state molecular dynamics simulations. J Chem Phys 347:17
105.
Zurück zum Zitat Filatov M (2015) Spin-restricted ensemble-referenced Kohn–Sham method: basic principles and application to strongly correlated ground and excited states of molecules. Comput Mol Sci 5:146CrossRef Filatov M (2015) Spin-restricted ensemble-referenced Kohn–Sham method: basic principles and application to strongly correlated ground and excited states of molecules. Comput Mol Sci 5:146CrossRef
106.
Zurück zum Zitat Shibuya T, Rose J, McKoy V (1973) Equations-of-motion method including renormalization and double-excitation mixing. J Chem Phys 58:500 Shibuya T, Rose J, McKoy V (1973) Equations-of-motion method including renormalization and double-excitation mixing. J Chem Phys 58:500
107.
Zurück zum Zitat Jørgensen P, Oddershede J, Ratner MA (1975) Two-particle, two-hole corrections to a self-consistent time-dependent Hartree-Fock scheme. Chem Phys Lett 32:111CrossRef Jørgensen P, Oddershede J, Ratner MA (1975) Two-particle, two-hole corrections to a self-consistent time-dependent Hartree-Fock scheme. Chem Phys Lett 32:111CrossRef
108.
Zurück zum Zitat Oddershede J, Sabin JR (1983) The use of modified virtual orbitals in perturbative polarization propagator calculations. J Chem Phys 79:2295 Oddershede J, Sabin JR (1983) The use of modified virtual orbitals in perturbative polarization propagator calculations. J Chem Phys 79:2295
109.
Zurück zum Zitat Oddershede J, Jørgensen P, Yeager DL (1984) Polarization propagator methods in atomic and molecular calculations. Comp Phys Rep 2:33CrossRef Oddershede J, Jørgensen P, Yeager DL (1984) Polarization propagator methods in atomic and molecular calculations. Comp Phys Rep 2:33CrossRef
110.
Zurück zum Zitat Oddershede J, Jørgensen P, Beebe NHF (1978) Analysis of excitation energies and transition moments. J Phys B Atom Mol Phys 11:1CrossRef Oddershede J, Jørgensen P, Beebe NHF (1978) Analysis of excitation energies and transition moments. J Phys B Atom Mol Phys 11:1CrossRef
111.
Zurück zum Zitat Trofimov AB, Schirmer J (1995) An efficient polarization propagator approach to valence electron excitation spectra. J Phys B At Mol Opt Phys 28:2299CrossRef Trofimov AB, Schirmer J (1995) An efficient polarization propagator approach to valence electron excitation spectra. J Phys B At Mol Opt Phys 28:2299CrossRef
Metadaten
Titel
Many-Body Perturbation Theory (MBPT) and Time-Dependent Density-Functional Theory (TD-DFT): MBPT Insights About What Is Missing In, and Corrections To, the TD-DFT Adiabatic Approximation
verfasst von
Mark E. Casida
Miquel Huix-Rotllant
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/128_2015_632