Skip to main content

2007 | OriginalPaper | Buchkapitel

10. Material Aspects of Micro- and Nanoelectromechanical Systems

verfasst von : Christian Zorman, Prof., Mehran Mehregany, Prof.

Erschienen in: Springer Handbook of Nanotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the more significant technological achievements during the last 20 years has been the development of MEMS and its new offshoot, NEMS. These developments were made possible by significant advancements in the materials and processing technologies used in the fabrication of MEMS and NEMS devices. While initial developments capitalized on a mature Si infrastructure built for the integrated circuit (IC) industry, recent advances have come about using materials and processes not associated with IC fabrication, a trend that is likely to continue as new application areas emerge.
A well-rounded understanding of MEMS and NEMS technology requires a basic knowledge of the materials used to construct the devices, since material properties often govern device performance and dictate fabrication approaches. An understanding of the materials used in MEMS and NEMS involves an understanding of material systems, since such devices are rarely constructed of a single material but rather a collection of materials working in conjunction with each other to provide critical functions. It is from this perspective that the following chapter is constructed. A preview of the materials selected for inclusion in this chapter is presented in Table 10.1. It should be clear from this table that this chapter is not a summary of all materials used in MEMS and NEMS, as such a work would itself constitute a text of significant size. It does, however, present a selection of some of the more important material systems, and especially those that illustrate the importance of viewing MEMS and NEMS in terms of material systems.
Table 10.1
Distinguishing characteristics and application examples of selected materials for MEMS and NEMS
Material
Distinguishing characteristics
Application examples
Single-crystal silicon (Si)
High-quality electronic material, selective anisotropic etching
Bulk micromachining, piezoresistive sensing
Polycrystalline Si (polysilicon)
Doped Si films on sacrificial layers
Surface micromachining, electrostatic actuation
Silicon dioxide (SiO2)
Insulating, etched by HF, compatible with polysilicon
Sacrificial layer in polysilicon surface micromachining, passivation layer for devices
Silicon nitride (Si3N4, Si x N y )
Insulating, chemically resistant, mechanically durable
Isolation layer for electrostatic devices, membrane and bridge material
Polycrystalline germanium (polyGe), Polycrystalline silicon-germanium (poly Si–Ge)
Deposited at low temperatures
Integrated surface micromachined MEMS
Gold (Au), aluminum (Al)
Conductive thin films, flexible deposition techniques
Innerconnect layers, masking layers, electromechanical switches
Bulk ti
High strength, corrosion resistant
Optical MEMS
Nickel-iron (NiFe)
Magnetic alloy
Magnetic actuation
Titanium-nickel (TiNi)
Shape-memory alloy
Thermal actuation
Silicon carbide (SiC) diamond
Electrically and mechanically stable at high temperatures, chemically inert, high Young's modulus to density ratio
Harsh-environment MEMS, high-frequency MEMS/NEMS
Gallium arsenide (GaAs), indium phosphide (InP), indium arsenide (InAs) and related materials
Wide bandgap, epitaxial growth on related ternary compounds
RF MEMS, optoelectronic devices, single-crystal bulk and surface micromachining
Lead zirconate titanate (PZT)
Piezoelectric material
Mechanical sensors and actuators
Polyimide
Chemically resistant, high-temperature polymer
Mechanically flexible MEMS, BioMEMS
SU-8
Thick, photodefinable resist
Micromolding, High-aspect-ratio structures
Parylene
Biocompatible polymer, deposited at room temperature by CVD
Protective coatings, molded polymer structures
Liquid crystal polymer
Chemically resistant, low moisture permeability, insulating
BioMEMS, RF MEMS

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
10.1.
Zurück zum Zitat C. S. Smith: Piezoresistive effect in germanium and silicon, Phys. Rev. 94, 1–10 (1954) C. S. Smith: Piezoresistive effect in germanium and silicon, Phys. Rev. 94, 1–10 (1954)
10.2.
Zurück zum Zitat A. N. Cleland, M. L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69, 2653–2655 (1996) A. N. Cleland, M. L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69, 2653–2655 (1996)
10.3.
Zurück zum Zitat D. W. Carr, H. G. Craighead: Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vac. Sci. Technol. B 15, 2760–2763 (1997) D. W. Carr, H. G. Craighead: Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vac. Sci. Technol. B 15, 2760–2763 (1997)
10.4.
Zurück zum Zitat T. Kamins: Polycrystalline Silicon for Integrated Circuits and Displays, 2 edn. (Kluwer, Boston 1988) T. Kamins: Polycrystalline Silicon for Integrated Circuits and Displays, 2 edn. (Kluwer, Boston 1988)
10.5.
Zurück zum Zitat L. Cao, T. S. Kin, S. C. Mantell, D. Polla: Simulation and fabrication of piezoresistive membrane type MEMS strain sensors, Sens. Actuators 80, 273–279 (2000) L. Cao, T. S. Kin, S. C. Mantell, D. Polla: Simulation and fabrication of piezoresistive membrane type MEMS strain sensors, Sens. Actuators 80, 273–279 (2000)
10.6.
Zurück zum Zitat H. Guckel, T. Randazzo, D. W. Burns: A simple technique for the determination of mechanical strain in thin films with application to polysilicon, J. Appl. Phys. 57, 1671–1675 (1983) H. Guckel, T. Randazzo, D. W. Burns: A simple technique for the determination of mechanical strain in thin films with application to polysilicon, J. Appl. Phys. 57, 1671–1675 (1983)
10.7.
Zurück zum Zitat R. T. Howe, R. S. Muller: Stress in polysilicon and amorphous silicon thin films, J. Appl. Phys. 54, 4674–4675 (1983) R. T. Howe, R. S. Muller: Stress in polysilicon and amorphous silicon thin films, J. Appl. Phys. 54, 4674–4675 (1983)
10.8.
Zurück zum Zitat X. Zhang, T. Y. Zhang, M. Wong, Y. Zohar: Rapid thermal annealing of polysilicon thin films, J. Microelectromech. Syst. 7, 356–364 (1998) X. Zhang, T. Y. Zhang, M. Wong, Y. Zohar: Rapid thermal annealing of polysilicon thin films, J. Microelectromech. Syst. 7, 356–364 (1998)
10.9.
Zurück zum Zitat J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, A. H. Heuer: A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The Multipoly Process, J. Microelectromech. Syst. 9, 485–494 (2000) J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, A. H. Heuer: A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The Multipoly Process, J. Microelectromech. Syst. 9, 485–494 (2000)
10.10.
Zurück zum Zitat P. Gennissen, M. Bartek, P. J. French, P. M. Sarro: Bipolar-compatible epitaxial poly for smart sensors: stress minimization and applications, Sens. Actuators A62, 636–645 (1997) P. Gennissen, M. Bartek, P. J. French, P. M. Sarro: Bipolar-compatible epitaxial poly for smart sensors: stress minimization and applications, Sens. Actuators A62, 636–645 (1997)
10.11.
Zurück zum Zitat P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J. R. Morante, F. Ericson, J. A. Schweitz: Thick polycrystalline silicon for surface-micromechanical applications: deposition, structuring, and mechanical characterization, Sens. Actuators A54, 674–678 (1996) P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J. R. Morante, F. Ericson, J. A. Schweitz: Thick polycrystalline silicon for surface-micromechanical applications: deposition, structuring, and mechanical characterization, Sens. Actuators A54, 674–678 (1996)
10.12.
Zurück zum Zitat S. Greek, F. Ericson, S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Young's modulus and fracture strength evaluated with microstructures, J. Micromech. Microeng. 9, 245–251 (1999) S. Greek, F. Ericson, S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Young's modulus and fracture strength evaluated with microstructures, J. Micromech. Microeng. 9, 245–251 (1999)
10.13.
Zurück zum Zitat K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, F. Larmer: A surface micromachined silicon gyroscope using a thick polysilicon layer, Proceedings of the 12nd International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 1999) pp. 57–60 K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, F. Larmer: A surface micromachined silicon gyroscope using a thick polysilicon layer, Proceedings of the 12nd International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 1999) pp. 57–60
10.14.
Zurück zum Zitat T. Abe, M. L. Reed: Low Strain Sputtered Polysilicon for Micromechanical Structures, Proceedings of the 9th International Workshop on Microelectromechanical Systems (IEEE, Piscataway NJ 1996) pp. 258–262 T. Abe, M. L. Reed: Low Strain Sputtered Polysilicon for Micromechanical Structures, Proceedings of the 9th International Workshop on Microelectromechanical Systems (IEEE, Piscataway NJ 1996) pp. 258–262
10.15.
Zurück zum Zitat K. Honer, G. T. A. Kovacs: Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry, Sens. Actuators A 91, 392–403 (2001) K. Honer, G. T. A. Kovacs: Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry, Sens. Actuators A 91, 392–403 (2001)
10.16.
Zurück zum Zitat J. Gaspar, T. Adrega, V. Chu, J. P. Conde: Thin-Film Paddle Microresonators with High Quality Factors Fabricated at Temperatures Below 110 °C, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 2005) pp. 125–128 J. Gaspar, T. Adrega, V. Chu, J. P. Conde: Thin-Film Paddle Microresonators with High Quality Factors Fabricated at Temperatures Below 110 °C, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 2005) pp. 125–128
10.17.
Zurück zum Zitat R. Anderson, R. S. Muller, C. W. Tobias: Porous polycrystalline silicon: a new material for MEMS, J. Microelectromech. Syst. 3, 10–18 (1994) R. Anderson, R. S. Muller, C. W. Tobias: Porous polycrystalline silicon: a new material for MEMS, J. Microelectromech. Syst. 3, 10–18 (1994)
10.18.
Zurück zum Zitat W. Lang, P. Steiner, H. Sandmaier: Porous silicon: a novel material for microsystems, Sens. Actuators A51, 31–36 (1995) W. Lang, P. Steiner, H. Sandmaier: Porous silicon: a novel material for microsystems, Sens. Actuators A51, 31–36 (1995)
10.19.
Zurück zum Zitat R. He, C. J. Kim: On-Chip Hermetic Packaging Enabled by Post-Deposition Electrochemical Etching of Polysilicon, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 2005) pp. 544–547 R. He, C. J. Kim: On-Chip Hermetic Packaging Enabled by Post-Deposition Electrochemical Etching of Polysilicon, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 2005) pp. 544–547
10.20.
Zurück zum Zitat S. K. Ghandhi: VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York 1983) S. K. Ghandhi: VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York 1983)
10.21.
Zurück zum Zitat W. A. Pilskin: Comparison of properties of dielectric films deposited by various methods, J. Vac. Sci. Technol. 21, 1064–1081 (1977) W. A. Pilskin: Comparison of properties of dielectric films deposited by various methods, J. Vac. Sci. Technol. 21, 1064–1081 (1977)
10.22.
Zurück zum Zitat J. S. Danel, F. Michel, G. Delapierre: Micromachining of quartz and its application to an acceleration sensor, Sens. Actuators A21-A23, 971–977 (1990) J. S. Danel, F. Michel, G. Delapierre: Micromachining of quartz and its application to an acceleration sensor, Sens. Actuators A21-A23, 971–977 (1990)
10.23.
Zurück zum Zitat A. Yasseen, J. D. Cawley, M. Mehregany: Thick glass film technology for polysilicon surface micromachining, J. Microelectromech. Syst. 8, 172–179 (1999) A. Yasseen, J. D. Cawley, M. Mehregany: Thick glass film technology for polysilicon surface micromachining, J. Microelectromech. Syst. 8, 172–179 (1999)
10.24.
Zurück zum Zitat R. Liu, M. J. Vasile, D. J. Beebe: The fabrication of nonplanar spin-on glass microstructures, J. Microelectromech. Syst. 8, 146–151 (1999) R. Liu, M. J. Vasile, D. J. Beebe: The fabrication of nonplanar spin-on glass microstructures, J. Microelectromech. Syst. 8, 146–151 (1999)
10.25.
Zurück zum Zitat B. Folkmer, P. Steiner, W. Lang: Silicon nitride membrane sensors with monocrystalline transducers, Sens. Actuators A51, 71–75 (1995) B. Folkmer, P. Steiner, W. Lang: Silicon nitride membrane sensors with monocrystalline transducers, Sens. Actuators A51, 71–75 (1995)
10.26.
Zurück zum Zitat M. Sekimoto, H. Yoshihara, T. Ohkubo: Silicon nitride single-layer x-ray mask, J. Vacuum Sci. Technol. 21, 1017–1021 (1982) M. Sekimoto, H. Yoshihara, T. Ohkubo: Silicon nitride single-layer x-ray mask, J. Vacuum Sci. Technol. 21, 1017–1021 (1982)
10.27.
Zurück zum Zitat D. J. Monk, D. S. Soane, R. T. Howe: Enhanced Removal of Sacrificial Layers for Silicon Surface Micromachining, Technical Digest – The 7th International Conference on Solid State Sensors and Actuators (Institute of Electrical Engineers of Japan, Tokyo 1993) pp. 280–283 D. J. Monk, D. S. Soane, R. T. Howe: Enhanced Removal of Sacrificial Layers for Silicon Surface Micromachining, Technical Digest – The 7th International Conference on Solid State Sensors and Actuators (Institute of Electrical Engineers of Japan, Tokyo 1993) pp. 280–283
10.28.
Zurück zum Zitat P. J. French, P. M. Sarro, R. Mallee, E. J. M. Fakkeldij, R. F. Wolffenbuttel: Optimization of a low-stress silicon nitride process for surface micromachining applications, Sens. Actuators A58, 149–157 (1997) P. J. French, P. M. Sarro, R. Mallee, E. J. M. Fakkeldij, R. F. Wolffenbuttel: Optimization of a low-stress silicon nitride process for surface micromachining applications, Sens. Actuators A58, 149–157 (1997)
10.29.
Zurück zum Zitat B. Li, B. Xiong, L. Jiang, Y. Zohar, M. Wong: Germanium as a versatile material for low-temperature micromachining, J. Microelectromech. Syst. 8, 366–372 (1999) B. Li, B. Xiong, L. Jiang, Y. Zohar, M. Wong: Germanium as a versatile material for low-temperature micromachining, J. Microelectromech. Syst. 8, 366–372 (1999)
10.30.
Zurück zum Zitat A. Franke, D. Bilic, D. T. Chang, P. T. Jones, T. J. King, R. T. Howe, C. G. Johnson: Post-CMOS Integration Of Germanium Microstructures, Proceedings of the 12nd International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 1999) pp. 630–637 A. Franke, D. Bilic, D. T. Chang, P. T. Jones, T. J. King, R. T. Howe, C. G. Johnson: Post-CMOS Integration Of Germanium Microstructures, Proceedings of the 12nd International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 1999) pp. 630–637
10.31.
Zurück zum Zitat A. E. Franke, Y. Jiao, M. T. Wu, T. J. King, R. T. Howe: Post-CMOS Modular Integration of Poly-SiGe Microstructures Using Poly-Ge Sacraficial Layers, Technical Digest – Solid State Sensor and Actuator Workshop (Transducers Research Foundation, Hilton Head 2000) pp. 18–21 A. E. Franke, Y. Jiao, M. T. Wu, T. J. King, R. T. Howe: Post-CMOS Modular Integration of Poly-SiGe Microstructures Using Poly-Ge Sacraficial Layers, Technical Digest – Solid State Sensor and Actuator Workshop (Transducers Research Foundation, Hilton Head 2000) pp. 18–21
10.32.
Zurück zum Zitat S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7, 365–372 (1998) S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7, 365–372 (1998)
10.33.
Zurück zum Zitat J. M. Heck, C. G. Keller, A. E. Franke, L. Muller, T.-J. King, R. T. Howe: High Aspect Ratio Polysilicon-Germanium Microstructures, Proceedings of the 10th International Conference on Solid State Sensors and Actuators (Institute of Electrical Engineers of Japan, Tokyo 1999) pp. 328–334 J. M. Heck, C. G. Keller, A. E. Franke, L. Muller, T.-J. King, R. T. Howe: High Aspect Ratio Polysilicon-Germanium Microstructures, Proceedings of the 10th International Conference on Solid State Sensors and Actuators (Institute of Electrical Engineers of Japan, Tokyo 1999) pp. 328–334
10.34.
Zurück zum Zitat P. Van Gerwen, T. Slater, J. B. Chevrier, K. Baert, R. Mertens: Thin-film boron-doped polycrystalline silicon70%-germanium30% for thermopiles, Sens. Actuators A 53, 325–329 (1996) P. Van Gerwen, T. Slater, J. B. Chevrier, K. Baert, R. Mertens: Thin-film boron-doped polycrystalline silicon70%-germanium30% for thermopiles, Sens. Actuators A 53, 325–329 (1996)
10.35.
Zurück zum Zitat D. Hyman, J. Lam, B. Warneke, A. Schmitz, T. Y. Hsu, J. Brown, J. Schaffner, A. Walson, R. Y. Loo, M. Mehregany, J. Lee: Surface micromachined RF MEMS switches on GaAs substrates, Int. J. Radio Frequency Microwave Commun. Eng. 9, 348–361 (1999) D. Hyman, J. Lam, B. Warneke, A. Schmitz, T. Y. Hsu, J. Brown, J. Schaffner, A. Walson, R. Y. Loo, M. Mehregany, J. Lee: Surface micromachined RF MEMS switches on GaAs substrates, Int. J. Radio Frequency Microwave Commun. Eng. 9, 348–361 (1999)
10.36.
Zurück zum Zitat C. Chang, P. Chang: Innovative micromachined microwave switch with very low insertion loss, Sens. Actuators 79, 71–75 (2000) C. Chang, P. Chang: Innovative micromachined microwave switch with very low insertion loss, Sens. Actuators 79, 71–75 (2000)
10.37.
Zurück zum Zitat M. F. Aimi, M. P. Rao, N. C. MacDonald, A. S. Zuruzi, D. P. Bothman: High-aspect-ratio bulk micromachining of Ti, Nat. Mater. 3, 103–105 (2004) M. F. Aimi, M. P. Rao, N. C. MacDonald, A. S. Zuruzi, D. P. Bothman: High-aspect-ratio bulk micromachining of Ti, Nat. Mater. 3, 103–105 (2004)
10.38.
Zurück zum Zitat C. L. Shih, B. K. Lai, H. Kahn, S. M. Phillips, A. H. Heuer: A robust co-sputtering fabrication procedure for TiNi shape memory alloys for MEMS, J. Microelectromech. Syst. 10, 69–79 (2001) C. L. Shih, B. K. Lai, H. Kahn, S. M. Phillips, A. H. Heuer: A robust co-sputtering fabrication procedure for TiNi shape memory alloys for MEMS, J. Microelectromech. Syst. 10, 69–79 (2001)
10.39.
Zurück zum Zitat G. Hahm, H. Kahn, S. M. Phillips, A. H. Heuer: Fully Microfabricated Silicon Spring Biased Shape Memory Actuated Microvalve, Technical Digest- Solid State Sensor and Actuator Workshop (Transducers Research Foundation, Hilton Head Island 2000) pp. 230–233 G. Hahm, H. Kahn, S. M. Phillips, A. H. Heuer: Fully Microfabricated Silicon Spring Biased Shape Memory Actuated Microvalve, Technical Digest- Solid State Sensor and Actuator Workshop (Transducers Research Foundation, Hilton Head Island 2000) pp. 230–233
10.40.
Zurück zum Zitat S. D. Leith, D. T. Schwartz: High-rate through-mold electrodeposition of thick (> 200  micron) NiFe MEMS components with uniform composition, J. Microelectromech. Syst. 8, 384–392 (1999) S. D. Leith, D. T. Schwartz: High-rate through-mold electrodeposition of thick (> 200  micron) NiFe MEMS components with uniform composition, J. Microelectromech. Syst. 8, 384–392 (1999)
10.41.
Zurück zum Zitat N. Rajan, M. Mehregany, C. A. Zorman, S. Stefanescu, T. Kicher: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines, J. Microelectromech. Syst. 8, 251–257 (1999) N. Rajan, M. Mehregany, C. A. Zorman, S. Stefanescu, T. Kicher: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines, J. Microelectromech. Syst. 8, 251–257 (1999)
10.42.
Zurück zum Zitat T. Pornsin-Sirirak, Y. C. Tai, H. Nassef, C. M. Ho: Titanium-alloy MEMS wing technology for a microaerial vehicle application, Sens. Actuators A 89, 95–103 (2001) T. Pornsin-Sirirak, Y. C. Tai, H. Nassef, C. M. Ho: Titanium-alloy MEMS wing technology for a microaerial vehicle application, Sens. Actuators A 89, 95–103 (2001)
10.43.
Zurück zum Zitat C. R. Stoldt, C. Carraro, W. R. Ashurst, D. Gao, R. T. Howe, R. Maboudian: A low temperature CVD process for silicon carbide MEMS, Sens. Actuators A 97-98, 410–415 (2002) C. R. Stoldt, C. Carraro, W. R. Ashurst, D. Gao, R. T. Howe, R. Maboudian: A low temperature CVD process for silicon carbide MEMS, Sens. Actuators A 97-98, 410–415 (2002)
10.44.
Zurück zum Zitat M. Eickhoff, H. Moller, G. Kroetz, J. von Berg, R. Ziermann: A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates, Sens. Actuators 74, 56–59 (1999) M. Eickhoff, H. Moller, G. Kroetz, J. von Berg, R. Ziermann: A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates, Sens. Actuators 74, 56–59 (1999)
10.45.
Zurück zum Zitat Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, M. L. Roukes, C. A. Zorman, M. Mehregany: Monocrystalline silicon carbide nanoelectromechanical systems, Appl. Phys. Lett. 78, 162–164 (2001) Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, M. L. Roukes, C. A. Zorman, M. Mehregany: Monocrystalline silicon carbide nanoelectromechanical systems, Appl. Phys. Lett. 78, 162–164 (2001)
10.46.
Zurück zum Zitat D. Young, J. Du, C. A. Zorman, W. H. Ko: High-temperature single crystal 3C-SiC capacitive pressure sensor, IEEE Sens. J. 4, 464–470 (2004) D. Young, J. Du, C. A. Zorman, W. H. Ko: High-temperature single crystal 3C-SiC capacitive pressure sensor, IEEE Sens. J. 4, 464–470 (2004)
10.47.
Zurück zum Zitat C. A. Zorman, S. Rajgolpal, X. A. Fu, R. Jezeski, J. Melzak, M. Mehregany: Deposition of polycrystalline 3C-SiC films on 100 mm-diameter (100) Si wafers in a large-volume LPCVD furnace, Electrochem. Solid State Lett. 5, G99–G101 (2002) C. A. Zorman, S. Rajgolpal, X. A. Fu, R. Jezeski, J. Melzak, M. Mehregany: Deposition of polycrystalline 3C-SiC films on 100 mm-diameter (100) Si wafers in a large-volume LPCVD furnace, Electrochem. Solid State Lett. 5, G99–G101 (2002)
10.48.
Zurück zum Zitat I. Behrens, E. Peiner, A. S. Bakin, A. Schlachetzski: Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapor deposition, J. Micromech. Microeng. 12, 380–384 (2002) I. Behrens, E. Peiner, A. S. Bakin, A. Schlachetzski: Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapor deposition, J. Micromech. Microeng. 12, 380–384 (2002)
10.49.
Zurück zum Zitat C. A. Zorman, S. Roy, C. H. Wu, A. J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1996) C. A. Zorman, S. Roy, C. H. Wu, A. J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1996)
10.50.
Zurück zum Zitat C. H. Wu, C. H. Zorman, M. Mehregany: Growth of polycrystalline SiC films on SiO2 and Si3N4 by APCVD, Thin Solid Films 355-356, 179–183 (1999) C. H. Wu, C. H. Zorman, M. Mehregany: Growth of polycrystalline SiC films on SiO2 and Si3N4 by APCVD, Thin Solid Films 355-356, 179–183 (1999)
10.51.
Zurück zum Zitat P. Sarro: Silicon carbide as a new MEMS technologyctuators, Sens. Actuators A 82, 210–218 (2000) P. Sarro: Silicon carbide as a new MEMS technologyctuators, Sens. Actuators A 82, 210–218 (2000)
10.52.
Zurück zum Zitat N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos, J. M. Tellenbach: Sputtered silicon carbide thin films as protective coatings for MEMS applications, Surface Coatings Technol. 125, 246–250 (2000) N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos, J. M. Tellenbach: Sputtered silicon carbide thin films as protective coatings for MEMS applications, Surface Coatings Technol. 125, 246–250 (2000)
10.53.
Zurück zum Zitat X. A. Fu, R. Jezeski, C. A. Zorman, M. Mehregany: Use of deposition pressure to control the residual stress in polycrystalline SiC films, Appl. Phys. Lett. 84, 341–343 (2004) X. A. Fu, R. Jezeski, C. A. Zorman, M. Mehregany: Use of deposition pressure to control the residual stress in polycrystalline SiC films, Appl. Phys. Lett. 84, 341–343 (2004)
10.54.
Zurück zum Zitat J. Trevino, X. A. Fu, M. Mehregany, C. Zorman: Low-Stress, Heavily-Doped Polycrystalline Silicon Carbide for MEMS Applications, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 2005) pp. 451–454 J. Trevino, X. A. Fu, M. Mehregany, C. Zorman: Low-Stress, Heavily-Doped Polycrystalline Silicon Carbide for MEMS Applications, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 2005) pp. 451–454
10.55.
Zurück zum Zitat R. S. Okojie, A. A. Ned, A. D. Kurtz: Operation of a 6H-SiC pressure sensor at 500 °C, Sens. Actuators A 66, 200–204 (1998) R. S. Okojie, A. A. Ned, A. D. Kurtz: Operation of a 6H-SiC pressure sensor at 500 °C, Sens. Actuators A 66, 200–204 (1998)
10.56.
Zurück zum Zitat K. Lohner, K. S. Chen, A. A. Ayon, M. S. Spearing: Microfabricated silicon carbide microengine structures, Mater. Res. Soci. Symp. Proc. 546, 85–90 (1999) K. Lohner, K. S. Chen, A. A. Ayon, M. S. Spearing: Microfabricated silicon carbide microengine structures, Mater. Res. Soci. Symp. Proc. 546, 85–90 (1999)
10.57.
Zurück zum Zitat K. O. Min, S. Tanaka, M. Esashi: Micro/Nano Glass Press Molding Using Silicon Carbide Molds Fabricated by Silicon Lost Molding, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Miami 2005) pp. 475–478 K. O. Min, S. Tanaka, M. Esashi: Micro/Nano Glass Press Molding Using Silicon Carbide Molds Fabricated by Silicon Lost Molding, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Miami 2005) pp. 475–478
10.58.
Zurück zum Zitat X. Song, S. Rajgolpal, J. M. Melzak, C. A. Zorman, M. Mehregany: Development of a multilayer SiC surface micromachining process with capabilities and design rules comparable with conventional polysilicon surface micromachining, Mater. Sci. Forum 389-393, 755–758 (2001) X. Song, S. Rajgolpal, J. M. Melzak, C. A. Zorman, M. Mehregany: Development of a multilayer SiC surface micromachining process with capabilities and design rules comparable with conventional polysilicon surface micromachining, Mater. Sci. Forum 389-393, 755–758 (2001)
10.59.
Zurück zum Zitat S. Tanaka, S. Sugimoto, J.-F. Li, R. Watanabe, M. Esashi: Silicon carbide micro-reaction-sintering using micromachined silicon molds, J. Microelectromech. Syst. 10, 55–61 (2001) S. Tanaka, S. Sugimoto, J.-F. Li, R. Watanabe, M. Esashi: Silicon carbide micro-reaction-sintering using micromachined silicon molds, J. Microelectromech. Syst. 10, 55–61 (2001)
10.60.
Zurück zum Zitat L. A. Liew, W. Zhang, V. M. Bright, A. Linan, M. L. Dunn, R. Raj: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Actuators A 89, 64–70 (2001) L. A. Liew, W. Zhang, V. M. Bright, A. Linan, M. L. Dunn, R. Raj: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Actuators A 89, 64–70 (2001)
10.61.
Zurück zum Zitat A. J. Fleischman, S. Roy, C. A. Zorman, M. Mehregany: Polycrystalline Silicon Carbide for Surface Micromachining, Proceedings of the 9th International Workshop on Microelectromechanical Systems (IEEE, San Diego 1996) pp. 234–238 A. J. Fleischman, S. Roy, C. A. Zorman, M. Mehregany: Polycrystalline Silicon Carbide for Surface Micromachining, Proceedings of the 9th International Workshop on Microelectromechanical Systems (IEEE, San Diego 1996) pp. 234–238
10.62.
Zurück zum Zitat A. J. Fleischman, X. Wei, C. A. Zorman, M. Mehregany: Surface micromachining of polycrystalline SiC deposited on SiO2 by APCVD, Mater. Sci. Forum 264-268, 885–888 (1998) A. J. Fleischman, X. Wei, C. A. Zorman, M. Mehregany: Surface micromachining of polycrystalline SiC deposited on SiO2 by APCVD, Mater. Sci. Forum 264-268, 885–888 (1998)
10.63.
Zurück zum Zitat G. Beheim, C. S. Salupo: Deep RIE process for silicon carbide power electronics and MEMS, Mater. Res. Soc. Symp. Proc. 622, T8.8.1–T8.8.6. (2000) G. Beheim, C. S. Salupo: Deep RIE process for silicon carbide power electronics and MEMS, Mater. Res. Soc. Symp. Proc. 622, T8.8.1–T8.8.6. (2000)
10.64.
Zurück zum Zitat A. Yasseen, C. H. Wu, C. A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline SiC micromotors, Electron. Device Lett. 21, 164–166 (2000) A. Yasseen, C. H. Wu, C. A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline SiC micromotors, Electron. Device Lett. 21, 164–166 (2000)
10.65.
Zurück zum Zitat D. Gao, M. B. Wijesundara, C. Carraro, R. T. Howe, R. Maboudian: Recent progress toward and manufacturable polycrystalline SiC surface micromachining technology, IEEE Sens. J. 4, 441–448 (2004) D. Gao, M. B. Wijesundara, C. Carraro, R. T. Howe, R. Maboudian: Recent progress toward and manufacturable polycrystalline SiC surface micromachining technology, IEEE Sens. J. 4, 441–448 (2004)
10.66.
Zurück zum Zitat T. Shibata, Y. Kitamoto, K. Unno, E. Makino: Micromachining of diamond film for MEMS applications, J. Microelectromech. Syst. 9, 47–51 (2000) T. Shibata, Y. Kitamoto, K. Unno, E. Makino: Micromachining of diamond film for MEMS applications, J. Microelectromech. Syst. 9, 47–51 (2000)
10.67.
Zurück zum Zitat H. Bjorkman, P. Rangsten, P. Hollman, K. Hjort: Diamond replicas from microstructured silicon masters, Sens. Actuators 73, 24–29 (1999) H. Bjorkman, P. Rangsten, P. Hollman, K. Hjort: Diamond replicas from microstructured silicon masters, Sens. Actuators 73, 24–29 (1999)
10.68.
Zurück zum Zitat P. Rangsten, H. Bjorkman, K. Hjort: Microfluidic Components in Diamond, Proceedings of the 10th International Conference on Solid State Sensors and Actuators (IEEE, Sendai 1999) pp. 190–193 P. Rangsten, H. Bjorkman, K. Hjort: Microfluidic Components in Diamond, Proceedings of the 10th International Conference on Solid State Sensors and Actuators (IEEE, Sendai 1999) pp. 190–193
10.69.
Zurück zum Zitat H. Bjorkman, P. Rangsten, K. Hjort: Diamond microstructures for optical microelectromechanical systems, Sens. Actuators 78, 41–47 (1999) H. Bjorkman, P. Rangsten, K. Hjort: Diamond microstructures for optical microelectromechanical systems, Sens. Actuators 78, 41–47 (1999)
10.70.
Zurück zum Zitat M. Aslam, D. Schulz: Technology of Diamond Microelectromechanical Systems, Proceedings of the 8th International Conference on Solid State Sensors and Actuators (IEEE, Stockholm 1995) pp. 222–224 M. Aslam, D. Schulz: Technology of Diamond Microelectromechanical Systems, Proceedings of the 8th International Conference on Solid State Sensors and Actuators (IEEE, Stockholm 1995) pp. 222–224
10.71.
Zurück zum Zitat R. Ramesham: Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process, Thin Solid Films 340, 1–6 (1999) R. Ramesham: Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process, Thin Solid Films 340, 1–6 (1999)
10.72.
Zurück zum Zitat X. Yang, J. M. Yang, Y. C. Tai, C. M. Ho: Micromachined membrane particle filters, Sens. Actuators 73, 184–191 (1999) X. Yang, J. M. Yang, Y. C. Tai, C. M. Ho: Micromachined membrane particle filters, Sens. Actuators 73, 184–191 (1999)
10.73.
Zurück zum Zitat X. D. Wang, G. D. Hong, J. Zhang, B. L. Lin, H. Q. Gong, W. Y. Wang: Precise patterning of diamond films for MEMS application, J. Mater. Process. Technol. 127, 230–233 (2002) X. D. Wang, G. D. Hong, J. Zhang, B. L. Lin, H. Q. Gong, W. Y. Wang: Precise patterning of diamond films for MEMS application, J. Mater. Process. Technol. 127, 230–233 (2002)
10.74.
Zurück zum Zitat A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemire, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, M. Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diamond Related Mater. 10, 1952–1961 (2001) A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemire, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, M. Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diamond Related Mater. 10, 1952–1961 (2001)
10.75.
Zurück zum Zitat X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, J. A. Carlisle: Low temperature growth of ultrananocrystalline diamond, J. Appl. Phys. 96, 2232–2239 (2004) X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, J. A. Carlisle: Low temperature growth of ultrananocrystalline diamond, J. Appl. Phys. 96, 2232–2239 (2004)
10.76.
Zurück zum Zitat T. A. Friedmann, J. P. Sullivan, J. A. Knapp, D. R. Tallant, D. M. Follstaedt, D. L. Medlin, P. B. Mirkarimi: Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Appl. Phys. Lett. 71, 3820–3822 (1997) T. A. Friedmann, J. P. Sullivan, J. A. Knapp, D. R. Tallant, D. M. Follstaedt, D. L. Medlin, P. B. Mirkarimi: Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Appl. Phys. Lett. 71, 3820–3822 (1997)
10.77.
Zurück zum Zitat J. P. Sullivan, T. A. Friedmann, K. Hjort: Diamond and amorphous carbon MEMS, MRS Bull. 26, 309–311 (2001) J. P. Sullivan, T. A. Friedmann, K. Hjort: Diamond and amorphous carbon MEMS, MRS Bull. 26, 309–311 (2001)
10.78.
Zurück zum Zitat J. R. Webster, C. W. Dyck, J. P. Sullivan, T. A. Friedmann, A. J. Carton: Performance of amorphous diamond RF MEMS capacitive switch, Electron. Lett. 40, 43–44 (2004) J. R. Webster, C. W. Dyck, J. P. Sullivan, T. A. Friedmann, A. J. Carton: Performance of amorphous diamond RF MEMS capacitive switch, Electron. Lett. 40, 43–44 (2004)
10.79.
Zurück zum Zitat K. Hjort, J. Soderkvist, J.-A. Schweitz: Galium arsenide as a mechanical material, J. Micromech. Microeng. 4, 1–13 (1994) K. Hjort, J. Soderkvist, J.-A. Schweitz: Galium arsenide as a mechanical material, J. Micromech. Microeng. 4, 1–13 (1994)
10.80.
Zurück zum Zitat K. Hjort: Sacrificial etching Of III–V compounds for micromechanical devices, J. Micromech. Microeng. 6, 370–365 (1996) K. Hjort: Sacrificial etching Of III–V compounds for micromechanical devices, J. Micromech. Microeng. 6, 370–365 (1996)
10.81.
Zurück zum Zitat K. Fobelets, R. Vounckx, G. Borghs: A GaAs pressure sensor based on resonant tunnelling diodes, J. Micromech. Microeng. 4, 123–128 (1994) K. Fobelets, R. Vounckx, G. Borghs: A GaAs pressure sensor based on resonant tunnelling diodes, J. Micromech. Microeng. 4, 123–128 (1994)
10.82.
Zurück zum Zitat A. Dehe, K. Fricke, H. L. Hartnagel: Infrared thermopile sensor based on AlGaAs-GaAs micromachining, Sens. Actuators A46-A47, 432–436 (1995) A. Dehe, K. Fricke, H. L. Hartnagel: Infrared thermopile sensor based on AlGaAs-GaAs micromachining, Sens. Actuators A46-A47, 432–436 (1995)
10.83.
Zurück zum Zitat A. Dehe, J. Peerlings, J. Pfeiffer, R. Riemenschneider, A. Vogt, K. Streubel, H. Kunzel, P. Meissner, H. L. Hartnagel: III–V compound semiconductor micromachined actuators for long resonator tunable Fabry-Perot detectors, Sens. Actuators A68, 365–371 (1998) A. Dehe, J. Peerlings, J. Pfeiffer, R. Riemenschneider, A. Vogt, K. Streubel, H. Kunzel, P. Meissner, H. L. Hartnagel: III–V compound semiconductor micromachined actuators for long resonator tunable Fabry-Perot detectors, Sens. Actuators A68, 365–371 (1998)
10.84.
Zurück zum Zitat T. Lalinsky, S. Hascik, Mozolova, E. Burian, M. Drzik: The improved performance of GaAs micromachined power sensor microsystem, Sens. Actuators 76, 241–246 (1999) T. Lalinsky, S. Hascik, Mozolova, E. Burian, M. Drzik: The improved performance of GaAs micromachined power sensor microsystem, Sens. Actuators 76, 241–246 (1999)
10.85.
Zurück zum Zitat T. Lalinsky, E. Burian, M. Drzik, S. Hascik, Z. Mozolova, J. Kuzmik, Z. Hatzopoulos: Performance of GaAs micromachined microactuator, Sens. Actuators 85, 365–370 (2000) T. Lalinsky, E. Burian, M. Drzik, S. Hascik, Z. Mozolova, J. Kuzmik, Z. Hatzopoulos: Performance of GaAs micromachined microactuator, Sens. Actuators 85, 365–370 (2000)
10.86.
Zurück zum Zitat H. X. Tang, X. M. H. Huang, M. L. Roukes, M. Bichler, W. Wegscheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81, 3879–3881 (2002) H. X. Tang, X. M. H. Huang, M. L. Roukes, M. Bichler, W. Wegscheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81, 3879–3881 (2002)
10.87.
Zurück zum Zitat T. S. Tighe, J. M. Worlock, M. L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructure, Appl. Phys. Lett. 70, 2687–2689 (1997) T. S. Tighe, J. M. Worlock, M. L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructure, Appl. Phys. Lett. 70, 2687–2689 (1997)
10.88.
Zurück zum Zitat J. Miao, B. L. Weiss, H. L. Hartnagel: Micromachining of three-dimensional GaAs membrane structures using high-energy nitrogen implantation, J. Micromech. Microeng. 13, 35–39 (2003) J. Miao, B. L. Weiss, H. L. Hartnagel: Micromachining of three-dimensional GaAs membrane structures using high-energy nitrogen implantation, J. Micromech. Microeng. 13, 35–39 (2003)
10.89.
Zurück zum Zitat C. Seassal, J. L. Leclercq, P. Viktorovitch: Fabrication of inp-based freestanding microstructures by selective surface micromachining, J. Micromech. Microeng. 6, 261–265 (1996) C. Seassal, J. L. Leclercq, P. Viktorovitch: Fabrication of inp-based freestanding microstructures by selective surface micromachining, J. Micromech. Microeng. 6, 261–265 (1996)
10.90.
Zurück zum Zitat J. Leclerq, R. P. Ribas, J. M. Karam, P. Viktorovitch: III–V micromachined devices for microsystems, Microelectron. J. 29, 613–619 (1998) J. Leclerq, R. P. Ribas, J. M. Karam, P. Viktorovitch: III–V micromachined devices for microsystems, Microelectron. J. 29, 613–619 (1998)
10.91.
Zurück zum Zitat H. Yamaguchi, R. Dreyfus, S. Miyashita, Y. Hirayama: Fabrication and elastic properties of InAs freestanding structures based on InAs/GaAs(111) a heteroepitaxial systems, Phys. E 13, 1163–1167 (2002) H. Yamaguchi, R. Dreyfus, S. Miyashita, Y. Hirayama: Fabrication and elastic properties of InAs freestanding structures based on InAs/GaAs(111) a heteroepitaxial systems, Phys. E 13, 1163–1167 (2002)
10.92.
Zurück zum Zitat C. Lee, T. Itoh, T. Suga: Micromachined piezoelectric force sensors based on PZT thin films, IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 43, 553–559 (1996) C. Lee, T. Itoh, T. Suga: Micromachined piezoelectric force sensors based on PZT thin films, IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 43, 553–559 (1996)
10.93.
Zurück zum Zitat B. Xu, L. E. Cross, J. J. Bernstein: Ferroelectric and antiferroelectric films for microelectromechanical systems applications, Thin Solid Films 377-378, 712–718 (2000) B. Xu, L. E. Cross, J. J. Bernstein: Ferroelectric and antiferroelectric films for microelectromechanical systems applications, Thin Solid Films 377-378, 712–718 (2000)
10.94.
Zurück zum Zitat S. P. Beeby, A. Blackburn, N. M. White: Processing of PZT piezoelectric thick films on silicon for microelectromechanical systems, J. Micromech. Microeng. 9, 218–229 (1999) S. P. Beeby, A. Blackburn, N. M. White: Processing of PZT piezoelectric thick films on silicon for microelectromechanical systems, J. Micromech. Microeng. 9, 218–229 (1999)
10.95.
Zurück zum Zitat C. Shearwood, M. A. Harradine, T. S. Birch, J. C. Stevens: Applications of polyimide membranes to MEMS technology, Microelectron. Eng. 30, 547–550 (1996) C. Shearwood, M. A. Harradine, T. S. Birch, J. C. Stevens: Applications of polyimide membranes to MEMS technology, Microelectron. Eng. 30, 547–550 (1996)
10.96.
Zurück zum Zitat F. Jiang, G. B. Lee, Y. C. Tai, C. M. Ho: A flexible micromachine-based shear-stress sensor array and its application to separation-point detection, Sens. Actuators 79, 194–203 (2000) F. Jiang, G. B. Lee, Y. C. Tai, C. M. Ho: A flexible micromachine-based shear-stress sensor array and its application to separation-point detection, Sens. Actuators 79, 194–203 (2000)
10.97.
Zurück zum Zitat D. Memmi, V. Foglietti, E. Cianci, G. Caliano, M. Pappalardo: Fabrication of capacitive micromechanical ultrasonic transducers by low-temperature process, Sens. Actuators A 99, 85–91 (2002) D. Memmi, V. Foglietti, E. Cianci, G. Caliano, M. Pappalardo: Fabrication of capacitive micromechanical ultrasonic transducers by low-temperature process, Sens. Actuators A 99, 85–91 (2002)
10.98.
Zurück zum Zitat A. Bagolini, L. Pakula, T. L. M. Scholtes, H. T. M. Pham, P. J. French, P. M. Sarro: Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng. 12, 385–389 (2002) A. Bagolini, L. Pakula, T. L. M. Scholtes, H. T. M. Pham, P. J. French, P. M. Sarro: Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng. 12, 385–389 (2002)
10.99.
Zurück zum Zitat T. Stieglitz: Flexible biomedical microdevices with double-sided electrode arrangements for neural applications, Sens. Actuators A 90, 203–211 (2001) T. Stieglitz: Flexible biomedical microdevices with double-sided electrode arrangements for neural applications, Sens. Actuators A 90, 203–211 (2001)
10.100.
Zurück zum Zitat T. Stieglitz, G. Matthias: Flexible BioMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems, Sens. Actuators B 83, 8–14 (2002) T. Stieglitz, G. Matthias: Flexible BioMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems, Sens. Actuators B 83, 8–14 (2002)
10.101.
Zurück zum Zitat H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone-near-UV photoresist and its applications in MEMS, Sens. Actuators A 64, 33–39 (1998) H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone-near-UV photoresist and its applications in MEMS, Sens. Actuators A 64, 33–39 (1998)
10.102.
Zurück zum Zitat H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger: SU-8: A low-cost negative resist for MEMS, J. Micromech. Microeng. 7, 121–124 (1997) H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger: SU-8: A low-cost negative resist for MEMS, J. Micromech. Microeng. 7, 121–124 (1997)
10.103.
Zurück zum Zitat E. H. Conradie, D. F. Moore: SU-8 thick photoresist processing as a functional material for MEMS applications, J. Micromech. Microeng. 12, 368–374 (2002) E. H. Conradie, D. F. Moore: SU-8 thick photoresist processing as a functional material for MEMS applications, J. Micromech. Microeng. 12, 368–374 (2002)
10.104.
Zurück zum Zitat C. T. Pan, H. Yang, S. C. Shen, M. C. Chou, H. P. Chou: A low-temperature wafer bonding technique using patternable materials, J. Micromech. Microeng. 12, 611–615 (2002) C. T. Pan, H. Yang, S. C. Shen, M. C. Chou, H. P. Chou: A low-temperature wafer bonding technique using patternable materials, J. Micromech. Microeng. 12, 611–615 (2002)
10.105.
Zurück zum Zitat P. A. Stupar, A. P. Pisano: Silicon, Parylene, and Silicon/Parylene Micro-Needles for Strength and Toughness, Technical Digest of the 11st International Conference on Solid State Sensors and Actuators (Springer, Berlin 2001) pp. 1368–1389 P. A. Stupar, A. P. Pisano: Silicon, Parylene, and Silicon/Parylene Micro-Needles for Strength and Toughness, Technical Digest of the 11st International Conference on Solid State Sensors and Actuators (Springer, Berlin 2001) pp. 1368–1389
10.106.
Zurück zum Zitat J. M. Zara, S. W. Smith: Optical scanner using a MEMS actuator, Sens. Actuators A 102, 176–184 (2002) J. M. Zara, S. W. Smith: Optical scanner using a MEMS actuator, Sens. Actuators A 102, 176–184 (2002)
10.107.
Zurück zum Zitat H. S. Noh, P. J. Hesketh, G. C. Frye-Mason: Parylene gas chromatographic column for rapid thermal cycling, J. Microelectromech. Syst. 11, 718–725 (2002) H. S. Noh, P. J. Hesketh, G. C. Frye-Mason: Parylene gas chromatographic column for rapid thermal cycling, J. Microelectromech. Syst. 11, 718–725 (2002)
10.108.
Zurück zum Zitat T. J. Yao, X. Yang, Y. C. Tai: BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators, Sens. Actuators A 97-98, 771–775 (2002) T. J. Yao, X. Yang, Y. C. Tai: BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators, Sens. Actuators A 97-98, 771–775 (2002)
10.109.
Zurück zum Zitat X. Wang, J. Engel, C. Liu: Liquid crystal polymer (LCP) for MEMS: processing and applications, J. Micromech. Microeng. 13, 628–633 (2003) X. Wang, J. Engel, C. Liu: Liquid crystal polymer (LCP) for MEMS: processing and applications, J. Micromech. Microeng. 13, 628–633 (2003)
10.110.
Zurück zum Zitat C. J. Lee, S. J. Oh, J. K. Song, S. J. Kim: Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material, Mater. Sci. Eng. C 4, 265–268 (2004) C. J. Lee, S. J. Oh, J. K. Song, S. J. Kim: Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material, Mater. Sci. Eng. C 4, 265–268 (2004)
10.111.
Zurück zum Zitat F. F. Faheem, K. C. Gupta, Y. C. Lee: Flip-chip assembly and liquid crystal polymer encapsulation for variable MEMS capacitors, IEEE Trans. Microwave Theory Tech. 51, 2562–2567 (2003) F. F. Faheem, K. C. Gupta, Y. C. Lee: Flip-chip assembly and liquid crystal polymer encapsulation for variable MEMS capacitors, IEEE Trans. Microwave Theory Tech. 51, 2562–2567 (2003)
Metadaten
Titel
Material Aspects of Micro- and Nanoelectromechanical Systems
verfasst von
Christian Zorman, Prof.
Mehran Mehregany, Prof.
Copyright-Jahr
2007
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-29857-1_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.