Skip to main content
Erschienen in: Archive of Applied Mechanics 1-2/2018

14.07.2017 | Special

Material point method for crack propagation in anisotropic media: a phase field approach

verfasst von: E. G. Kakouris, S. P. Triantafyllou

Erschienen in: Archive of Applied Mechanics | Ausgabe 1-2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel phase field formulation implemented within a material point method setting is developed to address brittle fracture simulation in anisotropic media. The case of strong anisotropy in the crack surface energy is treated by considering an appropriate variational, i.e. phase field approach. Material point method is utilized to efficiently treat the resulting coupled governing equations. The brittle fracture governing equations are defined at a set of Lagrangian material points and subsequently interpolated at the nodes of a fixed Eulerian mesh where solution is performed. As a result, the quality of the solution does not depend on the quality of the underlying finite element mesh and is relieved from mesh distortion errors. The efficiency and validity of the proposed method are assessed through a set of benchmark problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ambati, M., Kruse, R., De Lorenzis, L.: A phase-field model for ductile fracture at finite strains and its experimental verification. Comput. Mech. 57(1), 149–167 (2016)MathSciNetCrossRefMATH Ambati, M., Kruse, R., De Lorenzis, L.: A phase-field model for ductile fracture at finite strains and its experimental verification. Comput. Mech. 57(1), 149–167 (2016)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)MathSciNetCrossRefMATH Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Bandara, S., Soga, K.: Coupling of soil deformation and pore fluid flow using material point method. Comput. Geotech. 63, 199–214 (2015)CrossRef Bandara, S., Soga, K.: Coupling of soil deformation and pore fluid flow using material point method. Comput. Geotech. 63, 199–214 (2015)CrossRef
4.
Zurück zum Zitat Bardenhagen, S., Kober, E.: The generalized interpolation material point method. Comput. Model. Eng. Sci. 5(6), 477–495 (2004) Bardenhagen, S., Kober, E.: The generalized interpolation material point method. Comput. Model. Eng. Sci. 5(6), 477–495 (2004)
5.
Zurück zum Zitat Bardenhagen, S.G., Nairn, J.A., Lu, H.: Simulation of dynamic fracture with the material point method using a mixed J-integral and cohesive law approach. Int. J. Fract. 170(1), 49–66 (2011)CrossRefMATH Bardenhagen, S.G., Nairn, J.A., Lu, H.: Simulation of dynamic fracture with the material point method using a mixed J-integral and cohesive law approach. Int. J. Fract. 170(1), 49–66 (2011)CrossRefMATH
6.
Zurück zum Zitat Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River, NJ (2007)MATH Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River, NJ (2007)MATH
7.
Zurück zum Zitat Batra, R., Zhang, G.: Search algorithm, and simulation of elastodynamic crack propagation by modified smoothed particle hydrodynamics (MSPH) method. Comput. Mech. 40(3), 531–546 (2007)CrossRefMATH Batra, R., Zhang, G.: Search algorithm, and simulation of elastodynamic crack propagation by modified smoothed particle hydrodynamics (MSPH) method. Comput. Mech. 40(3), 531–546 (2007)CrossRefMATH
8.
Zurück zum Zitat Bobaru, F., Hu, W.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176(2), 215–222 (2012)CrossRef Bobaru, F., Hu, W.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176(2), 215–222 (2012)CrossRef
9.
Zurück zum Zitat Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)MathSciNetCrossRefMATH Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Borden, M.J., Hughes, T.J., Landis, C.M., Verhoosel, C.V.: A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014)MathSciNetCrossRefMATH Borden, M.J., Hughes, T.J., Landis, C.M., Verhoosel, C.V.: A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014)MathSciNetCrossRefMATH
11.
12.
Zurück zum Zitat Clayton, J., Knap, J.: Phase field modeling and simulation of coupled fracture and twinning in single crystals and polycrystals. Comput. Methods Appl. Mech. Eng. 312, 447–467 (2016)MathSciNetCrossRef Clayton, J., Knap, J.: Phase field modeling and simulation of coupled fracture and twinning in single crystals and polycrystals. Comput. Methods Appl. Mech. Eng. 312, 447–467 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat Daphalapurkar, N.P., Lu, H., Coker, D., Komanduri, R.: Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method. Int. J. Fract. 143(1), 79–102 (2007)CrossRefMATH Daphalapurkar, N.P., Lu, H., Coker, D., Komanduri, R.: Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method. Int. J. Fract. 143(1), 79–102 (2007)CrossRefMATH
14.
Zurück zum Zitat Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)MathSciNetCrossRefMATH Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)CrossRef Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)CrossRef
16.
Zurück zum Zitat Gültekin, O., Dal, H., Holzapfel, G.A.: A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput. Methods Appl. Mech. Eng. 312, 542–566 (2016)MathSciNetCrossRef Gültekin, O., Dal, H., Holzapfel, G.A.: A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput. Methods Appl. Mech. Eng. 312, 542–566 (2016)MathSciNetCrossRef
17.
Zurück zum Zitat Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. Numer. Methods Eng. 109(7), 1013–1044 (2017)MathSciNetCrossRef Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. Numer. Methods Eng. 109(7), 1013–1044 (2017)MathSciNetCrossRef
18.
Zurück zum Zitat Hughes, T., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199(5–8), 301–313 (2010)MathSciNetCrossRefMATH Hughes, T., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199(5–8), 301–313 (2010)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Jassim, I., Stolle, D., Vermeer, P.: Two-phase dynamic analysis by material point method. Int. J. Numer. Anal. Methods Geomech. 37(15), 2502–2522 (2013)CrossRef Jassim, I., Stolle, D., Vermeer, P.: Two-phase dynamic analysis by material point method. Int. J. Numer. Anal. Methods Geomech. 37(15), 2502–2522 (2013)CrossRef
20.
Zurück zum Zitat Kakouris, E.G., Triantafyllou, S.P.: Phase-field material point method for brittle fracture. Int. J. Numer. Methods Eng. (2017). doi:10.1002/nme.5580 Kakouris, E.G., Triantafyllou, S.P.: Phase-field material point method for brittle fracture. Int. J. Numer. Methods Eng. (2017). doi:10.​1002/​nme.​5580
21.
Zurück zum Zitat Li, B., Peco, C., Milln, D., Arias, I., Arroyo, M.: Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int. J. Numer. Methods Eng. 102(3–4), 711–727 (2015)MathSciNetCrossRefMATH Li, B., Peco, C., Milln, D., Arias, I., Arroyo, M.: Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int. J. Numer. Methods Eng. 102(3–4), 711–727 (2015)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Li, T., Marigo, J.J., Guilbaud, D., Potapov, S.: Gradient damage modeling of brittle fracture in an explicit dynamics context. Int. J. Numer. Methods Eng. 108(11), 1381–1405 (2016)MathSciNetCrossRef Li, T., Marigo, J.J., Guilbaud, D., Potapov, S.: Gradient damage modeling of brittle fracture in an explicit dynamics context. Int. J. Numer. Methods Eng. 108(11), 1381–1405 (2016)MathSciNetCrossRef
23.
Zurück zum Zitat Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45–48), 2765–2778 (2010)MathSciNetCrossRefMATH Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45–48), 2765–2778 (2010)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)MathSciNetCrossRefMATH Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)CrossRef Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)CrossRef
26.
Zurück zum Zitat Nairn, J.A.: Material point method calculations with explicit cracks. Comput. Model. Eng. Sci. 4(6), 649–664 (2003)MATH Nairn, J.A.: Material point method calculations with explicit cracks. Comput. Model. Eng. Sci. 4(6), 649–664 (2003)MATH
27.
Zurück zum Zitat Nairn, J.A., Hammerquist, C., Aimene, Y.E.: Numerical implementation of anisotropic damage mechanics. Int. J. Numer. Methods Eng. (2017). doi:10.1002/nme.5585 Nairn, J.A., Hammerquist, C., Aimene, Y.E.: Numerical implementation of anisotropic damage mechanics. Int. J. Numer. Methods Eng. (2017). doi:10.​1002/​nme.​5585
28.
Zurück zum Zitat Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79(3), 763–813 (2008)MathSciNetCrossRefMATH Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79(3), 763–813 (2008)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int. J. Numer. Methods Eng. 86(12), 1435–1456 (2011)MathSciNetCrossRefMATH Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int. J. Numer. Methods Eng. 86(12), 1435–1456 (2011)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Sadeghirad, A., Brannon, R., Guilkey, J.: Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces. Int. J. Numer. Methods Eng. 95(11), 928–952 (2013)MathSciNetCrossRefMATH Sadeghirad, A., Brannon, R., Guilkey, J.: Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces. Int. J. Numer. Methods Eng. 95(11), 928–952 (2013)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Sanchez, J., Schreyer, H., Sulsky, D., Wallstedt, P.: Solving quasi-static equations with the material-point method. Int. J. Numer. Methods Eng. 103(1), 60–78 (2015)MathSciNetCrossRefMATH Sanchez, J., Schreyer, H., Sulsky, D., Wallstedt, P.: Solving quasi-static equations with the material-point method. Int. J. Numer. Methods Eng. 103(1), 60–78 (2015)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Scholtès, L., Donzé, F.V.: Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int. J. Rock Mech. Min. Sci. 52, 18–30 (2012)CrossRef Scholtès, L., Donzé, F.V.: Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int. J. Rock Mech. Min. Sci. 52, 18–30 (2012)CrossRef
33.
Zurück zum Zitat Schreyer, H., Sulsky, D., Zhou, S.J.: Modeling delamination as a strong discontinuity with the material point method. Comput. Methods Appl. Mech. Eng. 191(23–24), 2483–2507 (2002)CrossRefMATH Schreyer, H., Sulsky, D., Zhou, S.J.: Modeling delamination as a strong discontinuity with the material point method. Comput. Methods Appl. Mech. Eng. 191(23–24), 2483–2507 (2002)CrossRefMATH
34.
Zurück zum Zitat Shanthraj, P., Svendsen, B., Sharma, L., Roters, F., Raabe, D.: Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture. J. Mech. Phys. Solids 99, 19–34 (2017)MathSciNetCrossRef Shanthraj, P., Svendsen, B., Sharma, L., Roters, F., Raabe, D.: Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture. J. Mech. Phys. Solids 99, 19–34 (2017)MathSciNetCrossRef
35.
Zurück zum Zitat Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material point method (MPM). Int. J. Numer. Methods Eng. 76(6), 922–948 (2008)MathSciNetCrossRefMATH Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material point method (MPM). Int. J. Numer. Methods Eng. 76(6), 922–948 (2008)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Steffen, M., Wallstedt, P.M., Guilkey, J., Kirby, R., Berzins, M.: Examination and analysis of implementation choices within the material point method (MPM). Comput. Model. Eng. Sci. 31(2), 107–127 (2008) Steffen, M., Wallstedt, P.M., Guilkey, J., Kirby, R., Berzins, M.: Examination and analysis of implementation choices within the material point method (MPM). Comput. Model. Eng. Sci. 31(2), 107–127 (2008)
37.
Zurück zum Zitat Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)MathSciNetCrossRefMATH Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Sulsky, D., Kaul, A.: Implicit dynamics in the material-point method. Comput. Methods Appl. Mech. Eng. 193(1214), 1137–1170 (2004)MathSciNetCrossRefMATH Sulsky, D., Kaul, A.: Implicit dynamics in the material-point method. Comput. Methods Appl. Mech. Eng. 193(1214), 1137–1170 (2004)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Sulsky, D., Schreyer, L.: MPM simulation of dynamic material failure with a decohesion constitutive model. Eur. J. Mech. A/Solids 23(3), 423–445 (2004)CrossRefMATH Sulsky, D., Schreyer, L.: MPM simulation of dynamic material failure with a decohesion constitutive model. Eur. J. Mech. A/Solids 23(3), 423–445 (2004)CrossRefMATH
40.
Zurück zum Zitat Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York (1996)MATH Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York (1996)MATH
41.
Zurück zum Zitat Yang, P., Gan, Y., Zhang, X., Chen, Z., Qi, W., Liu, P.: Improved decohesion modeling with the material point method for simulating crack evolution. Int. J. Fract. 186(1), 177–184 (2014)CrossRef Yang, P., Gan, Y., Zhang, X., Chen, Z., Qi, W., Liu, P.: Improved decohesion modeling with the material point method for simulating crack evolution. Int. J. Fract. 186(1), 177–184 (2014)CrossRef
Metadaten
Titel
Material point method for crack propagation in anisotropic media: a phase field approach
verfasst von
E. G. Kakouris
S. P. Triantafyllou
Publikationsdatum
14.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 1-2/2018
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-017-1272-7

Weitere Artikel der Ausgabe 1-2/2018

Archive of Applied Mechanics 1-2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.