Skip to main content
Erschienen in: Journal of Materials Science 41/2023

26.10.2023 | Review

Materials and wetting issues in molten carbonate fuel cell technology: a review

verfasst von: Liangjuan Gao, J. Robert Selman, Philip Nash

Erschienen in: Journal of Materials Science | Ausgabe 41/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molten carbonate fuel cell (MCFC) technology continues to attract significant attention due to its high performance over a range of carbon-containing fuel gases and non-toxic chemistry of its carbonate electrolyte which makes it especially suitable for biofuels. Steady improvements in performance have been achieved by optimizing the properties of MCFC components, including anode, cathode and LiAlO2 matrix. Issues related to creep and sintering of porous Ni anodes have been resolved by adding Al as an alloying element, which improves not only the mechanical strength but also the wettability of the anode. Ni electrodes oxidized and lithiated during initial operation of a fuel cell or fuel cell stack (“in situ lithiation”) are commonly used as the cathodes, which generates optimal pore structure while decreasing the dissolution of NiO into the molten carbonate electrolyte to an acceptably low level. Porous LiAlO2, as a bed of very fine particles tape-cast and sintered to form a matrix for the molten carbonate electrolyte, serves as the membrane between anode and cathode. Despite these continuing improvements, fundamental understanding of the factors which determine the long-term stability of the MCFC components (anode, cathode, and matrix) in the extremely corrosive molten carbonate environment is still incomplete. In particular, the wetting behavior of the complex solid/liquid/gas phase in MCFC system remains to be understood more completely, which is essential to reduce the cost and improve the lifetime of MCFC. In the present review, the technical issues of the components and their wetting properties are addressed and insights to guide future research are provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. J Power Sources 102:242–252CrossRef Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. J Power Sources 102:242–252CrossRef
2.
Zurück zum Zitat Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259:10–26CrossRef Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259:10–26CrossRef
3.
Zurück zum Zitat Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76CrossRef Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76CrossRef
4.
Zurück zum Zitat Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources 103:1–9CrossRef Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources 103:1–9CrossRef
5.
Zurück zum Zitat Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149:S59–S67CrossRef Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149:S59–S67CrossRef
6.
Zurück zum Zitat Steele BCH, Heinzel A (2010) Materials for fuel-cell technologies. In: Dusastre V (ed) Materials for sustainable energy. Nature Publishing Group, pp 224–231CrossRef Steele BCH, Heinzel A (2010) Materials for fuel-cell technologies. In: Dusastre V (ed) Materials for sustainable energy. Nature Publishing Group, pp 224–231CrossRef
7.
Zurück zum Zitat Yuh CY, Farooque M (2002) Carbonate fuel cell mateirals. Adv Mater Process 160:31–34 Yuh CY, Farooque M (2002) Carbonate fuel cell mateirals. Adv Mater Process 160:31–34
8.
Zurück zum Zitat Plomp L, Veldhuis JBJ, Sitters EF, van der Molen SB (1992) Improvement of molten-carbonate fuel cell (MCFC) lifetime. J Power Sources 39:369–373CrossRef Plomp L, Veldhuis JBJ, Sitters EF, van der Molen SB (1992) Improvement of molten-carbonate fuel cell (MCFC) lifetime. J Power Sources 39:369–373CrossRef
9.
Zurück zum Zitat Kulkarni A, Giddey S (2012) Materials issues and recent developments in molten carbonate fuel cells. J Solid State Electrochem 16:3123–3146CrossRef Kulkarni A, Giddey S (2012) Materials issues and recent developments in molten carbonate fuel cells. J Solid State Electrochem 16:3123–3146CrossRef
10.
Zurück zum Zitat Yang Z, Xia G, Stevenson JW (2005) Mn1.5Co1.5O4 spinel protection layers on ferritic stainless steels for SOFC interconnect applications. Electrochem. Solid State Lett. 8:A168–A170CrossRef Yang Z, Xia G, Stevenson JW (2005) Mn1.5Co1.5O4 spinel protection layers on ferritic stainless steels for SOFC interconnect applications. Electrochem. Solid State Lett. 8:A168–A170CrossRef
11.
Zurück zum Zitat Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72:141–337CrossRef Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72:141–337CrossRef
12.
Zurück zum Zitat Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG et al (2018) Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energy Rev 82:353–368CrossRef Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG et al (2018) Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energy Rev 82:353–368CrossRef
13.
Zurück zum Zitat Selman JR (2006) Molten-salt fuel cells—technical and economic challenges. J Power Sources 160:852–857CrossRef Selman JR (2006) Molten-salt fuel cells—technical and economic challenges. J Power Sources 160:852–857CrossRef
14.
Zurück zum Zitat Broers GHJ, Ketelaar JAA (1960) High temperature fuel cells. Ind Eng Chem 52:303–306CrossRef Broers GHJ, Ketelaar JAA (1960) High temperature fuel cells. Ind Eng Chem 52:303–306CrossRef
15.
Zurück zum Zitat Sangarunlert W, Suhchai S, Nathakaranakule A (2014) Molten carbonate fuel cell (MCFC) characteristics, technologies and economic analysis: review. J Renew Energy Smart Grid Technol 3:39–48 Sangarunlert W, Suhchai S, Nathakaranakule A (2014) Molten carbonate fuel cell (MCFC) characteristics, technologies and economic analysis: review. J Renew Energy Smart Grid Technol 3:39–48
16.
Zurück zum Zitat Cigolotti V, Genovese M, Fragiacomo P (2021) Comprehensive review on fuel cell technology for stationary applications as sustainable and efficient poly-generation energy systems. Energies 14:4963CrossRef Cigolotti V, Genovese M, Fragiacomo P (2021) Comprehensive review on fuel cell technology for stationary applications as sustainable and efficient poly-generation energy systems. Energies 14:4963CrossRef
17.
Zurück zum Zitat Lee J-J, Choi H-J, Hyun S-H, Im H-C (2008) Characteristics of aluminum-reinforced γ-LiAlO2 matrices for molten carbonate fuel cells. J Power Sources 179:504–510CrossRef Lee J-J, Choi H-J, Hyun S-H, Im H-C (2008) Characteristics of aluminum-reinforced γ-LiAlO2 matrices for molten carbonate fuel cells. J Power Sources 179:504–510CrossRef
18.
Zurück zum Zitat Arendt RH (1982) The thermodynamics of electrolyte distribution in molten carbonate fuel cells. J Electrochem Soc 129:942–946CrossRef Arendt RH (1982) The thermodynamics of electrolyte distribution in molten carbonate fuel cells. J Electrochem Soc 129:942–946CrossRef
19.
Zurück zum Zitat Trachtenberg I (1964) Polarization studies of molten carbonate fuel cell electrodes. J Electrochem Soc 111:110–113CrossRef Trachtenberg I (1964) Polarization studies of molten carbonate fuel cell electrodes. J Electrochem Soc 111:110–113CrossRef
20.
Zurück zum Zitat Hong S-G, Selman JR (2004) A stochastic structure model for liquid-electrolyte fuel cell electrodes, with special application to MCFCs: I. Electrode structure generation and characterization. J Electrochem Soc 151:A739–A747CrossRef Hong S-G, Selman JR (2004) A stochastic structure model for liquid-electrolyte fuel cell electrodes, with special application to MCFCs: I. Electrode structure generation and characterization. J Electrochem Soc 151:A739–A747CrossRef
21.
Zurück zum Zitat Young T III (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87 Young T III (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87
22.
Zurück zum Zitat Sigmund WM, Hsu S-H (2016) Young’s model. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin, pp 2053–2054CrossRef Sigmund WM, Hsu S-H (2016) Young’s model. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin, pp 2053–2054CrossRef
23.
Zurück zum Zitat Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994CrossRef Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994CrossRef
24.
Zurück zum Zitat Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef
25.
Zurück zum Zitat Friedlander S (2006) Stability of flows. In: Françoise J-P, Naber GL, Tsun TS (eds) Encyclopedia of mathematical physics. Academic Press, Oxford, pp 1–7 Friedlander S (2006) Stability of flows. In: Françoise J-P, Naber GL, Tsun TS (eds) Encyclopedia of mathematical physics. Academic Press, Oxford, pp 1–7
26.
Zurück zum Zitat Tanner L (1979) The spreading of silicone oil drops on horizontal surfaces. J Phys D Appl Phys 12:1473–1484CrossRef Tanner L (1979) The spreading of silicone oil drops on horizontal surfaces. J Phys D Appl Phys 12:1473–1484CrossRef
27.
Zurück zum Zitat Brenner M, Bertozzi A (1993) Spreading of droplets on a solid surface. Phys Rev Lett 71:593–596CrossRef Brenner M, Bertozzi A (1993) Spreading of droplets on a solid surface. Phys Rev Lett 71:593–596CrossRef
28.
Zurück zum Zitat Dussan VEB (2006) The moving contact line: the slip boundary condition. J Fluid Mech 77:665–684CrossRef Dussan VEB (2006) The moving contact line: the slip boundary condition. J Fluid Mech 77:665–684CrossRef
29.
Zurück zum Zitat Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207CrossRef Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207CrossRef
30.
Zurück zum Zitat André V, Zosel A (1994) Dynamic wetting on porous and non porous substrates. Influence of surface tension, viscosity and porosity. Ber Bunsenges Phys Chem 98:429–434CrossRef André V, Zosel A (1994) Dynamic wetting on porous and non porous substrates. Influence of surface tension, viscosity and porosity. Ber Bunsenges Phys Chem 98:429–434CrossRef
31.
Zurück zum Zitat Chao TC, Arjmandi-Tash O, Das DB, Starov VM (2016) Simultaneous spreading and imbibition of blood droplets over porous substrates in the case of partial wetting. Colloids Surf A 505:9–17CrossRef Chao TC, Arjmandi-Tash O, Das DB, Starov VM (2016) Simultaneous spreading and imbibition of blood droplets over porous substrates in the case of partial wetting. Colloids Surf A 505:9–17CrossRef
32.
Zurück zum Zitat Starov V, Kostvintsev S, Sobolev V, Velarde M, Zhdanov S (2002) Spreading of liquid drops over dry porous layers: complete wetting case. J Colloid Interface Sci 252:397–408CrossRef Starov V, Kostvintsev S, Sobolev V, Velarde M, Zhdanov S (2002) Spreading of liquid drops over dry porous layers: complete wetting case. J Colloid Interface Sci 252:397–408CrossRef
33.
Zurück zum Zitat Starov V, Zhdanov S, Velarde M (2002) Spreading of liquid drops over thick porous layers: complete wetting case. Langmuir 18:9744–9750CrossRef Starov V, Zhdanov S, Velarde M (2002) Spreading of liquid drops over thick porous layers: complete wetting case. Langmuir 18:9744–9750CrossRef
34.
Zurück zum Zitat Chao TC, Arjmandi-Tash O, Das DB, Starov VM (2015) Spreading of blood drops over dry porous substrate: complete wetting case. J Colloid Interface Sci 446:218–225CrossRef Chao TC, Arjmandi-Tash O, Das DB, Starov VM (2015) Spreading of blood drops over dry porous substrate: complete wetting case. J Colloid Interface Sci 446:218–225CrossRef
35.
Zurück zum Zitat Starov V, Zhdanov S, Kosvintsev S, Sobolev V, Velarde M (2003) Spreading of liquid drops over porous substrates. Adv Colloid Interface Sci 104:123–158CrossRef Starov V, Zhdanov S, Kosvintsev S, Sobolev V, Velarde M (2003) Spreading of liquid drops over porous substrates. Adv Colloid Interface Sci 104:123–158CrossRef
36.
Zurück zum Zitat Shikhmurzaev YD, Sprittles JE (2013) Dynamic contact angle of a liquid spreading on an unsaturated wettable porous substrate. J Fluid Mech 715:273–282CrossRef Shikhmurzaev YD, Sprittles JE (2013) Dynamic contact angle of a liquid spreading on an unsaturated wettable porous substrate. J Fluid Mech 715:273–282CrossRef
37.
Zurück zum Zitat Lucas R (1918) Rate of capillary ascension of liquids. Kolloid Z 23:15–22CrossRef Lucas R (1918) Rate of capillary ascension of liquids. Kolloid Z 23:15–22CrossRef
38.
Zurück zum Zitat Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283CrossRef Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283CrossRef
39.
Zurück zum Zitat Denesuk M, Smith GL, Zelinski BJJ, Kreidl NJ, Uhlmann DR (1993) Capillary penetration of liquid droplets into porous materials. J Colloid Interface Sci 158:114–120CrossRef Denesuk M, Smith GL, Zelinski BJJ, Kreidl NJ, Uhlmann DR (1993) Capillary penetration of liquid droplets into porous materials. J Colloid Interface Sci 158:114–120CrossRef
40.
Zurück zum Zitat Hapgood KP, Litster JD, Biggs SR, Howes T (2002) Drop penetration into porous powder beds. J Colloid Interface Sci 253:353–366CrossRef Hapgood KP, Litster JD, Biggs SR, Howes T (2002) Drop penetration into porous powder beds. J Colloid Interface Sci 253:353–366CrossRef
41.
Zurück zum Zitat Pushnov AS (2006) Calculation of average bed porosity. Chem Pet Eng 42:14–17CrossRef Pushnov AS (2006) Calculation of average bed porosity. Chem Pet Eng 42:14–17CrossRef
42.
Zurück zum Zitat Coucoulas L (2003) AGGLOMERATION. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 73–80CrossRef Coucoulas L (2003) AGGLOMERATION. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 73–80CrossRef
43.
Zurück zum Zitat Capillary MS, Dynamics P (1995). In: Middleman S (ed) Modeling axisymmetric flows. Academic Press, San Diego, pp 211–240 Capillary MS, Dynamics P (1995). In: Middleman S (ed) Modeling axisymmetric flows. Academic Press, San Diego, pp 211–240
44.
Zurück zum Zitat Mugikura Y (2010) Stack material and stack design. In: Vielstich W, Lamm A, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – fundamentals, technology, and applications. John Wiley & Sons, Ltd Mugikura Y (2010) Stack material and stack design. In: Vielstich W, Lamm A, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – fundamentals, technology, and applications. John Wiley & Sons, Ltd
45.
Zurück zum Zitat Hoffmann J, Yuh C-Y, Godula Jopek A (2010) Electrolyte and material challenges. In: Vielstich W, Lamm A, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – fundamentals, technology, and applications. John Wiley & Sons, Ltd Hoffmann J, Yuh C-Y, Godula Jopek A (2010) Electrolyte and material challenges. In: Vielstich W, Lamm A, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – fundamentals, technology, and applications. John Wiley & Sons, Ltd
46.
Zurück zum Zitat Vielstich W, Lamm A, Gasteiger H (2003) Handbook of fuel cells: fundamentals, technology, and applications. Wiley, Hoboken Vielstich W, Lamm A, Gasteiger H (2003) Handbook of fuel cells: fundamentals, technology, and applications. Wiley, Hoboken
47.
Zurück zum Zitat Das S, Mitra SK (2013) Different regimes in vertical capillary filling. Phys Rev E 87:063005-1–063005-7CrossRef Das S, Mitra SK (2013) Different regimes in vertical capillary filling. Phys Rev E 87:063005-1–063005-7CrossRef
48.
Zurück zum Zitat Das S, Waghmare PR, Mitra SK (2012) Early regimes of capillary filling. Phys Rev E 86:067301-1–067301-5CrossRef Das S, Waghmare PR, Mitra SK (2012) Early regimes of capillary filling. Phys Rev E 86:067301-1–067301-5CrossRef
49.
Zurück zum Zitat Yuh CY, Selman JR (1991) The polarization of molten carbonate fuel cell electrodes: I. Analysis of steady-state polarization data. J Electrochem Soc 138:3642–3648CrossRef Yuh CY, Selman JR (1991) The polarization of molten carbonate fuel cell electrodes: I. Analysis of steady-state polarization data. J Electrochem Soc 138:3642–3648CrossRef
50.
Zurück zum Zitat Yuh C, Colpetzer J, Dickson K, Farooque M, Xu G (2006) Carbonate fuel cell materials. J Mater Eng Perform 15:457–462CrossRef Yuh C, Colpetzer J, Dickson K, Farooque M, Xu G (2006) Carbonate fuel cell materials. J Mater Eng Perform 15:457–462CrossRef
51.
Zurück zum Zitat Yuh C, Johnsen R, Farooque M, Maru H (1995) Status of carbonate fuel cell materials. J Power Sources 56:1–10CrossRef Yuh C, Johnsen R, Farooque M, Maru H (1995) Status of carbonate fuel cell materials. J Power Sources 56:1–10CrossRef
52.
Zurück zum Zitat J. Robert Selman (1986) Molten carbonate fuel cells (MCFCs). In: Penner SS (ed) Assessment of research needs for advanced fuel cells. Elsevier Ltd, pp 153–208 J. Robert Selman (1986) Molten carbonate fuel cells (MCFCs). In: Penner SS (ed) Assessment of research needs for advanced fuel cells. Elsevier Ltd, pp 153–208
53.
Zurück zum Zitat Hilmi A, Yuh C-Y, Farooque M (2014) Carbonate fuel cell anode: a review. ECS Trans 61:245–253CrossRef Hilmi A, Yuh C-Y, Farooque M (2014) Carbonate fuel cell anode: a review. ECS Trans 61:245–253CrossRef
54.
Zurück zum Zitat Iacovangelo CD (1986) Stability of molten carbonate fuel cell nickel anodes. J Electrochem Soc 133:2410–2416CrossRef Iacovangelo CD (1986) Stability of molten carbonate fuel cell nickel anodes. J Electrochem Soc 133:2410–2416CrossRef
55.
Zurück zum Zitat Kim Y-S, Lee K-Y, Chun H-S (2001) Creep characteristics of porous Ni/Ni3Al anodes for molten carbonate fuel cells. J Power Sources 99:26–33CrossRef Kim Y-S, Lee K-Y, Chun H-S (2001) Creep characteristics of porous Ni/Ni3Al anodes for molten carbonate fuel cells. J Power Sources 99:26–33CrossRef
56.
Zurück zum Zitat Kim Y-S, Lim J-H, Chun H-S (2006) Creep mechanism of porous MCFC Ni anodes strengthened by Ni3Al. AIChE J 52:359–365CrossRef Kim Y-S, Lim J-H, Chun H-S (2006) Creep mechanism of porous MCFC Ni anodes strengthened by Ni3Al. AIChE J 52:359–365CrossRef
57.
Zurück zum Zitat Accardo G, Frattini D, Moreno A, Yoon SP, Han JH, Nam SW (2017) Influence of nano zirconia on NiAl anodes for molten carbonate fuel cell: characterization, cell tests and post-analysis. J Power Sources 338:74–81CrossRef Accardo G, Frattini D, Moreno A, Yoon SP, Han JH, Nam SW (2017) Influence of nano zirconia on NiAl anodes for molten carbonate fuel cell: characterization, cell tests and post-analysis. J Power Sources 338:74–81CrossRef
58.
Zurück zum Zitat Accardo G, Frattini D, Moreno A, P Yoon S, Han J-J, W Nam S (2015) Effect of zirconia addition on Ni/Al anode on microstructure and mechanical properties for molten carbonate fuel cell. In: 6th European fuel cell technology and applications conference. Naples, Italy, pp 333–334 Accardo G, Frattini D, Moreno A, P Yoon S, Han J-J, W Nam S (2015) Effect of zirconia addition on Ni/Al anode on microstructure and mechanical properties for molten carbonate fuel cell. In: 6th European fuel cell technology and applications conference. Naples, Italy, pp 333–334
59.
Zurück zum Zitat Hong S-A, Oh I-H, Lim T-H, Nam S-W, Ha H-Y, Yoon SP et al (2004) Anode for molten carbonate fuel cell coated with porous ceramic films. Google Patents Hong S-A, Oh I-H, Lim T-H, Nam S-W, Ha H-Y, Yoon SP et al (2004) Anode for molten carbonate fuel cell coated with porous ceramic films. Google Patents
60.
Zurück zum Zitat Veldhuis JBJ, Van Molen SBD, Makkus RC, Broers GHJ (1990) NiO Cathode dissolution and long term MCFC operation. Ber Bunsenges Phys Chem 94:947–952CrossRef Veldhuis JBJ, Van Molen SBD, Makkus RC, Broers GHJ (1990) NiO Cathode dissolution and long term MCFC operation. Ber Bunsenges Phys Chem 94:947–952CrossRef
61.
Zurück zum Zitat USDE (2004) Fuel cell handbook, 7th edn. EG&G Technical Services, Inc., Morgantown, U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory USDE (2004) Fuel cell handbook, 7th edn. EG&G Technical Services, Inc., Morgantown, U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory
62.
Zurück zum Zitat Ota K, Mitsushima S, Kato S, Asano S, Yoshitake H, Kamiya N (1992) Solubilities of nickel oxide in molten carbonate. J Electrochem Soc 139:667–671CrossRef Ota K, Mitsushima S, Kato S, Asano S, Yoshitake H, Kamiya N (1992) Solubilities of nickel oxide in molten carbonate. J Electrochem Soc 139:667–671CrossRef
63.
Zurück zum Zitat Selman JR, YaZici MS, Izaki Y (1993) NiO cathode dissolution in the MCFC: a review. Preprints of papers 206th ACS National Meeting. Chicago, IL, pp 1429–1434 Selman JR, YaZici MS, Izaki Y (1993) NiO cathode dissolution in the MCFC: a review. Preprints of papers 206th ACS National Meeting. Chicago, IL, pp 1429–1434
64.
Zurück zum Zitat Orfield ML, Shores DA (1988) Solubility of NiO in molten Li2CO3, Na2CO3, K2CO3, and Rb2CO3 at 910°C. J Electrochem Soc 135:1662–1668CrossRef Orfield ML, Shores DA (1988) Solubility of NiO in molten Li2CO3, Na2CO3, K2CO3, and Rb2CO3 at 910°C. J Electrochem Soc 135:1662–1668CrossRef
65.
Zurück zum Zitat Freni S, Barone F, Puglisi M (1998) The dissolution process of the NiO cathodes for molten carbonate fuel cells: state-of-the-art. Int J Energy Res 22:17–31CrossRef Freni S, Barone F, Puglisi M (1998) The dissolution process of the NiO cathodes for molten carbonate fuel cells: state-of-the-art. Int J Energy Res 22:17–31CrossRef
66.
Zurück zum Zitat Baumgartner CE, Arendt RH, Iacovangelo CD, Karas BR (1984) Molten carbonate fuel cell cathode materials study. J Electrochem Soc 131:2217–2221CrossRef Baumgartner CE, Arendt RH, Iacovangelo CD, Karas BR (1984) Molten carbonate fuel cell cathode materials study. J Electrochem Soc 131:2217–2221CrossRef
67.
Zurück zum Zitat Giorgi L, Carewska M, Patriarca M, Scaccia S, Simonetti E, Di Bartolomeo A (1994) Development and characterization of novel cathode materials for molten carbonate fuel cell. J Power Sources 49:227–243CrossRef Giorgi L, Carewska M, Patriarca M, Scaccia S, Simonetti E, Di Bartolomeo A (1994) Development and characterization of novel cathode materials for molten carbonate fuel cell. J Power Sources 49:227–243CrossRef
68.
Zurück zum Zitat Noort MAVD, Put PJJMVD, Schoonman J (1988) Doped LiFeO2 as MCFC cathode material. High Temp High Press 20:197–208 Noort MAVD, Put PJJMVD, Schoonman J (1988) Doped LiFeO2 as MCFC cathode material. High Temp High Press 20:197–208
69.
Zurück zum Zitat Matsuno Y, Tsutsumi A, Yoshida K (1996) Polarization characteristics of novel molten carbonate fuel cell anodes and cathodes using three-dimensional electrodes. American Institute of Chemical Engineers, New York Matsuno Y, Tsutsumi A, Yoshida K (1996) Polarization characteristics of novel molten carbonate fuel cell anodes and cathodes using three-dimensional electrodes. American Institute of Chemical Engineers, New York
70.
Zurück zum Zitat Kucera GH, Brown AP, Roche MF, Indacochea EJ, Krumpelt M, Myles KM (1993) Cathode materials for the molten carbonate fuel cell. In: Symposium proceedings of the American Chemical Society Meeting, Chicago, IL Kucera GH, Brown AP, Roche MF, Indacochea EJ, Krumpelt M, Myles KM (1993) Cathode materials for the molten carbonate fuel cell. In: Symposium proceedings of the American Chemical Society Meeting, Chicago, IL
71.
Zurück zum Zitat Tukamoto H, West A (1997) Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc 144:3164–3168CrossRef Tukamoto H, West A (1997) Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc 144:3164–3168CrossRef
72.
Zurück zum Zitat Veldhuis J, Eckes F, Plomp L (1992) The dissolution properties of LiCoO2 in molten 62:38 mol% Li: K carbonate. J Electrochem Soc 139:L6–L8CrossRef Veldhuis J, Eckes F, Plomp L (1992) The dissolution properties of LiCoO2 in molten 62:38 mol% Li: K carbonate. J Electrochem Soc 139:L6–L8CrossRef
73.
Zurück zum Zitat Plomp L, Sitters EF, Vessies C, Eckes FC (1991) Polarization characteristics of novel molten carbonate fuel cell cathodes. J Electrochem Soc 138:629–630CrossRef Plomp L, Sitters EF, Vessies C, Eckes FC (1991) Polarization characteristics of novel molten carbonate fuel cell cathodes. J Electrochem Soc 138:629–630CrossRef
74.
Zurück zum Zitat Lundblad A, Schwartz S, Bergman B (2000) Effect of sintering procedures in development of LiCoO2-cathodes for the molten carbonate fuel cell. J Power Sources 90:224–230CrossRef Lundblad A, Schwartz S, Bergman B (2000) Effect of sintering procedures in development of LiCoO2-cathodes for the molten carbonate fuel cell. J Power Sources 90:224–230CrossRef
75.
Zurück zum Zitat Niu M, Wang H, Chen J, Su L, Wu D, Navrotsky A (2017) Structure and energetics of SiOC and SiOC-modified carbon-bonded carbon fiber composites. J Am Ceram Soc 100:3693–3702CrossRef Niu M, Wang H, Chen J, Su L, Wu D, Navrotsky A (2017) Structure and energetics of SiOC and SiOC-modified carbon-bonded carbon fiber composites. J Am Ceram Soc 100:3693–3702CrossRef
76.
Zurück zum Zitat Wijayasinghe A, Bergman B, Lagergren C (2003) LiFeO2–LiCoO2–NiO cathodes for molten carbonate fuel cells. J Electrochem Soc 150:A558–A564CrossRef Wijayasinghe A, Bergman B, Lagergren C (2003) LiFeO2–LiCoO2–NiO cathodes for molten carbonate fuel cells. J Electrochem Soc 150:A558–A564CrossRef
77.
Zurück zum Zitat Wijayasinghe A, Bergman B, Lagergren C (2006) LiFeO2–LiCoO2–NiO materials for molten carbonate fuel cell cathodes: Part I. Powder synthesis and material characterization. Solid State Ion 177:165–173CrossRef Wijayasinghe A, Bergman B, Lagergren C (2006) LiFeO2–LiCoO2–NiO materials for molten carbonate fuel cell cathodes: Part I. Powder synthesis and material characterization. Solid State Ion 177:165–173CrossRef
78.
Zurück zum Zitat Wijayasinghe A, Bergman B, Lagergren C (2006) LiFeO2–LiCoO2–NiO materials for molten carbonate fuel cell cathodes. Part II. Fabrication and characterization of porous gas diffusion cathodes. Solid State Ion 177:175–184CrossRef Wijayasinghe A, Bergman B, Lagergren C (2006) LiFeO2–LiCoO2–NiO materials for molten carbonate fuel cell cathodes. Part II. Fabrication and characterization of porous gas diffusion cathodes. Solid State Ion 177:175–184CrossRef
79.
Zurück zum Zitat Tennakoon TMTN, Lindbergh G, Bergman B (1997) Performance of LiCoO2 cathodes, prepared using the Pechini method, in molten carbonate fuel cells. J Electrochem Soc 144:2296–2301CrossRef Tennakoon TMTN, Lindbergh G, Bergman B (1997) Performance of LiCoO2 cathodes, prepared using the Pechini method, in molten carbonate fuel cells. J Electrochem Soc 144:2296–2301CrossRef
80.
Zurück zum Zitat Kuk ST, Song YS, Kim K (1999) Properties of a new type of cathode for molten carbonate fuel cells. J Power Sources 83:50–56CrossRef Kuk ST, Song YS, Kim K (1999) Properties of a new type of cathode for molten carbonate fuel cells. J Power Sources 83:50–56CrossRef
81.
Zurück zum Zitat Choi H-J, Ihm S-K, Lim T-H, Hong S-A (1996) An evaluation of a stabilized NiO cathode for the reduction of NiO dissolution in molten carbonate fuel cells. J Power Sources 61:239–245CrossRef Choi H-J, Ihm S-K, Lim T-H, Hong S-A (1996) An evaluation of a stabilized NiO cathode for the reduction of NiO dissolution in molten carbonate fuel cells. J Power Sources 61:239–245CrossRef
82.
Zurück zum Zitat Motohira N, Sensou T, Yamauchi K, Ogawa K, Liu X, Kamiya N et al (1999) Effect of Mg on the solubility of NiO in molten carbonate. J Mol Liq 83:95–103CrossRef Motohira N, Sensou T, Yamauchi K, Ogawa K, Liu X, Kamiya N et al (1999) Effect of Mg on the solubility of NiO in molten carbonate. J Mol Liq 83:95–103CrossRef
83.
Zurück zum Zitat Randström S, Lagergren C, Scaccia S (2007) Investigation of a Ni (Mg, Fe)O cathode for molten carbonate fuel cell applications. Fuel Cells 7:218–224CrossRef Randström S, Lagergren C, Scaccia S (2007) Investigation of a Ni (Mg, Fe)O cathode for molten carbonate fuel cell applications. Fuel Cells 7:218–224CrossRef
84.
Zurück zum Zitat Huang B, Li F, Yu Q, Chen G, Zhao B, Hu K (2004) Study of NiO cathode modified by ZnO additive for MCFC. J Power Sources 128:135–144CrossRef Huang B, Li F, Yu Q, Chen G, Zhao B, Hu K (2004) Study of NiO cathode modified by ZnO additive for MCFC. J Power Sources 128:135–144CrossRef
85.
Zurück zum Zitat Escudero M, Novoa X, Rodrigo T, Daza L (2002) Influence of lanthanum oxide as quality promoter on cathodes for MCFC. J Power Sources 106:196–205CrossRef Escudero M, Novoa X, Rodrigo T, Daza L (2002) Influence of lanthanum oxide as quality promoter on cathodes for MCFC. J Power Sources 106:196–205CrossRef
86.
Zurück zum Zitat Huang B, Chen G, Li F, Yu Q, Hu K (2004) Study of NiO cathode modified by rare earth oxide additive for MCFC by electrochemical impedance spectroscopy. Electrochim Acta 49:5055–5068CrossRef Huang B, Chen G, Li F, Yu Q, Hu K (2004) Study of NiO cathode modified by rare earth oxide additive for MCFC by electrochemical impedance spectroscopy. Electrochim Acta 49:5055–5068CrossRef
87.
Zurück zum Zitat Huang B, Ye X, Wang S, Yu Q, Nie H, Hu Q et al (2006) Electrochemical performance of Y2O3/NiO cathode in the molten Li0.62/K0.38 carbonates eutectics. Mater Res Bull 41:1935–1948CrossRef Huang B, Ye X, Wang S, Yu Q, Nie H, Hu Q et al (2006) Electrochemical performance of Y2O3/NiO cathode in the molten Li0.62/K0.38 carbonates eutectics. Mater Res Bull 41:1935–1948CrossRef
88.
Zurück zum Zitat Ganesan P, Colon H, Haran B, White R, Popov BN (2002) Study of cobalt-doped lithium–nickel oxides as cathodes for MCFC. J Power Sources 111:109–120CrossRef Ganesan P, Colon H, Haran B, White R, Popov BN (2002) Study of cobalt-doped lithium–nickel oxides as cathodes for MCFC. J Power Sources 111:109–120CrossRef
89.
Zurück zum Zitat Mustafa K, Anwar M, Akmal Rana M, Khan ZS (2015) Development of cobalt doped lithiated NiO nano-composites and hot corrosion testing of LiAlO2 matrices for molten carbonate fuel cell (MCFC) applications. Mater Chem Phys 164:198–205CrossRef Mustafa K, Anwar M, Akmal Rana M, Khan ZS (2015) Development of cobalt doped lithiated NiO nano-composites and hot corrosion testing of LiAlO2 matrices for molten carbonate fuel cell (MCFC) applications. Mater Chem Phys 164:198–205CrossRef
90.
Zurück zum Zitat Kudo T, Hisamitsu Y, Kihara K, Mohamedi M, Uchida I (2002) Electrochemical behaviour of Ni+ Al alloy as an alternative material for molten carbonate fuel cell cathodes. J Appl Electrochem 32:179–184CrossRef Kudo T, Hisamitsu Y, Kihara K, Mohamedi M, Uchida I (2002) Electrochemical behaviour of Ni+ Al alloy as an alternative material for molten carbonate fuel cell cathodes. J Appl Electrochem 32:179–184CrossRef
91.
Zurück zum Zitat Lehmann HA, Hesselbarth H (1961) Zur Kenntnis der Lithiumaluminate. I. Über eine neue Modifikation des LiAlO2. Z Anorg Allg Chem 313:117–120CrossRef Lehmann HA, Hesselbarth H (1961) Zur Kenntnis der Lithiumaluminate. I. Über eine neue Modifikation des LiAlO2. Z Anorg Allg Chem 313:117–120CrossRef
92.
Zurück zum Zitat Lejus A, Collongues R (1962) The structure and properties of lithium aluminates. Compt Rend 254:2005–2007 Lejus A, Collongues R (1962) The structure and properties of lithium aluminates. Compt Rend 254:2005–2007
93.
Zurück zum Zitat Chang C-H, Margrave JL (1968) High-pressure-high-temperature syntheses. III. Direct syntheses of new high-pressure forms of lithium aluminum oxide and lithium gallium oxide and polymorphism in LiMO2 compounds (M= boron, aluminum, gallium). J Am Chem Soc 90:2020–2022CrossRef Chang C-H, Margrave JL (1968) High-pressure-high-temperature syntheses. III. Direct syntheses of new high-pressure forms of lithium aluminum oxide and lithium gallium oxide and polymorphism in LiMO2 compounds (M= boron, aluminum, gallium). J Am Chem Soc 90:2020–2022CrossRef
94.
Zurück zum Zitat Gao J, Shi S, Xiao R, Li H (2016) Synthesis and ionic transport mechanisms of α-LiAlO2. Solid State Ion 286:122–134CrossRef Gao J, Shi S, Xiao R, Li H (2016) Synthesis and ionic transport mechanisms of α-LiAlO2. Solid State Ion 286:122–134CrossRef
95.
Zurück zum Zitat Poeppelmeier KR, Chiang CK, Kipp DO (1988) Synthesis of high surface area lithium aluminate (.alpha.-LiAlO2). Inorg Chem 27:4523–4524CrossRef Poeppelmeier KR, Chiang CK, Kipp DO (1988) Synthesis of high surface area lithium aluminate (.alpha.-LiAlO2). Inorg Chem 27:4523–4524CrossRef
96.
Zurück zum Zitat Li F, Hu K, Li J, Zhang D, Chen G (2002) Combustion synthesis of γ-lithium aluminate by using various fuels. J Nucl Mater 300:82–88CrossRef Li F, Hu K, Li J, Zhang D, Chen G (2002) Combustion synthesis of γ-lithium aluminate by using various fuels. J Nucl Mater 300:82–88CrossRef
97.
Zurück zum Zitat Kang YC, Park SB, Kwon SW (1996) Preparation of submicron size gamma lithium aluminate particles from the mixture of alumina sol and lithium salt by ultrasonic spray pyrolysis. J Colloid Interface Sci 182:59–62CrossRef Kang YC, Park SB, Kwon SW (1996) Preparation of submicron size gamma lithium aluminate particles from the mixture of alumina sol and lithium salt by ultrasonic spray pyrolysis. J Colloid Interface Sci 182:59–62CrossRef
98.
Zurück zum Zitat Turner CW, Clatworthy B, Gin A (1987) The preparation of lithium aluminate by the hydrolysis of lithium and aluminum alkoxides. Atomic Energy of Canada Ltd., Chalk River Turner CW, Clatworthy B, Gin A (1987) The preparation of lithium aluminate by the hydrolysis of lithium and aluminum alkoxides. Atomic Energy of Canada Ltd., Chalk River
99.
Zurück zum Zitat Valenzuela MA, Téllez L, Bosch P, Balmori H (2001) Solvent effect on the sol–gel synthesis of lithium aluminate. Mater Lett 47:252–257CrossRef Valenzuela MA, Téllez L, Bosch P, Balmori H (2001) Solvent effect on the sol–gel synthesis of lithium aluminate. Mater Lett 47:252–257CrossRef
100.
Zurück zum Zitat Oksuzomer F, Koc SN, Boz I, Gurkaynak MA (2004) Effect of solvents on the preparation of lithium aluminate by sol–gel method. Mater Res Bull 39:715–724CrossRef Oksuzomer F, Koc SN, Boz I, Gurkaynak MA (2004) Effect of solvents on the preparation of lithium aluminate by sol–gel method. Mater Res Bull 39:715–724CrossRef
101.
Zurück zum Zitat Tang Z, Hu L, Zhang Z, Li J, Luo S (2007) Hydrothermal synthesis of high surface area mesoporous lithium aluminate. Mater Lett 61:570–573CrossRef Tang Z, Hu L, Zhang Z, Li J, Luo S (2007) Hydrothermal synthesis of high surface area mesoporous lithium aluminate. Mater Lett 61:570–573CrossRef
102.
Zurück zum Zitat Kwon SW, Park SB, Seo G, Hwang ST (1998) Preparation of lithium aluminate via polymeric precursor routes. J Nucl Mater 257:172–179CrossRef Kwon SW, Park SB, Seo G, Hwang ST (1998) Preparation of lithium aluminate via polymeric precursor routes. J Nucl Mater 257:172–179CrossRef
103.
Zurück zum Zitat Baron R, Wejrzanowski T, Milewski J, Szabłowski Ł, Szczęśniak A, Fung K-Z (2018) Manufacturing of γ-LiAlO2 matrix for molten carbonate fuel cell by high-energy milling. Int J Hydrogen Energy 43:6696–6700CrossRef Baron R, Wejrzanowski T, Milewski J, Szabłowski Ł, Szczęśniak A, Fung K-Z (2018) Manufacturing of γ-LiAlO2 matrix for molten carbonate fuel cell by high-energy milling. Int J Hydrogen Energy 43:6696–6700CrossRef
104.
Zurück zum Zitat Selman JR, Claar TD, Society E (1984) Proceedings of the symposium on molten carbonate fuel cell technology. Electrochemical Society Selman JR, Claar TD, Society E (1984) Proceedings of the symposium on molten carbonate fuel cell technology. Electrochemical Society
105.
Zurück zum Zitat Tanimoto K, Yanagida M, Kojima T, Tamiya Y, Matsumoto H, Miyazaki Y (1998) Long-term operation of small-sized single molten carbonate fuel cells. J Power Sources 72:77–82CrossRef Tanimoto K, Yanagida M, Kojima T, Tamiya Y, Matsumoto H, Miyazaki Y (1998) Long-term operation of small-sized single molten carbonate fuel cells. J Power Sources 72:77–82CrossRef
107.
Zurück zum Zitat Terada S, Higaki K, Nagashima I, Ito Y (1999) Stability and solubility of electrolyte matrix support material for molten carbonate fuel cells. J Power Sources 83:227–230CrossRef Terada S, Higaki K, Nagashima I, Ito Y (1999) Stability and solubility of electrolyte matrix support material for molten carbonate fuel cells. J Power Sources 83:227–230CrossRef
108.
Zurück zum Zitat Bushnell CL, Bregoli LJ, Schroll CR (1982) Electrolyte matrix for molten carbonate fuel cells. Google Patents Bushnell CL, Bregoli LJ, Schroll CR (1982) Electrolyte matrix for molten carbonate fuel cells. Google Patents
109.
Zurück zum Zitat Selman J, Maru H, Shores D, Uchida I (1990) Proceedings of the 2nd symposium on molten carbonate fuel cell technology. The Electrochemical Society, Pennington, NJ, USA Selman J, Maru H, Shores D, Uchida I (1990) Proceedings of the 2nd symposium on molten carbonate fuel cell technology. The Electrochemical Society, Pennington, NJ, USA
111.
Zurück zum Zitat Kim S-D, Hyun S-H, Lim TH, Hong SA (2004) Effective fabrication method of rod-shaped γ-LiAlO2 particles for molten carbonate fuel cell matrices. J Power Sources 137:24–29CrossRef Kim S-D, Hyun S-H, Lim TH, Hong SA (2004) Effective fabrication method of rod-shaped γ-LiAlO2 particles for molten carbonate fuel cell matrices. J Power Sources 137:24–29CrossRef
112.
Zurück zum Zitat Lee I, Kim W, Moon Y, Lim H, Lee D (2001) Influence of aluminum salt addition on in situ sintering of electrolyte matrices for molten carbonate fuel cells. J Power Sources 101:90–95CrossRef Lee I, Kim W, Moon Y, Lim H, Lee D (2001) Influence of aluminum salt addition on in situ sintering of electrolyte matrices for molten carbonate fuel cells. J Power Sources 101:90–95CrossRef
113.
Zurück zum Zitat Gao L, Selman JR, Nash P (2018) Wetting of porous α-LiAlO2 by molten carbonate. J Electrochem Soc 165:F324–F333CrossRef Gao L, Selman JR, Nash P (2018) Wetting of porous α-LiAlO2 by molten carbonate. J Electrochem Soc 165:F324–F333CrossRef
114.
Zurück zum Zitat Janz GJ, Lorenz MR (1961) Solid–liquid phase equilibria for mixtures of lithium, sodium, and potassium carbonates. J Chem Eng Data 6:321–323CrossRef Janz GJ, Lorenz MR (1961) Solid–liquid phase equilibria for mixtures of lithium, sodium, and potassium carbonates. J Chem Eng Data 6:321–323CrossRef
115.
Zurück zum Zitat Suski L, Godula-Jopek A, Obła J (1999) Wetting of Ni and NiO by alternative molten carbonate fuel cell electrolytes: I. Influence of gas atmosphere. J Electrochem Soc 146:4048–4054CrossRef Suski L, Godula-Jopek A, Obła J (1999) Wetting of Ni and NiO by alternative molten carbonate fuel cell electrolytes: I. Influence of gas atmosphere. J Electrochem Soc 146:4048–4054CrossRef
116.
Zurück zum Zitat Selman JR, Hsieh P-H (2012) Wetting of polarized materials by molten carbonate. Int J Hydrogen Energy 37:19270–19279CrossRef Selman JR, Hsieh P-H (2012) Wetting of polarized materials by molten carbonate. Int J Hydrogen Energy 37:19270–19279CrossRef
117.
Zurück zum Zitat Hong S-G, Selman JR (2004) Wetting characteristics of carbonate melts under MCFC operating conditions. J Electrochem Soc 151:A77–A84CrossRef Hong S-G, Selman JR (2004) Wetting characteristics of carbonate melts under MCFC operating conditions. J Electrochem Soc 151:A77–A84CrossRef
118.
Zurück zum Zitat Cassir M, Olivry M, Albin V, Malinowska B, Devynck J (1998) Thermodynamic and electrochemical behavior of nickel in molten Li2CO3–Na2CO3 modified by addition of calcium carbonate. J Electroanal Chem 452:127–137CrossRef Cassir M, Olivry M, Albin V, Malinowska B, Devynck J (1998) Thermodynamic and electrochemical behavior of nickel in molten Li2CO3–Na2CO3 modified by addition of calcium carbonate. J Electroanal Chem 452:127–137CrossRef
119.
Zurück zum Zitat Hsieh P-H, Selman JR (2010) Effect of alkaline-earth additives on wetting characteristics in Li/Na molten carbonate electrolyte. ECS Trans 25:51–59CrossRef Hsieh P-H, Selman JR (2010) Effect of alkaline-earth additives on wetting characteristics in Li/Na molten carbonate electrolyte. ECS Trans 25:51–59CrossRef
120.
Zurück zum Zitat Doyon JD, Gilbert T, Davies G, Paetsch L (1987) NiO solubility in mixed alkali/alkaline earth carbonates. J Electrochem Soc 134:3035–3038CrossRef Doyon JD, Gilbert T, Davies G, Paetsch L (1987) NiO solubility in mixed alkali/alkaline earth carbonates. J Electrochem Soc 134:3035–3038CrossRef
121.
Zurück zum Zitat Mitsushima S, Matsuzawa K, Kamiya N, Ota K (2002) Improvement of MCFC cathode stability by additives. Electrochim Acta 47:3823–3830CrossRef Mitsushima S, Matsuzawa K, Kamiya N, Ota K (2002) Improvement of MCFC cathode stability by additives. Electrochim Acta 47:3823–3830CrossRef
122.
Zurück zum Zitat Terada S, Higaki K, Nagashima I, Ito Y (1999) Addition of potassium tungstate to the electrolyte of a molten carbonate fuel cell. J Power Sources 83:178–185CrossRef Terada S, Higaki K, Nagashima I, Ito Y (1999) Addition of potassium tungstate to the electrolyte of a molten carbonate fuel cell. J Power Sources 83:178–185CrossRef
123.
Zurück zum Zitat Antolini E (2011) The stability of molten carbonate fuel cell electrodes: a review of recent improvements. Appl Energy 88:4274–4293CrossRef Antolini E (2011) The stability of molten carbonate fuel cell electrodes: a review of recent improvements. Appl Energy 88:4274–4293CrossRef
124.
Zurück zum Zitat Morita H, Komoda M, Mugikura Y, Izaki Y, Watanabe T, Masuda Y et al (2002) Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte. J Power Sources 112:509–518CrossRef Morita H, Komoda M, Mugikura Y, Izaki Y, Watanabe T, Masuda Y et al (2002) Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte. J Power Sources 112:509–518CrossRef
125.
Zurück zum Zitat Weewer R, Vente J, Hemmes K, De Wit J, Fisher J (1990) Wetting behaviour of candidate molten carbonate fuel cell anode materials and electrolytes. Ber Bunsenges Phys Chem 94:967–973CrossRef Weewer R, Vente J, Hemmes K, De Wit J, Fisher J (1990) Wetting behaviour of candidate molten carbonate fuel cell anode materials and electrolytes. Ber Bunsenges Phys Chem 94:967–973CrossRef
126.
Zurück zum Zitat Flood H, Förland T (1947) The acidic and basic properties of oxides. Acta Chem Scand 1:592–604CrossRef Flood H, Förland T (1947) The acidic and basic properties of oxides. Acta Chem Scand 1:592–604CrossRef
127.
Zurück zum Zitat Yuh CY, Farooque M (2002) Carbonate fuel cell materials. Adv Mater Process 160:31–34 Yuh CY, Farooque M (2002) Carbonate fuel cell materials. Adv Mater Process 160:31–34
128.
Zurück zum Zitat Scaccia S (2005) Investigation on NiO solubility in binary and ternary molten alkali metal carbonates containing additives. J Mol Liq 116:67–71CrossRef Scaccia S (2005) Investigation on NiO solubility in binary and ternary molten alkali metal carbonates containing additives. J Mol Liq 116:67–71CrossRef
129.
Zurück zum Zitat Peelen W, Hemmes K, Kamping H, Bos M, De Wit J (1998) The application of the Wilhelmy balance to the measurement of electrocapillary effects in molten carbonate. J Solid State Electrochem 2:334–339CrossRef Peelen W, Hemmes K, Kamping H, Bos M, De Wit J (1998) The application of the Wilhelmy balance to the measurement of electrocapillary effects in molten carbonate. J Solid State Electrochem 2:334–339CrossRef
130.
Zurück zum Zitat Mugikura Y, Selman JR (1996) Meniscus behavior of metals and oxides in molten carbonate under oxidant and reducing atmospheres I. Contact angle and electrolyte displacement. J Electrochem Soc 143:2442–2447CrossRef Mugikura Y, Selman JR (1996) Meniscus behavior of metals and oxides in molten carbonate under oxidant and reducing atmospheres I. Contact angle and electrolyte displacement. J Electrochem Soc 143:2442–2447CrossRef
131.
Zurück zum Zitat Scaccia S, Frangini S (2006) Oxygen dissolution behaviour in (52/48) mol% Li2CO3/Na2CO3 electrolyte containing Ba and Ca additives. J Mol Liq 129:133–137CrossRef Scaccia S, Frangini S (2006) Oxygen dissolution behaviour in (52/48) mol% Li2CO3/Na2CO3 electrolyte containing Ba and Ca additives. J Mol Liq 129:133–137CrossRef
132.
Zurück zum Zitat Scaccia S, Frangini S, Dellepiane S (2008) Enhanced O2 solubility by RE2O3 (RE = La, Gd) additions in molten carbonate electrolytes for MCFC. J Mol Liq 138:107–112CrossRef Scaccia S, Frangini S, Dellepiane S (2008) Enhanced O2 solubility by RE2O3 (RE = La, Gd) additions in molten carbonate electrolytes for MCFC. J Mol Liq 138:107–112CrossRef
133.
Zurück zum Zitat Dou Y, Li P, Du K, Wang P, Yin H, Wang D (2021) Wetting kinetics of molten carbonate on carbon. Langmuir 37:10594–10601CrossRef Dou Y, Li P, Du K, Wang P, Yin H, Wang D (2021) Wetting kinetics of molten carbonate on carbon. Langmuir 37:10594–10601CrossRef
134.
Zurück zum Zitat Wang P, Zhang Y, Shi H, Li P, Du K, Yin H et al (2022) Local basicity dependent gas–liquid interfacial corrosion of nickel anode and its protection in molten Li2CO3–Na2CO3–K2CO3. J Electrochem Soc 169:031505CrossRef Wang P, Zhang Y, Shi H, Li P, Du K, Yin H et al (2022) Local basicity dependent gas–liquid interfacial corrosion of nickel anode and its protection in molten Li2CO3–Na2CO3–K2CO3. J Electrochem Soc 169:031505CrossRef
135.
Zurück zum Zitat Wang P, Shi H, Chen D, Du K, Yin H, Wang D (2022) Regulating electrolyte basicity via CaCO3 additives for enhanced corrosion resistance of Ni anodes in low-temperature molten carbonate. Corros Sci 207:110581CrossRef Wang P, Shi H, Chen D, Du K, Yin H, Wang D (2022) Regulating electrolyte basicity via CaCO3 additives for enhanced corrosion resistance of Ni anodes in low-temperature molten carbonate. Corros Sci 207:110581CrossRef
136.
Zurück zum Zitat Kawase M, Asano K, Murata H, Mugikura Y, Watanabe T, Ito Y (2002) In situ microobservation of the cathode in molten carbonate fuel cells. J Appl Electrochem 32:185–191CrossRef Kawase M, Asano K, Murata H, Mugikura Y, Watanabe T, Ito Y (2002) In situ microobservation of the cathode in molten carbonate fuel cells. J Appl Electrochem 32:185–191CrossRef
137.
Zurück zum Zitat Gao L, Selman JR, Nash P (2018) Dynamic wetting of dense Ni foil by molten carbonate. Colloids Surf A 550:236–244CrossRef Gao L, Selman JR, Nash P (2018) Dynamic wetting of dense Ni foil by molten carbonate. Colloids Surf A 550:236–244CrossRef
138.
Zurück zum Zitat Selman JR, Maru HC (1981) Physical chemistry and electrochemistry of alkali carbonate melts with special reference to the molten-carbonate fuel cell. In: Mamantov G, Braunstein J (eds) Advances in molten salt chemistry. Plenum Press, New York, pp 188–218 Selman JR, Maru HC (1981) Physical chemistry and electrochemistry of alkali carbonate melts with special reference to the molten-carbonate fuel cell. In: Mamantov G, Braunstein J (eds) Advances in molten salt chemistry. Plenum Press, New York, pp 188–218
139.
Zurück zum Zitat Kawase M, Mugikura Y, Watanabe T (2000) An electrolyte distribution model in consideration of the electrode wetting in the molten carbonate fuel cell. J Electrochem Soc 147:854–860CrossRef Kawase M, Mugikura Y, Watanabe T (2000) An electrolyte distribution model in consideration of the electrode wetting in the molten carbonate fuel cell. J Electrochem Soc 147:854–860CrossRef
140.
Zurück zum Zitat Fisher JM, Bennett PS, Pignon JF, Makkus RC, Weewer R, Hemmes K (1990) Wetting properties of molten carbonate fuel cell electrode materials. J Electrochem Soc 137:1493–1495CrossRef Fisher JM, Bennett PS, Pignon JF, Makkus RC, Weewer R, Hemmes K (1990) Wetting properties of molten carbonate fuel cell electrode materials. J Electrochem Soc 137:1493–1495CrossRef
141.
Zurück zum Zitat Gao L, Selman JR, Nash P (2020) Dynamic wetting of Ni–Al alloy under MCFC conditions. J Electrochem Soc 167:124516CrossRef Gao L, Selman JR, Nash P (2020) Dynamic wetting of Ni–Al alloy under MCFC conditions. J Electrochem Soc 167:124516CrossRef
142.
Zurück zum Zitat Kawase M, Mugikura Y, Watanabe T (2000) The effects of H2S on electrolyte distribution and cell performance in the molten carbonate fuel cell. J Electrochem Soc 147:1240–1244CrossRef Kawase M, Mugikura Y, Watanabe T (2000) The effects of H2S on electrolyte distribution and cell performance in the molten carbonate fuel cell. J Electrochem Soc 147:1240–1244CrossRef
143.
Zurück zum Zitat Lundblad A, Bergman B (1997) Determination of contact angle in porous molten-carbonate fuel-cell electrodes. J Electrochem Soc 144:984–987CrossRef Lundblad A, Bergman B (1997) Determination of contact angle in porous molten-carbonate fuel-cell electrodes. J Electrochem Soc 144:984–987CrossRef
144.
Zurück zum Zitat Matsumura M, Selman JR (1992) Polarization effects on meniscus characteristics in molten carbonate. J Electrochem Soc 139:1255–1261CrossRef Matsumura M, Selman JR (1992) Polarization effects on meniscus characteristics in molten carbonate. J Electrochem Soc 139:1255–1261CrossRef
145.
Zurück zum Zitat Yuh CY, Selman JR (1984) Polarization of the molten carbonate fuel cell anode and cathode. J Electrochem Soc 131:2062–2069CrossRef Yuh CY, Selman JR (1984) Polarization of the molten carbonate fuel cell anode and cathode. J Electrochem Soc 131:2062–2069CrossRef
146.
Zurück zum Zitat Austin LG, Ariet M, Walker RD, Wood GB, Comyn RH (1965) Simple-pore and thin-film models of porous gas diffusion electrodes. Ind Eng Chem Fundam 4:321–327CrossRef Austin LG, Ariet M, Walker RD, Wood GB, Comyn RH (1965) Simple-pore and thin-film models of porous gas diffusion electrodes. Ind Eng Chem Fundam 4:321–327CrossRef
147.
Zurück zum Zitat Will FG, BenDaniel DJ (1969) Significance of electrolyte films for performance of porous hydrogen electrodes: I. Film model. J Electrochem Soc 116:933–937CrossRef Will FG, BenDaniel DJ (1969) Significance of electrolyte films for performance of porous hydrogen electrodes: I. Film model. J Electrochem Soc 116:933–937CrossRef
148.
Zurück zum Zitat Cobb JT, Albright LF (1968) The effect of preoxidation and meniscus shape on the hydrogen-platinum anode of a molten-carbonate fuel cell. J Electrochem Soc 115:2–6CrossRef Cobb JT, Albright LF (1968) The effect of preoxidation and meniscus shape on the hydrogen-platinum anode of a molten-carbonate fuel cell. J Electrochem Soc 115:2–6CrossRef
149.
Zurück zum Zitat Mitteldorf J, Wilemski G (1984) Film thickness and distribution of electrolyte in porous fuel cell components. J Electrochem Soc 131:1784–1788CrossRef Mitteldorf J, Wilemski G (1984) Film thickness and distribution of electrolyte in porous fuel cell components. J Electrochem Soc 131:1784–1788CrossRef
150.
Zurück zum Zitat Burshtein RC, Markin VS, Pshenichnikov AG, Chismadgev VA, Chirkov YG (1964) The relationship between structure and electrochemical properties of porous gas electrodes. Electrochim Acta 9:773–787CrossRef Burshtein RC, Markin VS, Pshenichnikov AG, Chismadgev VA, Chirkov YG (1964) The relationship between structure and electrochemical properties of porous gas electrodes. Electrochim Acta 9:773–787CrossRef
151.
Zurück zum Zitat Giner J, Hunter C (1969) The mechanism of operation of the teflon-bonded gas diffusion electrode: a mathematical model. J Electrochem Soc 116:1124–1130CrossRef Giner J, Hunter C (1969) The mechanism of operation of the teflon-bonded gas diffusion electrode: a mathematical model. J Electrochem Soc 116:1124–1130CrossRef
152.
Zurück zum Zitat Bodén A, Yoshikawa M, Lindbergh G (2008) Influence of anode pore-size distribution and total electrolyte filling degree on molten carbonate fuel cell performance. J Electrochem Soc 155:B172–B179CrossRef Bodén A, Yoshikawa M, Lindbergh G (2008) Influence of anode pore-size distribution and total electrolyte filling degree on molten carbonate fuel cell performance. J Electrochem Soc 155:B172–B179CrossRef
153.
Zurück zum Zitat Yoshikawa M, Bodén A, Sparr M, Lindbergh G (2006) Experimental determination of effective surface area and conductivities in the porous anode of molten carbonate fuel cell. J Power Sources 158:94–102CrossRef Yoshikawa M, Bodén A, Sparr M, Lindbergh G (2006) Experimental determination of effective surface area and conductivities in the porous anode of molten carbonate fuel cell. J Power Sources 158:94–102CrossRef
154.
Zurück zum Zitat Gao L, Selman JR, Nash P (2021) Dynamic wetting of porous Ni substrate under MCFC conditions. Int J Hydrogen Energy 46:15066–15077CrossRef Gao L, Selman JR, Nash P (2021) Dynamic wetting of porous Ni substrate under MCFC conditions. Int J Hydrogen Energy 46:15066–15077CrossRef
Metadaten
Titel
Materials and wetting issues in molten carbonate fuel cell technology: a review
verfasst von
Liangjuan Gao
J. Robert Selman
Philip Nash
Publikationsdatum
26.10.2023
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 41/2023
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-023-08958-7

Weitere Artikel der Ausgabe 41/2023

Journal of Materials Science 41/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.