Skip to main content
Erschienen in: Journal of Iron and Steel Research International 3/2022

28.09.2021 | Original Paper

Mathematical modeling of flow field in slab continuous casting mold considering mold powder and solidified shell with high temperature quantitative measurement

verfasst von: Yi-bo Liu, Jian Yang, Chao Ma, Tao Zhang, Fu-bin Gao, Tai-quan Li, Jun-li Chen

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optimization of mathematical model of flow field in slab continuous casting mold was performed by means of industrial measurement and mathematical modeling. The rod deflection method was used to quantitatively measure the velocities near the mold surface at high temperature. The measurement results were compared with the simulation results of three mathematical models at different argon gas flow rates of 6, 10 and 14 L min−1. The model 1 neglects the mold powder layer, thermal effect and solidified shell. The model 2 only considers the influence of mold powder layer. The model 3 considers the influence of mold powder layer, thermal effect and solidified shell on the flow field. In all three models, the diameter of argon bubbles obeys Rosin–Rammler distribution fitted according to the experimental data of others’ previous work. With increasing the argon gas flow rate, the velocity of liquid steel near the mold surface decreases. The model 1 seriously underestimates the shear stress of liquid steel near the mold surface, and its calculation results show higher velocity near the mold surface, lower turbulent kinetic energy and wider distribution of argon gas bubbles in the mold. The simulation results of model 2 only considering the viscous resistance of the mold powder layer to liquid steel makes the velocity near the surface lower than the measurement results obviously. The calculated velocities near the mold surface with model 3 are in best agreement with the measured results, showing the reasonable spatial distribution range of argon bubbles in the mold and the moderate turbulent kinetic energy. In the present conditions, the best argon gas flow rate is 10 L min−1 due to the moderate velocity near the mold surface, the appropriate distribution of argon gas bubbles in the mold and the smallest fluctuation amplitude on the mold surface.
Literatur
[1]
Zurück zum Zitat Z.H. Zhang, H.L. Wu, L. Feng, S.F. Liu, Y. Zhang, J. Iron Steel Res. 28 (2016) No. 5, 1–6.CrossRef Z.H. Zhang, H.L. Wu, L. Feng, S.F. Liu, Y. Zhang, J. Iron Steel Res. 28 (2016) No. 5, 1–6.CrossRef
[2]
Zurück zum Zitat X.P. Yang, G.Q. Li, J.P. Rao, Z.Z. Yang, J. Wuhan Univ. Sci. Technol. 39 (2016) 12–18. X.P. Yang, G.Q. Li, J.P. Rao, Z.Z. Yang, J. Wuhan Univ. Sci. Technol. 39 (2016) 12–18.
[3]
Zurück zum Zitat C.N. Wang, L.Y. Wen, D.F. Chen, Z. Peng, J. Zhang, X. Jin, D.J. Zhang, Chin. J. Process Eng. 9 (2009) 325–328. C.N. Wang, L.Y. Wen, D.F. Chen, Z. Peng, J. Zhang, X. Jin, D.J. Zhang, Chin. J. Process Eng. 9 (2009) 325–328.
[4]
Zurück zum Zitat H.B. Lu, C.G. Cheng, Y. Li, M.L. Yang, Y. Jin, Iron and Steel 53 (2018) No. 4, 27–36. H.B. Lu, C.G. Cheng, Y. Li, M.L. Yang, Y. Jin, Iron and Steel 53 (2018) No. 4, 27–36.
[5]
Zurück zum Zitat S.M. Cho, B.G. Thomas, S.H. Kim, Metall. Mater. Trans. B 50 (2019) 52–76.CrossRef S.M. Cho, B.G. Thomas, S.H. Kim, Metall. Mater. Trans. B 50 (2019) 52–76.CrossRef
[7]
Zurück zum Zitat A. Vakhrushev, M. Wu, A. Ludwig, G. Nitzl, Y. Tang, G. Hackl, Experimental Verification of a 3-Phase Continuous Casting Simulation Using a Water Model, in: Proceedings of 8th ECCC Conference, Graz, Austria, 2014. A. Vakhrushev, M. Wu, A. Ludwig, G. Nitzl, Y. Tang, G. Hackl, Experimental Verification of a 3-Phase Continuous Casting Simulation Using a Water Model, in: Proceedings of 8th ECCC Conference, Graz, Austria, 2014.
[8]
Zurück zum Zitat P. Zhao, Q. Li, S.B. Kuang, Z.S. Zou, High Temp. Mater. Proc. 36 (2017) 551–565.CrossRef P. Zhao, Q. Li, S.B. Kuang, Z.S. Zou, High Temp. Mater. Proc. 36 (2017) 551–565.CrossRef
[9]
Zurück zum Zitat M. Saeedipour, S. Puttinger, S. Pirker, in: Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries, SINTEF Academic Press, Trondheim, Norway, 2017, pp. 507–513. M. Saeedipour, S. Puttinger, S. Pirker, in: Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries, SINTEF Academic Press, Trondheim, Norway, 2017, pp. 507–513.
[10]
Zurück zum Zitat P. Sulasalmi, A. Kärnä, T. Fabritius, J. Savolainen, ISIJ Int. 49 (2009) 1661–1667.CrossRef P. Sulasalmi, A. Kärnä, T. Fabritius, J. Savolainen, ISIJ Int. 49 (2009) 1661–1667.CrossRef
[11]
Zurück zum Zitat M. Iguchi, J. Yoshida, T. Shimizu, Y. Mizuno, ISIJ Int. 40 (2000) 685–691. M. Iguchi, J. Yoshida, T. Shimizu, Y. Mizuno, ISIJ Int. 40 (2000) 685–691.
[12]
Zurück zum Zitat Y.Z. Luo, L.J. Zhang, H.B. Li, Y. Cui, Y.J. Ni, X.W. Pei, China Metallurgy 26 (2016) No. 11, 34–40. Y.Z. Luo, L.J. Zhang, H.B. Li, Y. Cui, Y.J. Ni, X.W. Pei, China Metallurgy 26 (2016) No. 11, 34–40.
[13]
Zurück zum Zitat D.J. Zou, Z.S. Zou, Continuous Casting (2009) No. 6, 5–8+12. D.J. Zou, Z.S. Zou, Continuous Casting (2009) No. 6, 5–8+12.
[14]
[15]
Zurück zum Zitat B.G. Thomas, X. Huang, R.C. Sussman, Metall. Mater. Trans. B 25 (1994) 527–547.CrossRef B.G. Thomas, X. Huang, R.C. Sussman, Metall. Mater. Trans. B 25 (1994) 527–547.CrossRef
[16]
Zurück zum Zitat J.M. Zhang, L.F. Wang, X.H. Wang, L. Zhang, H.B. Tang, Acta Metall. Sin. 39 (2003) 1281–1284. J.M. Zhang, L.F. Wang, X.H. Wang, L. Zhang, H.B. Tang, Acta Metall. Sin. 39 (2003) 1281–1284.
[17]
Zurück zum Zitat C. Zhang, Y.Q. Wang, D.X. Cai, Z.M. Zhu, W.Z. Wang, J. Iron Steel Res. 12 (2000) No. 2, 21–24. C. Zhang, Y.Q. Wang, D.X. Cai, Z.M. Zhu, W.Z. Wang, J. Iron Steel Res. 12 (2000) No. 2, 21–24.
[18]
Zurück zum Zitat K. Sołek, M. Korolczuk-Hejnak, W. Ślęzak, Arch. Metall. Mater. 57 (2012) 333–338. K. Sołek, M. Korolczuk-Hejnak, W. Ślęzak, Arch. Metall. Mater. 57 (2012) 333–338.
[19]
Zurück zum Zitat K. Sołek, M. Korolczuk-Hejnak, M. Karbowniczek, Arch. Metall. Mater. 56 (2011) 593–598.CrossRef K. Sołek, M. Korolczuk-Hejnak, M. Karbowniczek, Arch. Metall. Mater. 56 (2011) 593–598.CrossRef
[20]
[21]
Zurück zum Zitat S.D. Wang, X.B. Zhang, L.F. Zhang, Q.Q. Wang, Steel Res. Int. 89 (2018) 1800263.CrossRef S.D. Wang, X.B. Zhang, L.F. Zhang, Q.Q. Wang, Steel Res. Int. 89 (2018) 1800263.CrossRef
[22]
Zurück zum Zitat L.F. Zhang, X.B. Zhang, Y. Ren, W. Yang, Metall. Res. Technol. 116 (2019) 215.CrossRef L.F. Zhang, X.B. Zhang, Y. Ren, W. Yang, Metall. Res. Technol. 116 (2019) 215.CrossRef
[23]
Zurück zum Zitat B. Rietow, B.G. Thomas, in: AISTech 2008 Steelmaking Conference Proceedings, AIST, Pittsburgh, PA, USA, 2008, pp. 1–11. B. Rietow, B.G. Thomas, in: AISTech 2008 Steelmaking Conference Proceedings, AIST, Pittsburgh, PA, USA, 2008, pp. 1–11.
[24]
Zurück zum Zitat L. Ren, L.F. Zhang, Q.Q. Wang, Iron and Steel 51 (2016) No. 2, 49–54. L. Ren, L.F. Zhang, Q.Q. Wang, Iron and Steel 51 (2016) No. 2, 49–54.
[25]
Zurück zum Zitat R. Chaudhary, B.T. Rietow, B.G. Thomas, in: Proceedings of the Materials Science and Technology Conference, Materials Science and Technology, Pennsylvania, USA, 2009, pp. 1090–1101. R. Chaudhary, B.T. Rietow, B.G. Thomas, in: Proceedings of the Materials Science and Technology Conference, Materials Science and Technology, Pennsylvania, USA, 2009, pp. 1090–1101.
[27]
Zurück zum Zitat P. Jiang, J. Yang, T. Zhang, G.J. Xu, H.J. Liu, J.J. Zhou, W. Qin, Metals 10 (2020) 9.CrossRef P. Jiang, J. Yang, T. Zhang, G.J. Xu, H.J. Liu, J.J. Zhou, W. Qin, Metals 10 (2020) 9.CrossRef
[28]
Zurück zum Zitat T. Zhang, J. Yang, G.J. Xu, H.J. Liu, J.J. Zhou, W. Qin, Int. J. Miner. Metall. Mater. 28 (2021) 238–248.CrossRef T. Zhang, J. Yang, G.J. Xu, H.J. Liu, J.J. Zhou, W. Qin, Int. J. Miner. Metall. Mater. 28 (2021) 238–248.CrossRef
[29]
Zurück zum Zitat H.B. Lu, C.G. Cheng, Y. Li, M.L. Yang, Y. Jin, Iron and Steel 53 (2018) No. 4, 27–36+41. H.B. Lu, C.G. Cheng, Y. Li, M.L. Yang, Y. Jin, Iron and Steel 53 (2018) No. 4, 27–36+41.
[30]
Zurück zum Zitat N. Cao, M.Y. Zhu, J.X. Song, X.G. Leng, N.L. Cheng, in: Proceedings of the 8th National Conference on Continuous Casting, The Chinese Society for Metals, Haikou, China, 2007, pp. 248–252. N. Cao, M.Y. Zhu, J.X. Song, X.G. Leng, N.L. Cheng, in: Proceedings of the 8th National Conference on Continuous Casting, The Chinese Society for Metals, Haikou, China, 2007, pp. 248–252.
[32]
Zurück zum Zitat L.B. Trindade, J.E.A. Nadalon, A.C. Contini, R.C. Barroso, Steel Res. Int. 88 (2017) 1600319.CrossRef L.B. Trindade, J.E.A. Nadalon, A.C. Contini, R.C. Barroso, Steel Res. Int. 88 (2017) 1600319.CrossRef
[33]
Zurück zum Zitat Q.Q. Wang, Study on the multiphase flow, heat transfer and solidification, motion and entrapment of inclusions during continuous casting, University of Science and Technology Beijing, Beijing, China, 2017. Q.Q. Wang, Study on the multiphase flow, heat transfer and solidification, motion and entrapment of inclusions during continuous casting, University of Science and Technology Beijing, Beijing, China, 2017.
[34]
Zurück zum Zitat S.X. Li, X.M. Zhang, L. Li, P. Lan, H.Y. Tang, J.Q. Zhang, Chin. J. Eng. 41 (2019) 199–208. S.X. Li, X.M. Zhang, L. Li, P. Lan, H.Y. Tang, J.Q. Zhang, Chin. J. Eng. 41 (2019) 199–208.
[35]
[36]
Zurück zum Zitat J. Savage, W.H. Pritchard, J. Iron Steel Inst. 178 (1954) 269–277. J. Savage, W.H. Pritchard, J. Iron Steel Inst. 178 (1954) 269–277.
[37]
Zurück zum Zitat V. Seshadri, C.A. da Silva, I.A. da Silva, Iron and Steel Making 2 (2006) 499–510. V. Seshadri, C.A. da Silva, I.A. da Silva, Iron and Steel Making 2 (2006) 499–510.
Metadaten
Titel
Mathematical modeling of flow field in slab continuous casting mold considering mold powder and solidified shell with high temperature quantitative measurement
verfasst von
Yi-bo Liu
Jian Yang
Chao Ma
Tao Zhang
Fu-bin Gao
Tai-quan Li
Jun-li Chen
Publikationsdatum
28.09.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 3/2022
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00654-7

Weitere Artikel der Ausgabe 3/2022

Journal of Iron and Steel Research International 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.