Skip to main content
Erschienen in: Wireless Personal Communications 4/2017

01.06.2017

Mathematical Modeling of n-Sided Polygon Metamaterial Split Ring Resonators for 5.8 GHz ISM Band Applications

verfasst von: Prerna Saxena, Ashwin Kothari

Erschienen in: Wireless Personal Communications | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metamaterials have become an interesting area of research in electromagnetism due to their unique characteristics which can radically change the world of wireless communication. Split ring resonator (SRR) is the most commonly used metamaterial structure which is used for preventing signal propagation at the desired frequency band due to its capability to exhibit negative permeability and stop band characteristics. This paper presents SRR designs for 5.8 GHz industrial, scientific and medical band applications. Rings of the designed SRRs are n-sided regular polygons. We have proposed a mathematical model for the SRR to estimate the shape of SRR for given values of coupling and bandwidth at 5.8 GHz. Subsequently, mathematical equations are proposed for the estimation of coupling and bandwidth from given shape of SRR for 5.8 GHz band. Proposed SRR designs and their mathematical models find applications in the areas such as reduction of mutual coupling in antenna arrays and design of microwave band stop filters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pendry, J., Holden, A., Stewart, W., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76(25), 4773.CrossRef Pendry, J., Holden, A., Stewart, W., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76(25), 4773.CrossRef
2.
Zurück zum Zitat Pendry, J. B., Holden, A. J., Robbins, D., & Stewart, W. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075–2084.CrossRef Pendry, J. B., Holden, A. J., Robbins, D., & Stewart, W. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075–2084.CrossRef
3.
Zurück zum Zitat Choi, J., & Seo, C. (2008). Microstrip square open-loop multiple split-ring resonator for low-phase-noise VCO. IEEE Transactions on Microwave Theory and Techniques, 56(12), 3245–3252.CrossRef Choi, J., & Seo, C. (2008). Microstrip square open-loop multiple split-ring resonator for low-phase-noise VCO. IEEE Transactions on Microwave Theory and Techniques, 56(12), 3245–3252.CrossRef
4.
Zurück zum Zitat Aoki, Y., Uno, T., & Arima, T. (2013). Frequency band widening of negative permeability using split ring resonators. In Proceedings of 2013 URSI International Symposium on Electromagnetic Theory (EMTS) (pp. 712–715). IEEE. Aoki, Y., Uno, T., & Arima, T. (2013). Frequency band widening of negative permeability using split ring resonators. In Proceedings of 2013 URSI International Symposium on Electromagnetic Theory (EMTS) (pp. 712–715). IEEE.
5.
Zurück zum Zitat Dai, Y., Liu, S.-B., Kong, X.-K., Zhang, H.-F., & Chen, C. (2014). Nonlinear phenomena of left-handed nonlinear split-ring resonators. Optik-International Journal for Light and Electron Optics, 125(16), 4484–4487.CrossRef Dai, Y., Liu, S.-B., Kong, X.-K., Zhang, H.-F., & Chen, C. (2014). Nonlinear phenomena of left-handed nonlinear split-ring resonators. Optik-International Journal for Light and Electron Optics, 125(16), 4484–4487.CrossRef
6.
Zurück zum Zitat Liu, H., Fan, Y., Zhang, Z., Zhao, Y., Xu, W., Guan, X., et al. (2013). Dual-band superconducting bandpass filter using embedded split ring resonator. IEEE Transactions on Applied Superconductivity, 23(3), 1300304.CrossRef Liu, H., Fan, Y., Zhang, Z., Zhao, Y., Xu, W., Guan, X., et al. (2013). Dual-band superconducting bandpass filter using embedded split ring resonator. IEEE Transactions on Applied Superconductivity, 23(3), 1300304.CrossRef
7.
Zurück zum Zitat Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S. F., & Abbott, D. (2014). Compact dual-mode wideband filter based on complementary split-ring resonator. IEEE Microwave and Wireless Components Letters, 24(3), 152–154.CrossRef Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S. F., & Abbott, D. (2014). Compact dual-mode wideband filter based on complementary split-ring resonator. IEEE Microwave and Wireless Components Letters, 24(3), 152–154.CrossRef
8.
Zurück zum Zitat Horestani, A. K., Duran-Sindreu, M., Naqui, J., Fumeaux, C., & Martin, F. (2014). S-shaped complementary split ring resonators and their application to compact differential bandpass filters with common-mode suppression. IEEE Microwave and Wireless Components Letters, 24(3), 149–151.CrossRef Horestani, A. K., Duran-Sindreu, M., Naqui, J., Fumeaux, C., & Martin, F. (2014). S-shaped complementary split ring resonators and their application to compact differential bandpass filters with common-mode suppression. IEEE Microwave and Wireless Components Letters, 24(3), 149–151.CrossRef
9.
Zurück zum Zitat Dong, Y., & Itoh, T. (2011). Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design. IEEE Microwave and Wireless Components Letters, 21(1), 10–12.CrossRef Dong, Y., & Itoh, T. (2011). Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design. IEEE Microwave and Wireless Components Letters, 21(1), 10–12.CrossRef
10.
Zurück zum Zitat Li, J., Huang, Y., Wen, G., Xue, X., & Song, J. (2015). Compact and high-selectivity microstrip bandpass filter using two-stage twist-modified asymmetric split-ring resonators. Electronics Letters, 51(8), 635–637.CrossRef Li, J., Huang, Y., Wen, G., Xue, X., & Song, J. (2015). Compact and high-selectivity microstrip bandpass filter using two-stage twist-modified asymmetric split-ring resonators. Electronics Letters, 51(8), 635–637.CrossRef
11.
Zurück zum Zitat Huang, Y., Wen, G., & Li, J. (2015). Compact and highly-selective microstrip bandpass filter and diplexer using two-stage twist modified split-ring resonators. In Proceedings of 2015 IEEE International Microwave Symposium on MTT-S (pp. 1–4). IEEE. Huang, Y., Wen, G., & Li, J. (2015). Compact and highly-selective microstrip bandpass filter and diplexer using two-stage twist modified split-ring resonators. In Proceedings of 2015 IEEE International Microwave Symposium on MTT-S (pp. 1–4). IEEE.
12.
Zurück zum Zitat Bage, A., & Das, S. (2013). Studies of some non conventional split ring and complementary split ring resonators for waveguide band stop & band pass filter application. In International Conference on Microwave and Photonics (ICMAP) (pp. 1–5). IEEE. Bage, A., & Das, S. (2013). Studies of some non conventional split ring and complementary split ring resonators for waveguide band stop & band pass filter application. In International Conference on Microwave and Photonics (ICMAP) (pp. 1–5). IEEE.
13.
Zurück zum Zitat Bose, S., Ramaraj, M., Raghavan, S., & Kumar, S. (2012). Mathematical modeling, equivalent circuit analysis and genetic algorithm optimization of an N-sided regular polygon split ring resonator (NRPSRR). Procedia Technology, 6, 763–770.CrossRef Bose, S., Ramaraj, M., Raghavan, S., & Kumar, S. (2012). Mathematical modeling, equivalent circuit analysis and genetic algorithm optimization of an N-sided regular polygon split ring resonator (NRPSRR). Procedia Technology, 6, 763–770.CrossRef
14.
Zurück zum Zitat Bait-Suwailam, M. M., Siddiqui, O. F., & Ramahi, O. M. (2010). Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas and Wireless Propagation Letters, 9, 876–878.CrossRef Bait-Suwailam, M. M., Siddiqui, O. F., & Ramahi, O. M. (2010). Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas and Wireless Propagation Letters, 9, 876–878.CrossRef
15.
Zurück zum Zitat Habashi, A., Nourinia, J., & Ghobadi, C. (2011). Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators (FSRRs). IEEE Antennas and Wireless Propagation Letters, 10, 862–865.CrossRef Habashi, A., Nourinia, J., & Ghobadi, C. (2011). Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators (FSRRs). IEEE Antennas and Wireless Propagation Letters, 10, 862–865.CrossRef
16.
Zurück zum Zitat Chandu, D., Karthikeyan, S., & Phani Kumar, K. (2015). Reduction of mutual coupling in a two element patch antenna array using sub-wavelength resonators. In Twenty First National Conference on Communications (NCC) (pp. 1–5). IEEE. Chandu, D., Karthikeyan, S., & Phani Kumar, K. (2015). Reduction of mutual coupling in a two element patch antenna array using sub-wavelength resonators. In Twenty First National Conference on Communications (NCC) (pp. 1–5). IEEE.
17.
Zurück zum Zitat Gheethan, A., & Mumcu, G. (2011). Coupling reduction of coupled double loop GPS antennas using split ring resonators. In IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 2613–2616). IEEE. Gheethan, A., & Mumcu, G. (2011). Coupling reduction of coupled double loop GPS antennas using split ring resonators. In IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 2613–2616). IEEE.
18.
Zurück zum Zitat Liu, Z. (2013) Suppression of the mutual coupling between microstrip antenna arrays using negative permeability metamaterial on LTCC substrate. In Antennas and Propagation Society International Symposium (APSURSI), 2013 IEEE (pp. 1258–1259). IEEE. Liu, Z. (2013) Suppression of the mutual coupling between microstrip antenna arrays using negative permeability metamaterial on LTCC substrate. In Antennas and Propagation Society International Symposium (APSURSI), 2013 IEEE (pp. 1258–1259). IEEE.
19.
Zurück zum Zitat HafeziFard, R., Naser-Moghadasi, M., Rashed-Mohassel, J., & Sadeghzadeh Sheikhan, R.-A. (2015). Mutual coupling reduction for two closely-space meander line antennas using metamaterial substrate. IEEE Antennas and Wireless Propagation Letters, 15, 40–43. HafeziFard, R., Naser-Moghadasi, M., Rashed-Mohassel, J., & Sadeghzadeh Sheikhan, R.-A. (2015). Mutual coupling reduction for two closely-space meander line antennas using metamaterial substrate. IEEE Antennas and Wireless Propagation Letters, 15, 40–43.
20.
Zurück zum Zitat Deepak, U., Roshna, T., Nijas, C., Vasudevan, K., & Mohanan, P. (2015). A dual band SIR coupled dipole antenna for 2.4/5.2/5.8 GHz applications. IEEE Transactions on Antennas and Propagation, 63(4), 1514–1520.MathSciNetCrossRef Deepak, U., Roshna, T., Nijas, C., Vasudevan, K., & Mohanan, P. (2015). A dual band SIR coupled dipole antenna for 2.4/5.2/5.8 GHz applications. IEEE Transactions on Antennas and Propagation, 63(4), 1514–1520.MathSciNetCrossRef
21.
Zurück zum Zitat King, C. (2014). Fundamentals of wireless communications. In Cement Industry Technical Conference (CIC), 2014 IEEE-IAS/PCA (pp. 1–7). IEEE. King, C. (2014). Fundamentals of wireless communications. In Cement Industry Technical Conference (CIC), 2014 IEEE-IAS/PCA (pp. 1–7). IEEE.
22.
Zurück zum Zitat Smith, D., Vier, D., Koschny, T., & Soukoulis, C. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71(3), 036617.CrossRef Smith, D., Vier, D., Koschny, T., & Soukoulis, C. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71(3), 036617.CrossRef
23.
Zurück zum Zitat Lancaster, P., & Salkauskas, K. (1986). Curve and surface fitting. New York: Academic press.MATH Lancaster, P., & Salkauskas, K. (1986). Curve and surface fitting. New York: Academic press.MATH
24.
Zurück zum Zitat Cadwell, J., & Williams, D. (1961). Some orthogonal methods of curve and surface fitting. The Computer Journal, 4(3), 260–264.MathSciNetCrossRefMATH Cadwell, J., & Williams, D. (1961). Some orthogonal methods of curve and surface fitting. The Computer Journal, 4(3), 260–264.MathSciNetCrossRefMATH
25.
26.
Zurück zum Zitat Draper, N. R., Smith, H., & Pownell, E. (1966). Applied regression analysis (Vol. 3). New York: Wiley. Draper, N. R., Smith, H., & Pownell, E. (1966). Applied regression analysis (Vol. 3). New York: Wiley.
27.
Zurück zum Zitat Gujarati, D. N. (2012). Basic econometrics. New Delhi: Tata McGraw-Hill Education. Gujarati, D. N. (2012). Basic econometrics. New Delhi: Tata McGraw-Hill Education.
Metadaten
Titel
Mathematical Modeling of n-Sided Polygon Metamaterial Split Ring Resonators for 5.8 GHz ISM Band Applications
verfasst von
Prerna Saxena
Ashwin Kothari
Publikationsdatum
01.06.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4457-z

Weitere Artikel der Ausgabe 4/2017

Wireless Personal Communications 4/2017 Zur Ausgabe

Neuer Inhalt