Skip to main content
Erschienen in: Quantum Information Processing 12/2015

01.12.2015

Maximal entanglement concentration for a set of \((n+1)\)-qubit states

verfasst von: Anindita Banerjee, Chitra Shukla, Anirban Pathak

Erschienen in: Quantum Information Processing | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose two schemes for concentration of \((n+1)\)-qubit entangled states that can be written in the form of \(\left( \alpha |\varphi _{0}\rangle |0\rangle +\beta |\varphi _{1}\rangle |1\rangle \right) _{n+1}\) where \(|\varphi _{0}\rangle \) and \(|\varphi _{1}\rangle \) are mutually orthogonal n-qubit states. The importance of this general form is that the entangled states such as Bell, cat, GHZ, GHZ-like, \(|\varOmega \rangle \), \(|Q_{5}\rangle \), 4-qubit cluster states and specific states from the nine SLOCC-nonequivalent families of 4-qubit entangled states can be expressed in this form. The proposed entanglement concentration protocol is based on the local operations and classical communications (LOCC). It is shown that the maximum success probability for ECP using quantum nondemolition technique (QND) is \(2\beta ^{2}\) for \((n+1)\)-qubit states of the prescribed form. It is shown that the proposed schemes can be implemented optically. Further, it is also noted that the proposed schemes can be implemented using quantum dot and microcavity systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)CrossRefADS Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)CrossRefADS
2.
Zurück zum Zitat Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)CrossRefADS Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)CrossRefADS
3.
Zurück zum Zitat Bandyopadhyay, S.: Qubit- and entanglement-assisted optimal entanglement concentration. Phys. Rev. A 62, 032308 (2000)CrossRefADS Bandyopadhyay, S.: Qubit- and entanglement-assisted optimal entanglement concentration. Phys. Rev. A 62, 032308 (2000)CrossRefADS
4.
Zurück zum Zitat Gu, Y.J., Li, W.D., Guo, G.C.: Protocol and quantum circuits for realizing deterministic entanglement concentration. Phys. Rev. A 73, 022321 (2006)CrossRefADS Gu, Y.J., Li, W.D., Guo, G.C.: Protocol and quantum circuits for realizing deterministic entanglement concentration. Phys. Rev. A 73, 022321 (2006)CrossRefADS
5.
Zurück zum Zitat Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation usinglinear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)MathSciNetCrossRefADS Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation usinglinear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)MathSciNetCrossRefADS
6.
Zurück zum Zitat Choudhury, B.S., Dhara, A.: A three-qubit state entanglement concentration protocol assisted by two-qubit systems. Int. J. Theor. Phys. 52, 3965 (2013)MathSciNetCrossRefMATH Choudhury, B.S., Dhara, A.: A three-qubit state entanglement concentration protocol assisted by two-qubit systems. Int. J. Theor. Phys. 52, 3965 (2013)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and 9 families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077 (2015)MathSciNetCrossRefADS Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and 9 families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077 (2015)MathSciNetCrossRefADS
9.
Zurück zum Zitat Lan, Z.: Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates. Chin. Phys. B 23, 050308 (2014)CrossRefADS Lan, Z.: Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates. Chin. Phys. B 23, 050308 (2014)CrossRefADS
10.
Zurück zum Zitat Zhao, S.Y., Liu, J., Zhou, L., Sheng, Y.B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Inf. Process. 12, 3633 (2013)MathSciNetCrossRefADSMATH Zhao, S.Y., Liu, J., Zhou, L., Sheng, Y.B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Inf. Process. 12, 3633 (2013)MathSciNetCrossRefADSMATH
11.
Zurück zum Zitat Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)CrossRefADS Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)CrossRefADS
12.
Zurück zum Zitat Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)CrossRefADS Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)CrossRefADS
13.
Zurück zum Zitat Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)CrossRefADS Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)CrossRefADS
14.
Zurück zum Zitat Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343 (2003)CrossRefADS Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343 (2003)CrossRefADS
15.
Zurück zum Zitat Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)CrossRefADS Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)CrossRefADS
16.
Zurück zum Zitat Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)CrossRefADS Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)CrossRefADS
17.
Zurück zum Zitat Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)CrossRefADS Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)CrossRefADS
18.
Zurück zum Zitat Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)CrossRefADS Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)CrossRefADS
19.
Zurück zum Zitat Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12, 1885 (2013)CrossRefADSMATH Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12, 1885 (2013)CrossRefADSMATH
20.
Zurück zum Zitat Sheng, Y.B., Liu, J., Zhao, S.Y., Zhou, L.: Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin. Sci. Bull. 58, 3507 (2013)CrossRef Sheng, Y.B., Liu, J., Zhao, S.Y., Zhou, L.: Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin. Sci. Bull. 58, 3507 (2013)CrossRef
21.
Zurück zum Zitat Ren, B.C., Wei, H.R., Li, T., Hua, M., Deng, F.G.: Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements. Quantum Inf. Process. 13, 825 (2014)MathSciNetCrossRefADSMATH Ren, B.C., Wei, H.R., Li, T., Hua, M., Deng, F.G.: Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements. Quantum Inf. Process. 13, 825 (2014)MathSciNetCrossRefADSMATH
22.
Zurück zum Zitat Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71 (2013)CrossRefADS Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71 (2013)CrossRefADS
23.
Zurück zum Zitat Rigas, I., Klimov, A.B., Sanchez-Soto, L.L., Leuchs, G.: Nonlinear cross-Kerr quasiclassical dynamics. New J. Phys. 15, 043038 (2013)CrossRefADS Rigas, I., Klimov, A.B., Sanchez-Soto, L.L., Leuchs, G.: Nonlinear cross-Kerr quasiclassical dynamics. New J. Phys. 15, 043038 (2013)CrossRefADS
24.
Zurück zum Zitat Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input–output process in low-Q cavity QED regime. Opt. Express 21(Issue 4), 4093 (2013)MathSciNetCrossRefADS Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input–output process in low-Q cavity QED regime. Opt. Express 21(Issue 4), 4093 (2013)MathSciNetCrossRefADS
25.
Zurück zum Zitat Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf. Process. 12(Issue 6), 2087 (2013)MathSciNetCrossRefADSMATH Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf. Process. 12(Issue 6), 2087 (2013)MathSciNetCrossRefADSMATH
26.
Zurück zum Zitat Zhou, L., Wang, X.F., Sheng, Y.B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. 53, 1752 (2014)CrossRefMATH Zhou, L., Wang, X.F., Sheng, Y.B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. 53, 1752 (2014)CrossRefMATH
27.
Zurück zum Zitat Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.-M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013)MathSciNetCrossRefADSMATH Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.-M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013)MathSciNetCrossRefADSMATH
28.
Zurück zum Zitat Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. JOSA B 30(Issue 3), 678 (2013)CrossRefADS Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. JOSA B 30(Issue 3), 678 (2013)CrossRefADS
29.
Zurück zum Zitat Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013)MathSciNetCrossRefADSMATH Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013)MathSciNetCrossRefADSMATH
30.
Zurück zum Zitat Hea, L.Y., Cao, C., Wang, C.: Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system. Opt. Commun. 298, 260 (2013) Hea, L.Y., Cao, C., Wang, C.: Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system. Opt. Commun. 298, 260 (2013)
32.
Zurück zum Zitat Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venugopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143 (2015)CrossRef Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venugopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143 (2015)CrossRef
33.
Zurück zum Zitat Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)CrossRefADS Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)CrossRefADS
34.
Zurück zum Zitat Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)CrossRefADS Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)CrossRefADS
35.
Zurück zum Zitat Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)CrossRefADS Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)CrossRefADS
36.
Zurück zum Zitat Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)CrossRefADS Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)CrossRefADS
37.
Zurück zum Zitat Lo, H.K., Popescu, S.: Concentrating entanglement by local actions: Beyond mean values. Phys. Rev. A 63, 022301 (2001)CrossRefADS Lo, H.K., Popescu, S.: Concentrating entanglement by local actions: Beyond mean values. Phys. Rev. A 63, 022301 (2001)CrossRefADS
Metadaten
Titel
Maximal entanglement concentration for a set of -qubit states
verfasst von
Anindita Banerjee
Chitra Shukla
Anirban Pathak
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 12/2015
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-015-1128-4

Weitere Artikel der Ausgabe 12/2015

Quantum Information Processing 12/2015 Zur Ausgabe