Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2015

09.07.2015 | RESEARCH PAPER

Maximization of operating frequency ranges of hyperbolic elastic metamaterials by topology optimization

verfasst von: Joo Hwan Oh, Young Kwan Ahn, Yoon Young Kim

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyperbolic elastic metamaterials developed for sub-wavelength resolution allow wave propagation in the radial direction but prohibit wave propagation in the circumferential direction. Recently, a two-dimensional elastic metamaterial truly exhibiting the hyperbolic behavior has been realized and also experimented but there is a practically important design issue that its operating frequency range should be widened. Motivated by this need, the present investigation aims to set up a topology optimization formulation to maximize the operating frequency range. Because different wave physics are involved along the circumferential and radial directions, the topology optimization requires the extraction of the key physical phenomena along the two different directions. In doing so, the wave physics occurring in the hyperbolic elastic metamaterial is analyzed by using equivalent discrete models and the findings from the analysis are used to set up a topology optimization problem. The topology optimization that maximizes the operating frequency range of the hyperbolic elastic metamaterial is newly formulated by using the finite element method. After the metamaterial configuration maximizing the frequency range is found, the mechanics hidden in the optimized configuration is explained in some details by using analytic mass-spring model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ao X, Chan CT (2008) Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys Rev E 77:025601CrossRef Ao X, Chan CT (2008) Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys Rev E 77:025601CrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization, Springer Bendsøe MP, Sigmund O (2003) Topology optimization, Springer
Zurück zum Zitat Brillouin L (1946) Wave propagation in periodic structures. Dover, New YorkMATH Brillouin L (1946) Wave propagation in periodic structures. Dover, New YorkMATH
Zurück zum Zitat Chiang TY, Wu LY, Tsai CN, Chen LW (2011) A multilayered acoustic hyperlens with acoustic metamaterials. Appl Phys A 103:355–359CrossRef Chiang TY, Wu LY, Tsai CN, Chen LW (2011) A multilayered acoustic hyperlens with acoustic metamaterials. Appl Phys A 103:355–359CrossRef
Zurück zum Zitat Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization. Springer, New York Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization. Springer, New York
Zurück zum Zitat Diaz AR, Sigmund O (2010) A topology optimization method for design of negative permeability metamaterials. Struct Multidiscip Optim 41:163–177CrossRefMathSciNetMATH Diaz AR, Sigmund O (2010) A topology optimization method for design of negative permeability metamaterials. Struct Multidiscip Optim 41:163–177CrossRefMathSciNetMATH
Zurück zum Zitat Dühring MB, Sigmund O, Feurer T (2010) Design of photonic bandgap fibers by topology optimization. Opt Soc Am B 27:51–58CrossRef Dühring MB, Sigmund O, Feurer T (2010) Design of photonic bandgap fibers by topology optimization. Opt Soc Am B 27:51–58CrossRef
Zurück zum Zitat Haber RB, Jog CS, Bendsoe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Opt 11:1–12CrossRef Haber RB, Jog CS, Bendsoe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Opt 11:1–12CrossRef
Zurück zum Zitat Huang HH, Sun CT, Huang GL (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47:610–617CrossRefMathSciNet Huang HH, Sun CT, Huang GL (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47:610–617CrossRefMathSciNet
Zurück zum Zitat Huang Y, Liu S, Zhao J (2013) Optimal design of two-dimensional band-gap materials for uni-directional wave propagation. Struct Multidiscip Optim 48:487–499CrossRefMathSciNet Huang Y, Liu S, Zhao J (2013) Optimal design of two-dimensional band-gap materials for uni-directional wave propagation. Struct Multidiscip Optim 48:487–499CrossRefMathSciNet
Zurück zum Zitat Hussein MI (2004) Dynamics of banded materials and structures: analysis, design and computation in multiple scales. Dissertation, University of Michigan Hussein MI (2004) Dynamics of banded materials and structures: analysis, design and computation in multiple scales. Dissertation, University of Michigan
Zurück zum Zitat Jacob Z, Alekseyev LV, Narimanov EE (2006) Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt Exp 14:8247–8256CrossRef Jacob Z, Alekseyev LV, Narimanov EE (2006) Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt Exp 14:8247–8256CrossRef
Zurück zum Zitat Jang GW, Jeong JH, Kim YY, Sheen DW, Park CJ, Kim MN (2003) Checkerboard-free topology optimization using non-conforming finite elements. Int J Numer Methods Eng 57:1717–1735CrossRefMATH Jang GW, Jeong JH, Kim YY, Sheen DW, Park CJ, Kim MN (2003) Checkerboard-free topology optimization using non-conforming finite elements. Int J Numer Methods Eng 57:1717–1735CrossRefMATH
Zurück zum Zitat Kildishev AV, Narimanov EE (2007) Impedance-matched hyperlens. Opt Lett 32:3432–3434CrossRef Kildishev AV, Narimanov EE (2007) Impedance-matched hyperlens. Opt Lett 32:3432–3434CrossRef
Zurück zum Zitat Kim SI, Kim YY (2014) Topology optimization of planar linkage mechanisms. Int J Numer Methods Eng 98:265–286CrossRef Kim SI, Kim YY (2014) Topology optimization of planar linkage mechanisms. Int J Numer Methods Eng 98:265–286CrossRef
Zurück zum Zitat Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71:2022–2025CrossRef Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71:2022–2025CrossRef
Zurück zum Zitat Langlet P, Hladky-Hennion AC, Decarpigny JN (1995) Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method. J Acoust Soc Am 98:2792–2800CrossRef Langlet P, Hladky-Hennion AC, Decarpigny JN (1995) Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method. J Acoust Soc Am 98:2792–2800CrossRef
Zurück zum Zitat Lee J, Kikuchi N (2010) Structural topology optimization of electrical machinery to maximize stiffness with body force distribution. IEEE Trans Magn 46:3790–3794CrossRef Lee J, Kikuchi N (2010) Structural topology optimization of electrical machinery to maximize stiffness with body force distribution. IEEE Trans Magn 46:3790–3794CrossRef
Zurück zum Zitat Lee H, Liu Z, Xiong Y, Sun C, Zhang X (2007) Development of optical hyperlens for imaging below the diffraction limit. Opt Exp 15:15886–15891CrossRef Lee H, Liu Z, Xiong Y, Sun C, Zhang X (2007) Development of optical hyperlens for imaging below the diffraction limit. Opt Exp 15:15886–15891CrossRef
Zurück zum Zitat Lee HJ, Kim HW, Kim YY (2011) Far-field subwavelength imaging for ultrasonic elastic waves in a plate using an elastic hyperlens. Appl Phys Lett 98:241912CrossRef Lee HJ, Kim HW, Kim YY (2011) Far-field subwavelength imaging for ultrasonic elastic waves in a plate using an elastic hyperlens. Appl Phys Lett 98:241912CrossRef
Zurück zum Zitat Li J, Fok L, Yin X, Bartal G, Zhang X (2009) Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater 8:931–934CrossRef Li J, Fok L, Yin X, Bartal G, Zhang X (2009) Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater 8:931–934CrossRef
Zurück zum Zitat Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2010) Far-field optical hyperlens magnifying Sub-diffraction-limited objects. Science 315:1686CrossRef Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2010) Far-field optical hyperlens magnifying Sub-diffraction-limited objects. Science 315:1686CrossRef
Zurück zum Zitat Lu L, Yamamoto T, Otomori M, Yamada T, Izui K, Nishiwaki S (2013) Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance. Finite Elem Anal Des 72:1–12CrossRefMathSciNetMATH Lu L, Yamamoto T, Otomori M, Yamada T, Izui K, Nishiwaki S (2013) Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance. Finite Elem Anal Des 72:1–12CrossRefMathSciNetMATH
Zurück zum Zitat Oh JH (2014) Sub-wavelength resolution in ultrasonic waves by hyperbolic metamaterials. Dissertation, Seoul National University Oh JH (2014) Sub-wavelength resolution in ultrasonic waves by hyperbolic metamaterials. Dissertation, Seoul National University
Zurück zum Zitat Oh JH, Seung HM, Kim YY (2014) A truly hyperbolic elastic metamaterial lens. Appl Phys Lett 104:073503CrossRef Oh JH, Seung HM, Kim YY (2014) A truly hyperbolic elastic metamaterial lens. Appl Phys Lett 104:073503CrossRef
Zurück zum Zitat Otomori M, Yamada T, Izui K, Nishiwaki S, Andkjær J (2012) A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials. Comput Methods Appl Mech Eng 237–240:192–211CrossRef Otomori M, Yamada T, Izui K, Nishiwaki S, Andkjær J (2012) A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials. Comput Methods Appl Mech Eng 237–240:192–211CrossRef
Zurück zum Zitat Rupp CJ, Evgrafov A, Maute K, Dunn ML (2007) Design of phononic materials/structures for surface wave devices using topology optimization. Struct Multidiscip Optim 34:111–121CrossRefMathSciNetMATH Rupp CJ, Evgrafov A, Maute K, Dunn ML (2007) Design of phononic materials/structures for surface wave devices using topology optimization. Struct Multidiscip Optim 34:111–121CrossRefMathSciNetMATH
Zurück zum Zitat Salandrino A, Engheta N (2006) Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys Rev B 74:075103CrossRef Salandrino A, Engheta N (2006) Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys Rev B 74:075103CrossRef
Zurück zum Zitat Sigalas M, Economou EN (1993) Band structure of elastic waves in two dimesional systems. Solid State Commun 86:141–143CrossRef Sigalas M, Economou EN (1993) Band structure of elastic waves in two dimesional systems. Solid State Commun 86:141–143CrossRef
Zurück zum Zitat Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans R Soc Lond A 361:1001–1019CrossRefMathSciNetMATH Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans R Soc Lond A 361:1001–1019CrossRefMathSciNetMATH
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373CrossRefMathSciNetMATH Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373CrossRefMathSciNetMATH
Zurück zum Zitat Wang W et al (2008) Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt Express 16:21142–21148CrossRef Wang W et al (2008) Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt Express 16:21142–21148CrossRef
Zurück zum Zitat Xiong Y, Liu Z, Zhang X (2009) A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl Phys Lett 94:203108CrossRef Xiong Y, Liu Z, Zhang X (2009) A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl Phys Lett 94:203108CrossRef
Metadaten
Titel
Maximization of operating frequency ranges of hyperbolic elastic metamaterials by topology optimization
verfasst von
Joo Hwan Oh
Young Kwan Ahn
Yoon Young Kim
Publikationsdatum
09.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2015
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-015-1288-y

Weitere Artikel der Ausgabe 6/2015

Structural and Multidisciplinary Optimization 6/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.