Skip to main content
Erschienen in: Telecommunication Systems 2/2022

22.08.2022

Measuring synchronization precision in mobile sensor networks

verfasst von: F. C. S. Eiras, W. L. Zucchi

Erschienen in: Telecommunication Systems | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many applications involving the use of drones in sensor networks require precise synchronization from the involved sensors. However, not many papers evaluate the precision of the synchronism that can be obtained by means of exchanging packets in mobile sensor networks. This lack can be explained by the difficulties encountered in modeling the swift movements of the drones and the large volumes of these elements in a monitored area. Measuring phase noise also requires techniques that are quite different from those commonly used to analyze data networks. This paper suggests a simulation model based on discrete events, deployed in a Matlab Simulink® tool, which combines calculating loss probability in a mobile sensor network with measuring phase error between the sensor clock and the reference clock. Phase error is evaluated by Maximum Time Interval Error (MTIE) and Allan Deviation (ADEV) statistics. Results show that synchronism precision is strongly connected to the probability of message loss and that, with fewer losses, precision in the order of tens of nano-seconds can be obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zervopoulos, A., et al. (2020). Wireless sensor network synchronization for precision agriculture applications. Agriculture, 10(3), 1–20.CrossRef Zervopoulos, A., et al. (2020). Wireless sensor network synchronization for precision agriculture applications. Agriculture, 10(3), 1–20.CrossRef
2.
Zurück zum Zitat De Rango, F., Potrino, G., Tropea, M., Santamaria, A. F., & Fazio, P. (2019). Scalable and ligthway bio-inspired coordination protocol for FANET in precision agriculture applications. Computers & Electrical Engineering, 74, 305–318.CrossRef De Rango, F., Potrino, G., Tropea, M., Santamaria, A. F., & Fazio, P. (2019). Scalable and ligthway bio-inspired coordination protocol for FANET in precision agriculture applications. Computers & Electrical Engineering, 74, 305–318.CrossRef
3.
Zurück zum Zitat Bekmezci, İ, Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.CrossRef Bekmezci, İ, Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.CrossRef
4.
Zurück zum Zitat Federal Aviation Administration. (2016). Summary of small unmanned aircaraft rule (part 107). Washington DC. Federal Aviation Administration. (2016). Summary of small unmanned aircaraft rule (part 107). Washington DC.
5.
Zurück zum Zitat DECEA. (2015). “ICA 100-40 - Sistemas de Aeronaves Remotamente Pilotadas e o Acesso ao Espaço Aéreo Brasileiro,” p. 76. DECEA. (2015). “ICA 100-40 - Sistemas de Aeronaves Remotamente Pilotadas e o Acesso ao Espaço Aéreo Brasileiro,” p. 76.
6.
Zurück zum Zitat Sahingoz, O. K. (2013). Networking models in flying ad-hoc networks (FANETs): Concepts and challenges. Journal of Intelligent and Robotic Systems, 74(1–2), 513–527. Sahingoz, O. K. (2013). Networking models in flying ad-hoc networks (FANETs): Concepts and challenges. Journal of Intelligent and Robotic Systems, 74(1–2), 513–527.
7.
Zurück zum Zitat Ely, T. A., Burt, E. A., Prestage, J. D., Seubert, J. M., & Tjoelker, R. L. (2018). Using the deep space atomic clock for navigation and science. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(6), 950–961.CrossRef Ely, T. A., Burt, E. A., Prestage, J. D., Seubert, J. M., & Tjoelker, R. L. (2018). Using the deep space atomic clock for navigation and science. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(6), 950–961.CrossRef
8.
Zurück zum Zitat Sommer, P., Wattenhofer, R. (2009). Gradient Clock synchronization in wireless sensor networks. In International conference on information processing in sensor networks, 2009. IPSN 2009. pp. 37–48. Sommer, P., Wattenhofer, R. (2009). Gradient Clock synchronization in wireless sensor networks. In International conference on information processing in sensor networks, 2009. IPSN 2009. pp. 37–48.
9.
Zurück zum Zitat Cho, H. C. H., Jung, J. J. J., Cho, B. C. B., Jin, Y. J. Y., Lee, S.-W. L. S.-W., Baek, B. Y. (2009) Precision time synchronization using IEEE 1588 for wireless sensor networks. In 2009 international conference on computational science and engineering, vol. 2. Cho, H. C. H., Jung, J. J. J., Cho, B. C. B., Jin, Y. J. Y., Lee, S.-W. L. S.-W., Baek, B. Y. (2009) Precision time synchronization using IEEE 1588 for wireless sensor networks. In 2009 international conference on computational science and engineering, vol. 2.
10.
Zurück zum Zitat del Río, J., Toma, D., Shariat-Panahi, S., Mànuel, A., & Ramos, H. G. (2012). Precision timing in ocean sensor systems. Measurement Science and Technology, 23(2), 025801.CrossRef del Río, J., Toma, D., Shariat-Panahi, S., Mànuel, A., & Ramos, H. G. (2012). Precision timing in ocean sensor systems. Measurement Science and Technology, 23(2), 025801.CrossRef
11.
Zurück zum Zitat Mills, D. L. (1991). Internet time synchronization: The network time protocol. IEEE Transactions on Communications, 39(10), 1482–1493.CrossRef Mills, D. L. (1991). Internet time synchronization: The network time protocol. IEEE Transactions on Communications, 39(10), 1482–1493.CrossRef
12.
Zurück zum Zitat Novick, A. N., Lombardi, M. A. (2015). Practical limitations of NTP time transfer. In 2015 joint conference of the IEEE international frequency control symposium & the European frequency and time forum, FCS 2015 - Proc., no. April, pp. 570–574. Novick, A. N., Lombardi, M. A. (2015). Practical limitations of NTP time transfer. In 2015 joint conference of the IEEE international frequency control symposium & the European frequency and time forum, FCS 2015 - Proc., no. April, pp. 570–574.
13.
Zurück zum Zitat IEEE. (2008). IEEE Std 1588–2008, IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, vol. 2008. IEEE. (2008). IEEE Std 1588–2008, IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, vol. 2008.
14.
Zurück zum Zitat Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Operating Systems Review, 36, 147.CrossRef Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Operating Systems Review, 36, 147.CrossRef
15.
Zurück zum Zitat Ganeriwal, S., Kumar, R., Srivastava,M. B. (2003). Timing-sync protocol for sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems - SenSys ’03, pp. 138–149. Ganeriwal, S., Kumar, R., Srivastava,M. B. (2003). Timing-sync protocol for sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems - SenSys ’03, pp. 138–149.
16.
Zurück zum Zitat Maróti, M., Kusy,B., Simon, G., Lédeczi, Á. (2004). The flooding time synchronization protocol. In ACM International Conference on Embedded Networked Sensor Systems, pp. 39–49. Maróti, M., Kusy,B., Simon, G., Lédeczi, Á. (2004). The flooding time synchronization protocol. In ACM International Conference on Embedded Networked Sensor Systems, pp. 39–49.
17.
Zurück zum Zitat Wobschall, D., Ma, Y. (2010) Synchronization of wireless sensor networks using a modified IEEE 1588 protocol. In 2010 IEEE international symposium on precision clock synchronization for measurement, control and communication, pp. 67–70. Wobschall, D., Ma, Y. (2010) Synchronization of wireless sensor networks using a modified IEEE 1588 protocol. In 2010 IEEE international symposium on precision clock synchronization for measurement, control and communication, pp. 67–70.
18.
Zurück zum Zitat Aleksander, N., Kamil, K., Krzysztof, D., & Roman, K. (2010). Differential navigation for UAV platforms with mobile reference station. In H. Fujita & J. Sasaki (Eds.), Selected topics in applied computer science (pp. 465–471). WSEAS Press. Aleksander, N., Kamil, K., Krzysztof, D., & Roman, K. (2010). Differential navigation for UAV platforms with mobile reference station. In H. Fujita & J. Sasaki (Eds.), Selected topics in applied computer science (pp. 465–471). WSEAS Press.
19.
Zurück zum Zitat Wang, Y., Wu, S., Chen, Z., Gao, X., & Chen, G. (2017). Coverage problem with uncertain properties in wireless sensor networks: A survey. Computer Networks, 123, 200–232.CrossRef Wang, Y., Wu, S., Chen, Z., Gao, X., & Chen, G. (2017). Coverage problem with uncertain properties in wireless sensor networks: A survey. Computer Networks, 123, 200–232.CrossRef
20.
Zurück zum Zitat Chakraborty, S., Goyal, N. K., Mahapatra, S., & Soh, S. (2020). A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes. Reliability Engineering and System Safety, 193, 14.CrossRef Chakraborty, S., Goyal, N. K., Mahapatra, S., & Soh, S. (2020). A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes. Reliability Engineering and System Safety, 193, 14.CrossRef
21.
Zurück zum Zitat Wang, B., Lim, H. B., & Ma, D. (2009). A survey of movement strategies for improving network coverage in wireless sensor networks. Computer Communications, 32(13–14), 1427–1436.CrossRef Wang, B., Lim, H. B., & Ma, D. (2009). A survey of movement strategies for improving network coverage in wireless sensor networks. Computer Communications, 32(13–14), 1427–1436.CrossRef
22.
Zurück zum Zitat Senouci, M. R., Mellouk, A., Asnoune, K., & YazidBouhidel, F. (2015). Movement-assisted sensor deployment algorithms: A survey and taxonomy. IEEE Communications Surveys Tutorials, 17, 2493–2510.CrossRef Senouci, M. R., Mellouk, A., Asnoune, K., & YazidBouhidel, F. (2015). Movement-assisted sensor deployment algorithms: A survey and taxonomy. IEEE Communications Surveys Tutorials, 17, 2493–2510.CrossRef
23.
Zurück zum Zitat Deif, D. S., & Gadallah, Y. (2014). Classification of wireless sensor networks deployment techniques. IEEE Communications Surveys & Tutorials, 16(2), 834–855.CrossRef Deif, D. S., & Gadallah, Y. (2014). Classification of wireless sensor networks deployment techniques. IEEE Communications Surveys & Tutorials, 16(2), 834–855.CrossRef
24.
Zurück zum Zitat Farsi, M., Elhosseini, M. A., Badawy, M., Arafat Ali, H., & Zain Eldin, H. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: A survey. IEEE Access, 7, 28940–28954.CrossRef Farsi, M., Elhosseini, M. A., Badawy, M., Arafat Ali, H., & Zain Eldin, H. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: A survey. IEEE Access, 7, 28940–28954.CrossRef
25.
Zurück zum Zitat Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.CrossRef Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.CrossRef
26.
Zurück zum Zitat Kulkarni, R. V., Member, S., & Kumar, G. (2011). Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(2), 262–267.CrossRef Kulkarni, R. V., Member, S., & Kumar, G. (2011). Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(2), 262–267.CrossRef
27.
Zurück zum Zitat Aziz, N. A. B. A., Mohemmed, A. W., Alias, M. Y. (2009) A wireless sensor network coverage optimization algorithm based on particle swarm optimization and voronoi diagram. In 2009 International conference on networking, sensing and control, pp. 602–607. Aziz, N. A. B. A., Mohemmed, A. W., Alias, M. Y. (2009) A wireless sensor network coverage optimization algorithm based on particle swarm optimization and voronoi diagram. In 2009 International conference on networking, sensing and control, pp. 602–607.
28.
Zurück zum Zitat Aurenhammer, F. (1991). Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys, 23(3), 345–405.CrossRef Aurenhammer, F. (1991). Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys, 23(3), 345–405.CrossRef
29.
Zurück zum Zitat Alia, O. M., & Al-Ajouri, A. (2017). Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sensors Journal, 17(3), 882–896.CrossRef Alia, O. M., & Al-Ajouri, A. (2017). Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sensors Journal, 17(3), 882–896.CrossRef
30.
Zurück zum Zitat Eiras, F. C. S., Zucchi, W. L. (2019). A statistical method for area coverage estimation and loss probability analysis on mobile sensor. In 6th international electronic conference on sensors and applications, pp. 1–21. Eiras, F. C. S., Zucchi, W. L. (2019). A statistical method for area coverage estimation and loss probability analysis on mobile sensor. In 6th international electronic conference on sensors and applications, pp. 1–21.
32.
Zurück zum Zitat ITU-T G.810. (1996). ITU-T G.810 Definitions and terminology for synchronization networks. ITU-T G.810. (1996). ITU-T G.810 Definitions and terminology for synchronization networks.
33.
Zurück zum Zitat Riley, W. J. (1994). Handbook of frequency stability analysis, vol. 31, no. 1. NIST Special Publication 1065. Riley, W. J. (1994). Handbook of frequency stability analysis, vol. 31, no. 1. NIST Special Publication 1065.
34.
Zurück zum Zitat ITU-T G.8261. (2008). ITU-T G.8261/Y.1361 timing and synchronization aspects in packet networks. ITU-T G.8261. (2008). ITU-T G.8261/Y.1361 timing and synchronization aspects in packet networks.
35.
Zurück zum Zitat ITU-T G.8262. (2010). ITU-T G.8262/Y.1362 - timing characteristics of a synchronous ethernet equipment slave clock. ITU-T G.8262. (2010). ITU-T G.8262/Y.1362 - timing characteristics of a synchronous ethernet equipment slave clock.
36.
Zurück zum Zitat Dobrogowski, A., & Kasznia, M. (2010). Methods of real-time calculation of allan deviation and time deviation. Advances in Electronics and Telecommunications, 1(2), 42–46. Dobrogowski, A., & Kasznia, M. (2010). Methods of real-time calculation of allan deviation and time deviation. Advances in Electronics and Telecommunications, 1(2), 42–46.
37.
Zurück zum Zitat MathWorks. (2011). SIMULINK academic version, R2011. MathWorks. (2011). SIMULINK academic version, R2011.
Metadaten
Titel
Measuring synchronization precision in mobile sensor networks
verfasst von
F. C. S. Eiras
W. L. Zucchi
Publikationsdatum
22.08.2022
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2022
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-022-00944-9

Weitere Artikel der Ausgabe 2/2022

Telecommunication Systems 2/2022 Zur Ausgabe

Neuer Inhalt