Skip to main content
Erschienen in: Telecommunication Systems 2/2022

22.08.2022

Spectrally efficient IR-UWB pulse designs based on linear combinations of Gaussian Derivatives

verfasst von: Haidar Taki, Chadi Abou-Rjeily

Erschienen in: Telecommunication Systems | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pulse design is critical for impulse radio communications, as it determines the transmission efficiency with respect to regulation spectral limits. In this paper, we propose the design of several novel pulse shapes relying on combinations of Gaussian derivatives with the target of improving the spectral efficiency. A general model for maximizing the efficiency of dual and triplet couplings is presented, employing the interior point global optimization algorithm. Then, the spectrum peak frequency is derived in closed form for any combination of two Gaussians with consecutive orders of derivation. The parameters controlling the time properties of the generated waveforms have been adequately adjusted to reach the best compliance with the spectral mask. Novel pulses have been investigated providing a high efficiency using simple generation mechanisms, which can be practically implemented via analog circuits. An efficiency gain of more than 20% has been realized by our newly designed triplet combination over the conventional 5th order Gaussian derivative. Results demonstrated the advantage of the proposed pulse shapes in terms of the bit error rate performance for 2 Gbps OOK and 1 Gbps PPM in AWGN and multipath channels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Liang, T., & Xie, Y. Z. (2021). Waveform shaping for maximizing the sharpness of receiving voltage waveform for an ultra-wideband antenna system. IEEE Transactions on Antennas and Propagation, 69(9), 5924–5930.CrossRef Liang, T., & Xie, Y. Z. (2021). Waveform shaping for maximizing the sharpness of receiving voltage waveform for an ultra-wideband antenna system. IEEE Transactions on Antennas and Propagation, 69(9), 5924–5930.CrossRef
2.
Zurück zum Zitat Ali, R., Liu, R., Nayyar, A., Qureshi, B., & Cao, Z. (2021). Tightly coupling fusion of UWB ranging and IMU pedestrian dead reckoning for indoor localization. IEEE Access. Ali, R., Liu, R., Nayyar, A., Qureshi, B., & Cao, Z. (2021). Tightly coupling fusion of UWB ranging and IMU pedestrian dead reckoning for indoor localization. IEEE Access.
3.
Zurück zum Zitat Fang, Z., Wang, W., Wang, J., Liu, B., Tang, K., Lou, L., & Zheng, Y. (2022). Integrated wideband chip-scale RF transceivers for radar sensing and UWB communications: A survey. IEEE Circuits and Systems Magazine, 22(1), 40–76.CrossRef Fang, Z., Wang, W., Wang, J., Liu, B., Tang, K., Lou, L., & Zheng, Y. (2022). Integrated wideband chip-scale RF transceivers for radar sensing and UWB communications: A survey. IEEE Circuits and Systems Magazine, 22(1), 40–76.CrossRef
4.
Zurück zum Zitat Reyhanigalangashi, O., Taylor, D., Kolpuke, S., Elluru, D., Abushakra, F., Awasthi, A. K., & Gogineni, S. P. (2022). An RF-SoC-based ultra-wideband chirp synthesizer. IEEE Access. Reyhanigalangashi, O., Taylor, D., Kolpuke, S., Elluru, D., Abushakra, F., Awasthi, A. K., & Gogineni, S. P. (2022). An RF-SoC-based ultra-wideband chirp synthesizer. IEEE Access.
5.
Zurück zum Zitat Feghhi, R., Oloumi, D., & Rambabu, K. (2020). Tunable subnanosecond Gaussian pulse radar transmitter: Theory and analysis. IEEE Transactions on Microwave Theory and Techniques, 68(9), 3823–3833.CrossRef Feghhi, R., Oloumi, D., & Rambabu, K. (2020). Tunable subnanosecond Gaussian pulse radar transmitter: Theory and analysis. IEEE Transactions on Microwave Theory and Techniques, 68(9), 3823–3833.CrossRef
6.
Zurück zum Zitat Chandel, R., Gautam, A. K., & Rambabu, K. (2018). Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 66(4), 1677–1684.CrossRef Chandel, R., Gautam, A. K., & Rambabu, K. (2018). Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 66(4), 1677–1684.CrossRef
7.
Zurück zum Zitat Nazeri, A. H., Falahati, A., & Edwards, R. M. (2019). A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications. AEU-International Journal of Electronics and Communications, 101, 1–8. Nazeri, A. H., Falahati, A., & Edwards, R. M. (2019). A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications. AEU-International Journal of Electronics and Communications, 101, 1–8.
8.
Zurück zum Zitat Yu, K., Wen, K., Li, Y., Zhang, S., & Zhang, K. (2018). A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments. IEEE Transactions on Vehicular Technology, 68(1), 686–699.CrossRef Yu, K., Wen, K., Li, Y., Zhang, S., & Zhang, K. (2018). A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments. IEEE Transactions on Vehicular Technology, 68(1), 686–699.CrossRef
9.
Zurück zum Zitat Taki, H., Azou, S., Hamie, A., Morel, P., Al Housseini, A., Alaeddine, A., & Sharaiha, A. (2018). Chirping techniques for enhancing the performance of SOA-based UWB over fiber systems: An experimental demonstration. AEU-International Journal of Electronics and Communications, 94, 221–225. Taki, H., Azou, S., Hamie, A., Morel, P., Al Housseini, A., Alaeddine, A., & Sharaiha, A. (2018). Chirping techniques for enhancing the performance of SOA-based UWB over fiber systems: An experimental demonstration. AEU-International Journal of Electronics and Communications, 94, 221–225.
10.
Zurück zum Zitat Federal Communications Commission, “Revision of Part 15 of the commission’s rules regarding ultra-wideband transmission systems, FIRST REPORT AND ORDER,” ET Docket 98-153, FCC 02-48, pp. 1–118, February 14 (2002). Federal Communications Commission, “Revision of Part 15 of the commission’s rules regarding ultra-wideband transmission systems, FIRST REPORT AND ORDER,” ET Docket 98-153, FCC 02-48, pp. 1–118, February 14 (2002).
11.
Zurück zum Zitat Lee, G., Park, J., Jang, J., Jung, T., & Kim, T. W. (2019). An IR-UWB CMOS transceiver for high-data-rate, low-power, and short-range communication. IEEE Journal of Solid-State Circuits. Lee, G., Park, J., Jang, J., Jung, T., & Kim, T. W. (2019). An IR-UWB CMOS transceiver for high-data-rate, low-power, and short-range communication. IEEE Journal of Solid-State Circuits.
12.
Zurück zum Zitat Liang, X., Zhang, H., Ye, S., Fang, G., & Gulliver, T. A. (2018). Improved denoising method for through-wall vital sign detection using UWB impulse radar. Digital Signal Processing, 74, 72–93.CrossRef Liang, X., Zhang, H., Ye, S., Fang, G., & Gulliver, T. A. (2018). Improved denoising method for through-wall vital sign detection using UWB impulse radar. Digital Signal Processing, 74, 72–93.CrossRef
13.
Zurück zum Zitat Shehata, M., Said, M. S., & Mostafa, H. (2019). A generalized framework for the performance evaluation of microwave photonic assisted IR-UWB waveform generators. IEEE Systems Journal, 13(4), 3724–3734.CrossRef Shehata, M., Said, M. S., & Mostafa, H. (2019). A generalized framework for the performance evaluation of microwave photonic assisted IR-UWB waveform generators. IEEE Systems Journal, 13(4), 3724–3734.CrossRef
14.
Zurück zum Zitat Du, C., Liu, F., Li, X., Zhang, Z., & Dong, W. (2020). UWB quadruplet signal generation based on a DP-QPSK modulator and a delay-line filter. Applied Optics, 59(14), 4404–4409.CrossRef Du, C., Liu, F., Li, X., Zhang, Z., & Dong, W. (2020). UWB quadruplet signal generation based on a DP-QPSK modulator and a delay-line filter. Applied Optics, 59(14), 4404–4409.CrossRef
15.
Zurück zum Zitat Moreira, L. C., Neto, J. F., Oliveira, W. S., Ferauche, T., & Novaes, G. A. S. (2019). A pseudo-raised cosine IR-UWB pulse generator with adaptive PSD using 130nm CMOS process. In 2019 IEEE 10th Latin American symposium on circuits & systems (LASCAS) (pp. 165–168). IEEE. Moreira, L. C., Neto, J. F., Oliveira, W. S., Ferauche, T., & Novaes, G. A. S. (2019). A pseudo-raised cosine IR-UWB pulse generator with adaptive PSD using 130nm CMOS process. In 2019 IEEE 10th Latin American symposium on circuits & systems (LASCAS) (pp. 165–168). IEEE.
16.
Zurück zum Zitat Kaya, E., & Entesari, K. (2020). A broadband CMOS pulse generator for UWB Systems. In 2020 IEEE radio and wireless symposium (RWS) (pp. 9–11). IEEE. Kaya, E., & Entesari, K. (2020). A broadband CMOS pulse generator for UWB Systems. In 2020 IEEE radio and wireless symposium (RWS) (pp. 9–11). IEEE.
17.
Zurück zum Zitat Biswas, D. K., & Mahbub, I. (2021). A low-power duty-cycled impulse-radio ultrawideband (IR-UWB) transmitter with bandwidth and frequency reconfigurability scheme designed in 180 nm CMOS process. In 2021 IEEE radio and wireless symposium (RWS) (pp. 49–52). IEEE. Biswas, D. K., & Mahbub, I. (2021). A low-power duty-cycled impulse-radio ultrawideband (IR-UWB) transmitter with bandwidth and frequency reconfigurability scheme designed in 180 nm CMOS process. In 2021 IEEE radio and wireless symposium (RWS) (pp. 49–52). IEEE.
18.
Zurück zum Zitat Mu, H., Wang, M., Tang, Y., Zhang, J., & Jian, S. (2018). Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion. Optics Communications, 411, 170–174.CrossRef Mu, H., Wang, M., Tang, Y., Zhang, J., & Jian, S. (2018). Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion. Optics Communications, 411, 170–174.CrossRef
19.
Zurück zum Zitat Mu, H., Wang, M., & Li, M. (2019). Power-efficient FCC-compliant UWB generator using polarization-maintaining FBG-based spectral shaper and incoherent wavelength-to-time mapping. Optical Fiber Technology, 50, 271–276.CrossRef Mu, H., Wang, M., & Li, M. (2019). Power-efficient FCC-compliant UWB generator using polarization-maintaining FBG-based spectral shaper and incoherent wavelength-to-time mapping. Optical Fiber Technology, 50, 271–276.CrossRef
20.
Zurück zum Zitat Kikkawa, T., Masui, Y., Toya, A., Ito, H., Hirano, T., Maeda, T., & Iwata, A. (2020). CMOS Gaussian monocycle pulse transceiver for radar-based microwave imaging. IEEE Transactions on Biomedical Circuits and Systems, 14(6), 1333–1345.CrossRef Kikkawa, T., Masui, Y., Toya, A., Ito, H., Hirano, T., Maeda, T., & Iwata, A. (2020). CMOS Gaussian monocycle pulse transceiver for radar-based microwave imaging. IEEE Transactions on Biomedical Circuits and Systems, 14(6), 1333–1345.CrossRef
21.
Zurück zum Zitat Vauche, R., Muhr, E., Fourquin, O., Bourdel, S., Gaubert, J., Dehaese, N., & Ouvry, L. (2017). A 100 MHz PRF IR-UWB CMOS transceiver with pulse shaping capabilities and peak voltage detector. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(6), 1612–1625.CrossRef Vauche, R., Muhr, E., Fourquin, O., Bourdel, S., Gaubert, J., Dehaese, N., & Ouvry, L. (2017). A 100 MHz PRF IR-UWB CMOS transceiver with pulse shaping capabilities and peak voltage detector. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(6), 1612–1625.CrossRef
22.
Zurück zum Zitat Kim, H., & Joo, Y. (2005, June). Fifth-derivative Gaussian pulse generator for UWB system. In 2005 IEEE radio frequency integrated Circuits (RFIC) symposium-digest of papers (pp. 671–674). IEEE. Kim, H., & Joo, Y. (2005, June). Fifth-derivative Gaussian pulse generator for UWB system. In 2005 IEEE radio frequency integrated Circuits (RFIC) symposium-digest of papers (pp. 671–674). IEEE.
23.
Zurück zum Zitat Taki, H. (2017). On ultra-wideband over fiber transmission systems employing semiconductor optical amplifiers (Doctoral dissertation, Université de Bretagne occidentale-Brest). Taki, H. (2017). On ultra-wideband over fiber transmission systems employing semiconductor optical amplifiers (Doctoral dissertation, Université de Bretagne occidentale-Brest).
24.
Zurück zum Zitat Sheng, H., Orlik, P., Haimovich, A. M., Cimini, L. J., & Zhang, J. (2003). On the spectral and power requirements for ultra-wideband transmission. In IEEE international conference on communications, 2003. ICC’03. (Vol. 1, pp. 738–742). IEEE. Sheng, H., Orlik, P., Haimovich, A. M., Cimini, L. J., & Zhang, J. (2003). On the spectral and power requirements for ultra-wideband transmission. In IEEE international conference on communications, 2003. ICC’03. (Vol. 1, pp. 738–742). IEEE.
25.
Zurück zum Zitat Rahman, M., & Wu, K. (2022). A reconfigurable picosecond pulse generator in non-linear transmission line for impulse radar ultrawideband applications. IEEE Microwave and Wireless Components Letters. Rahman, M., & Wu, K. (2022). A reconfigurable picosecond pulse generator in non-linear transmission line for impulse radar ultrawideband applications. IEEE Microwave and Wireless Components Letters.
26.
Zurück zum Zitat Taki, H., Azou, S., Hamie, A., Al Housseini, A., Alaeddine, A., & Sharaiha, A. (2016). Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization. Optical Fiber Technology, 31, 161–167.CrossRef Taki, H., Azou, S., Hamie, A., Al Housseini, A., Alaeddine, A., & Sharaiha, A. (2016). Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization. Optical Fiber Technology, 31, 161–167.CrossRef
27.
Zurück zum Zitat Menon, M. D., Rodrigues, J., & Gudino, L. J. (2020). Synthesis of UWB pulse shaper for efficient pulse propagation in human tissue. In 2020 12th international symposium on communication systems, networks and digital signal processing (CSNDSP) (pp. 1–5). IEEE. Menon, M. D., Rodrigues, J., & Gudino, L. J. (2020). Synthesis of UWB pulse shaper for efficient pulse propagation in human tissue. In 2020 12th international symposium on communication systems, networks and digital signal processing (CSNDSP) (pp. 1–5). IEEE.
28.
Zurück zum Zitat Rahman, M., Haider, A., & Naghshvarianjahromi, M. (2020). A systematic methodology for the time-domain ringing reduction in UWB band-notched antennas. IEEE Antennas and Wireless Propagation Letters, 19(3), 482–486.CrossRef Rahman, M., Haider, A., & Naghshvarianjahromi, M. (2020). A systematic methodology for the time-domain ringing reduction in UWB band-notched antennas. IEEE Antennas and Wireless Propagation Letters, 19(3), 482–486.CrossRef
29.
Zurück zum Zitat Nowakowski, M., & Idzkowski, A. (2020). Ultra-wideband signal transmission according to European regulations and typical pulses. In 2020 International conference mechatronic systems and materials (MSM) (pp. 1–4). IEEE. Nowakowski, M., & Idzkowski, A. (2020). Ultra-wideband signal transmission according to European regulations and typical pulses. In 2020 International conference mechatronic systems and materials (MSM) (pp. 1–4). IEEE.
30.
Zurück zum Zitat Karimov, A., Feghhi, R., Sabzevari, F. M., Winter, R. S., Fedosejevs, R., & Rambabu, K. (2022). Design and development of a high-power pulse transmitter for underground environmental perception. IEEE Transactions on Microwave Theory and Techniques, 70(5), 2891–2903.CrossRef Karimov, A., Feghhi, R., Sabzevari, F. M., Winter, R. S., Fedosejevs, R., & Rambabu, K. (2022). Design and development of a high-power pulse transmitter for underground environmental perception. IEEE Transactions on Microwave Theory and Techniques, 70(5), 2891–2903.CrossRef
31.
Zurück zum Zitat Abraha, S. T., Okonkwo, C., Gamage, P. A., Tangdiongga, E., & Koonen, T. (2012). Routing of power efficient IR-UWB wireless and wired services for in-building network applications. Journal of Lightwave Technology, 30(11), 1651–1663.CrossRef Abraha, S. T., Okonkwo, C., Gamage, P. A., Tangdiongga, E., & Koonen, T. (2012). Routing of power efficient IR-UWB wireless and wired services for in-building network applications. Journal of Lightwave Technology, 30(11), 1651–1663.CrossRef
32.
Zurück zum Zitat Taki, H., Azou, S., Hamie, A., Al Housseini, A., Alaeddine, A., & Sharaiha, A. (2017). Simple pre-distortion schemes for improving the power efficiency of SOA-based IR-UWB over fiber systems. Optics Communications, 382, 225–231.CrossRef Taki, H., Azou, S., Hamie, A., Al Housseini, A., Alaeddine, A., & Sharaiha, A. (2017). Simple pre-distortion schemes for improving the power efficiency of SOA-based IR-UWB over fiber systems. Optics Communications, 382, 225–231.CrossRef
33.
Zurück zum Zitat Taki, H., Azou, S., Hamie, A., Al Housseini, A., Alaeddine, A., & Sharaiha, A.: “On phaser-based processing of impulse radio UWB over fiber systems employing SOA. Optical Fiber Technology, 36, 33–40 (2017). Taki, H., Azou, S., Hamie, A., Al Housseini, A., Alaeddine, A., & Sharaiha, A.: “On phaser-based processing of impulse radio UWB over fiber systems employing SOA. Optical Fiber Technology, 36, 33–40 (2017).
34.
Zurück zum Zitat Radic, J., Brkic, M., Djugova, A., Videnovic-Misic, M., Goll, B., & Zimmermann, H. (2020). Ultra-low power low-complexity 3–7.5 GHz IR-UWB transmitter with spectrum tunability. IET Circuits, Devices & Systems, 14(4), 521–527.CrossRef Radic, J., Brkic, M., Djugova, A., Videnovic-Misic, M., Goll, B., & Zimmermann, H. (2020). Ultra-low power low-complexity 3–7.5 GHz IR-UWB transmitter with spectrum tunability. IET Circuits, Devices & Systems, 14(4), 521–527.CrossRef
35.
Zurück zum Zitat de Jesus Aragão, A., de Carvalho, D., Sanches, B., & Van Noije, W. A. (2020). An improved confocal algorithm for breast cancer detection using UWB signals. In 2020 IEEE 11th Latin American symposium on circuits & systems (LASCAS) (pp. 1–4). IEEE. de Jesus Aragão, A., de Carvalho, D., Sanches, B., & Van Noije, W. A. (2020). An improved confocal algorithm for breast cancer detection using UWB signals. In 2020 IEEE 11th Latin American symposium on circuits & systems (LASCAS) (pp. 1–4). IEEE.
36.
Zurück zum Zitat Taki, H., Mansour, A., Azou, S., Nasser, A., & Yao, K. (2020). Pulse parity modulation for impulse radio UWB transmission based on non-coherent detection. Physical Communication, 40, 101061.CrossRef Taki, H., Mansour, A., Azou, S., Nasser, A., & Yao, K. (2020). Pulse parity modulation for impulse radio UWB transmission based on non-coherent detection. Physical Communication, 40, 101061.CrossRef
37.
Zurück zum Zitat Soliman, S. S., Shehata, M., & Mostafa, H. (2022). Generation of low-complexity power-efficient IR-UWB waveforms. Optik, 251, 168245.CrossRef Soliman, S. S., Shehata, M., & Mostafa, H. (2022). Generation of low-complexity power-efficient IR-UWB waveforms. Optik, 251, 168245.CrossRef
38.
Zurück zum Zitat Li, C., Han, X., Fu, S., Gu, Y., Wu, Z., & Zhao, M. (2022). Experimental generation of reconfigurable ultra-wideband signal based on the pulse difference by using optical polarization synthesis. IEEE Photonics Journal, 14(3), 1–9. Li, C., Han, X., Fu, S., Gu, Y., Wu, Z., & Zhao, M. (2022). Experimental generation of reconfigurable ultra-wideband signal based on the pulse difference by using optical polarization synthesis. IEEE Photonics Journal, 14(3), 1–9.
39.
Zurück zum Zitat Abraha, S. T., Okonkwo, C., Yang, H., Visani, D., Shi, Y., Jung, H. D., & Koonen, T. (2011). Performance evaluation of IR-UWB in short-range fiber communication using linear combination of monocycles. Journal of Lightwave Technology, 29(8), 1143–1151.CrossRef Abraha, S. T., Okonkwo, C., Yang, H., Visani, D., Shi, Y., Jung, H. D., & Koonen, T. (2011). Performance evaluation of IR-UWB in short-range fiber communication using linear combination of monocycles. Journal of Lightwave Technology, 29(8), 1143–1151.CrossRef
40.
Zurück zum Zitat Mirshafiei, M., Abtahi, M., & Rusch, L. A. (2012). Ultra-wideband pulse shaping: Bypassing the inherent limitations of the Gaussian monocycle. IET Communications, 6(9), 1068–1074.CrossRef Mirshafiei, M., Abtahi, M., & Rusch, L. A. (2012). Ultra-wideband pulse shaping: Bypassing the inherent limitations of the Gaussian monocycle. IET Communications, 6(9), 1068–1074.CrossRef
41.
Zurück zum Zitat Peilin, L., Qingsong, Z., Jianyun, Z., & Lei, L. (2018). Pulse design for UWB based on the combination of Gaussian derivatives. In 2018 10th international conference on communication software and networks (ICCSN) (pp. 438–441). IEEE. Peilin, L., Qingsong, Z., Jianyun, Z., & Lei, L. (2018). Pulse design for UWB based on the combination of Gaussian derivatives. In 2018 10th international conference on communication software and networks (ICCSN) (pp. 438–441). IEEE.
42.
Zurück zum Zitat Maaref, A., & Elahmar, S. A. (2021). UWB pulse design method using firefly algorithm. Radioelectronics and Communications Systems, 64(3), 140–146.CrossRef Maaref, A., & Elahmar, S. A. (2021). UWB pulse design method using firefly algorithm. Radioelectronics and Communications Systems, 64(3), 140–146.CrossRef
43.
Zurück zum Zitat Rodrigues, J., MK, D. M., Lonappan, L., & Gudino, L. J. (2020). Spectral efficient pulse shaping for impulse radio ultra wideband communications. Helix, 10(02), 226–231.CrossRef Rodrigues, J., MK, D. M., Lonappan, L., & Gudino, L. J. (2020). Spectral efficient pulse shaping for impulse radio ultra wideband communications. Helix, 10(02), 226–231.CrossRef
44.
Zurück zum Zitat Amini, A., Esfahani, P. M., Ghavami, M., & Marvasti, F. (2019). UWB orthogonal pulse design using Sturm–Liouville boundary value problem. Signal Processing, 159, 147–158.CrossRef Amini, A., Esfahani, P. M., Ghavami, M., & Marvasti, F. (2019). UWB orthogonal pulse design using Sturm–Liouville boundary value problem. Signal Processing, 159, 147–158.CrossRef
45.
Zurück zum Zitat Feghhi, R., Winter, R., & Rambabu, K. (2022). A high-performance UWB Gaussian pulse generator: Analysis and design. IEEE Transactions on Microwave Theory and Techniques. Feghhi, R., Winter, R., & Rambabu, K. (2022). A high-performance UWB Gaussian pulse generator: Analysis and design. IEEE Transactions on Microwave Theory and Techniques.
46.
Zurück zum Zitat Sadat, S. A. (2021). Evaluating the performance of various ACOPF formulations using nonlinear interior-point method. In 2021 IEEE international smart cities conference (ISC2) (pp. 1–7). IEEE. Sadat, S. A. (2021). Evaluating the performance of various ACOPF formulations using nonlinear interior-point method. In 2021 IEEE international smart cities conference (ISC2) (pp. 1–7). IEEE.
47.
Zurück zum Zitat Dahl, J., & Andersen, E. D. (2021). A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization. Mathematical Programming, 1–30. Dahl, J., & Andersen, E. D. (2021). A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization. Mathematical Programming, 1–30.
48.
Zurück zum Zitat Zhang, M., Huang, K., & Lv, Y. (2022). A wide neighborhood arc-search interior-point algorithm for convex quadratic programming with box constraints and linear constraints. Optimization and Engineering, 23(2), 1117–1137.CrossRef Zhang, M., Huang, K., & Lv, Y. (2022). A wide neighborhood arc-search interior-point algorithm for convex quadratic programming with box constraints and linear constraints. Optimization and Engineering, 23(2), 1117–1137.CrossRef
49.
Zurück zum Zitat Touil, I., & Chikouche, W. (2022). Novel kernel function with a hyperbolic barrier term to primal-dual interior point algorithm for SDP problems. Acta Mathematicae Applicatae Sinica, English Series, 38(1), 44–67.CrossRef Touil, I., & Chikouche, W. (2022). Novel kernel function with a hyperbolic barrier term to primal-dual interior point algorithm for SDP problems. Acta Mathematicae Applicatae Sinica, English Series, 38(1), 44–67.CrossRef
50.
Zurück zum Zitat Khalesi, H., & Ghods, V. (2021). An optimized IR-UWB communication system with interference reduction on a narrowband system using genetic algorithm. Wireless Personal Communications. Khalesi, H., & Ghods, V. (2021). An optimized IR-UWB communication system with interference reduction on a narrowband system using genetic algorithm. Wireless Personal Communications.
51.
Zurück zum Zitat Niu, W., Chen, H., Zhang, J., Ha, Y., Zou, P., & Chi, N. (2021). Nonlinearity mitigation based on modulus pruned look-up table for multi-bit delta-sigma 32-CAP modulation in underwater visible light communication system. IEEE Photonics Journal. Niu, W., Chen, H., Zhang, J., Ha, Y., Zou, P., & Chi, N. (2021). Nonlinearity mitigation based on modulus pruned look-up table for multi-bit delta-sigma 32-CAP modulation in underwater visible light communication system. IEEE Photonics Journal.
52.
Zurück zum Zitat Liu, K., & Liu, Y. A. (2021). Adjustable nonlinear companding transform based on scaling of probability density function for PAPR reduction in OFDM systems. IEEE Transactions on Broadcasting. Liu, K., & Liu, Y. A. (2021). Adjustable nonlinear companding transform based on scaling of probability density function for PAPR reduction in OFDM systems. IEEE Transactions on Broadcasting.
53.
Zurück zum Zitat Cai, X., Xu, W., Wang, L., & Kaddoum, G. (2022). Joint energy and correlation detection assisted non-coherent OFDM-DCSK system for underwater acoustic communications. IEEE Transactions on Communications. Cai, X., Xu, W., Wang, L., & Kaddoum, G. (2022). Joint energy and correlation detection assisted non-coherent OFDM-DCSK system for underwater acoustic communications. IEEE Transactions on Communications.
54.
Zurück zum Zitat Carlton, B. D., & Metcalf, J. G. (2022). Orthogonal frequency peak-to-average power ratio reduction via the error reduction algorithm. In 2022 IEEE radar conference (RadarConf22) (pp. 1–6). IEEE. Carlton, B. D., & Metcalf, J. G. (2022). Orthogonal frequency peak-to-average power ratio reduction via the error reduction algorithm. In 2022 IEEE radar conference (RadarConf22) (pp. 1–6). IEEE.
55.
Zurück zum Zitat Xie, H., Wang, X., Wang, A., Zhao, B., Zhou, Y., Qin, B., & Wang, Z. (2008). A varying pulse width 5th-derivative Gaussian pulse generator for UWB transceivers in CMOS. In 2008 IEEE radio and wireless symposium (pp. 171–174). IEEE. Xie, H., Wang, X., Wang, A., Zhao, B., Zhou, Y., Qin, B., & Wang, Z. (2008). A varying pulse width 5th-derivative Gaussian pulse generator for UWB transceivers in CMOS. In 2008 IEEE radio and wireless symposium (pp. 171–174). IEEE.
56.
Zurück zum Zitat Yang, Y., Zhang, Q., Xu, C., & Chen, E. (2021). Design of ultra-wideband power amplifier module. In 2021 IEEE 15th international conference on electronic measurement & instruments (ICEMI) (pp. 132–136). IEEE. Yang, Y., Zhang, Q., Xu, C., & Chen, E. (2021). Design of ultra-wideband power amplifier module. In 2021 IEEE 15th international conference on electronic measurement & instruments (ICEMI) (pp. 132–136). IEEE.
57.
Zurück zum Zitat D’Amico, A. A., Colavolpe, G., Foggi, T., & Morelli, M. (2022). Timing synchronization and channel estimation in free-space optical OOK communication systems. IEEE Transactions on Communications. D’Amico, A. A., Colavolpe, G., Foggi, T., & Morelli, M. (2022). Timing synchronization and channel estimation in free-space optical OOK communication systems. IEEE Transactions on Communications.
58.
Zurück zum Zitat Munirathinam, R., Aboltins, A., Pikulins, D., & Grizans, J. (2021). Chaotic non-coherent pulse position modulation based ultra-wideband communication system. In 2021 IEEE microwave theory and techniques in wireless communications (MTTW) (pp. 1–6). IEEE. Munirathinam, R., Aboltins, A., Pikulins, D., & Grizans, J. (2021). Chaotic non-coherent pulse position modulation based ultra-wideband communication system. In 2021 IEEE microwave theory and techniques in wireless communications (MTTW) (pp. 1–6). IEEE.
59.
Zurück zum Zitat Taki, H., Mansour, A., Nasser, A., & Yao, K. (2019). On optimizing the performance of impulse radio pulse position modulation based on UWB Gaussian pulse derivatives. In 2019 Fourth international conference on advances in computational tools for engineering applications (ACTEA) (pp. 1–5). IEEE. Taki, H., Mansour, A., Nasser, A., & Yao, K. (2019). On optimizing the performance of impulse radio pulse position modulation based on UWB Gaussian pulse derivatives. In 2019 Fourth international conference on advances in computational tools for engineering applications (ACTEA) (pp. 1–5). IEEE.
60.
Zurück zum Zitat Landolsi, M. A., & Hussain, M. G. (2021). Pulse-shaped Walsh–Hadamard orthogonal signaling for multiuser DS-UWB systems. IEEE Systems Journal. Landolsi, M. A., & Hussain, M. G. (2021). Pulse-shaped Walsh–Hadamard orthogonal signaling for multiuser DS-UWB systems. IEEE Systems Journal.
61.
Zurück zum Zitat Jajodia, B., Mahanta, A., & Ahamed, S. R. (2020). IEEE 802.15. 6 WBAN standard compliant IR-UWB time-hopping PPM transmitter using SRRC signaling pulse. AEU-International Journal of Electronics and Communications, 117, 153119. Jajodia, B., Mahanta, A., & Ahamed, S. R. (2020). IEEE 802.15. 6 WBAN standard compliant IR-UWB time-hopping PPM transmitter using SRRC signaling pulse. AEU-International Journal of Electronics and Communications, 117, 153119.
62.
Zurück zum Zitat Ershadh, M., & Meenakshi, M. (2021). A computationally lightest and robust neural network receiver for ultra wideband time hopping communication systems. IEEE Transactions on Vehicular Technology, 70(5), 4657–4668.CrossRef Ershadh, M., & Meenakshi, M. (2021). A computationally lightest and robust neural network receiver for ultra wideband time hopping communication systems. IEEE Transactions on Vehicular Technology, 70(5), 4657–4668.CrossRef
63.
Zurück zum Zitat Liang, Z., Zhang, G., Dong, X., & Huo, Y. (2018). Design and analysis of passband transmitted reference pulse cluster UWB systems in the presence of phase noise. IEEE Access, 6, 14954–14965.CrossRef Liang, Z., Zhang, G., Dong, X., & Huo, Y. (2018). Design and analysis of passband transmitted reference pulse cluster UWB systems in the presence of phase noise. IEEE Access, 6, 14954–14965.CrossRef
Metadaten
Titel
Spectrally efficient IR-UWB pulse designs based on linear combinations of Gaussian Derivatives
verfasst von
Haidar Taki
Chadi Abou-Rjeily
Publikationsdatum
22.08.2022
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2022
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-022-00940-z

Weitere Artikel der Ausgabe 2/2022

Telecommunication Systems 2/2022 Zur Ausgabe

Neuer Inhalt