Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 3/2023

21.07.2022 | Research Article-Mechanical Engineering

Mechanical and Microstructural Analysis of Exfoliated Graphite Nanoplatelets-Reinforced Aluminum Matrix Composites Synthesized via Friction Stir Processing

verfasst von: Xiaofeng Yu, Wenbiao Gong, Hua Wu, Lili Duan

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, an investigation was conducted into the microstructure and mechanical characteristics of friction stir processed aluminum matrix composites (AMCs) reinforced with exfoliated graphite nanoplatelets (xGnPs). The microstructure was characterized using X-ray diffraction (XRD), electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM), respectively. In addition, microhardness and tensile tests were performed to evaluate the differentiation of mechanical properties for all the samples. Field emission scanning electron microscopy was employed to reveal the fractographic features of all the samples. The results illustrated that the grains of the AMCs consist of equiaxed crystals with an average grain size of 3.2 µm, forming an ultrafine-grained microstructure. Additionally, the ratio of high angle grain boundaries in AMCs was higher than that of FSPed sample. The mechanical performance of AMCs was improved significantly as a result of Al4C3 generated in the solid-phase chemical reaction between the xGnPs and the Al matrix during FSP in combination with the fine grain strengthening. The microhardness, yield strength and ultimate tensile strength of AMCs reached 80 HV, 110 MPa and 210 MPa, respectively, which were 47, 69 and 20% higher than those of the base metal, respectively. The preferred orientation of the base metal transformed from < 200 > toward < 111 > , < 220 > and < 311 > owing to the combination effect of FSP and xGnPs. The incorporation of xGnPs ameliorated the mechanical properties of the AMCs dramatically, and the fracture surface of the AMCs was indicative of a combined ductile–brittle failure behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gupta, M.K.: Analysis of tribological behavior of Al/Gr/MoS 2 surface composite fabricated by friction stir process. Carbon Lett. 30, 399–408 (2020)CrossRef Gupta, M.K.: Analysis of tribological behavior of Al/Gr/MoS 2 surface composite fabricated by friction stir process. Carbon Lett. 30, 399–408 (2020)CrossRef
2.
Zurück zum Zitat Jain, V.K.S.; Varghese, J.; Muthukumaran, S.: Effect of first and second passes on microstructure and wear properties of titanium dioxide-reinforced aluminum surface composite via friction stir processing. Arab. J. Sci. Eng. 44, 949–957 (2019)CrossRef Jain, V.K.S.; Varghese, J.; Muthukumaran, S.: Effect of first and second passes on microstructure and wear properties of titanium dioxide-reinforced aluminum surface composite via friction stir processing. Arab. J. Sci. Eng. 44, 949–957 (2019)CrossRef
3.
Zurück zum Zitat Mehrian, S. M.; Rahsepar, M.; Khodabakhshi, F.; Gerlich, A.: Effects of friction stir processing on the microstructure, mechanical and corrosion behaviors of an aluminum-magnesium alloy. Surf. Coat. Technol. (405) 126647 (2021). Mehrian, S. M.; Rahsepar, M.; Khodabakhshi, F.; Gerlich, A.: Effects of friction stir processing on the microstructure, mechanical and corrosion behaviors of an aluminum-magnesium alloy. Surf. Coat. Technol. (405) 126647 (2021).
4.
Zurück zum Zitat Maji, P.; Nath, R.K.; Paul, P.; Meitei, R.; Ghosh, S.K.: Effect of processing speed on wear and corrosion behavior of novel MoS 2 and CeO 2 reinforced hybrid aluminum matrix composites fabricated by friction stir processing. J. Manuf. Process 69, 1–11 (2021)CrossRef Maji, P.; Nath, R.K.; Paul, P.; Meitei, R.; Ghosh, S.K.: Effect of processing speed on wear and corrosion behavior of novel MoS 2 and CeO 2 reinforced hybrid aluminum matrix composites fabricated by friction stir processing. J. Manuf. Process 69, 1–11 (2021)CrossRef
5.
Zurück zum Zitat Yang, X.; Zhang, H.; Cheng, B.; Liu, Y.; Yan, Z.; Dong, P.; Wang, W.: Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites. Surf. Topogr-Metrol (8) 035012 (2020). Yang, X.; Zhang, H.; Cheng, B.; Liu, Y.; Yan, Z.; Dong, P.; Wang, W.: Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites. Surf. Topogr-Metrol (8) 035012 (2020).
6.
Zurück zum Zitat Kheirkhah, S.; Imani, M.; Aliramezani, R.; Zamani, M.; Kheilnejad, A.: Microstructure, mechanical properties and corrosion resistance of Al6061/BN surface composite prepared by friction stir processing. Surf. Topogr-Metrol (7) 035002 (2019). Kheirkhah, S.; Imani, M.; Aliramezani, R.; Zamani, M.; Kheilnejad, A.: Microstructure, mechanical properties and corrosion resistance of Al6061/BN surface composite prepared by friction stir processing. Surf. Topogr-Metrol (7) 035002 (2019).
7.
Zurück zum Zitat Sharma, A.; Narsimhachary, D.; Sharma, V.M.; Sahoo, B.; Paul, J.: Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: a tribological study. Surf. Coat. Technol. 368, 175–191 (2019)CrossRef Sharma, A.; Narsimhachary, D.; Sharma, V.M.; Sahoo, B.; Paul, J.: Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: a tribological study. Surf. Coat. Technol. 368, 175–191 (2019)CrossRef
8.
Zurück zum Zitat Suryanarayana, C.; Al-Aqeeli, N.: Mechanically alloyed nanocomposites. Prog. Mater. Sci. 58, 383–502 (2013)CrossRef Suryanarayana, C.; Al-Aqeeli, N.: Mechanically alloyed nanocomposites. Prog. Mater. Sci. 58, 383–502 (2013)CrossRef
9.
Zurück zum Zitat Kannan, C.; Ramanujam, R.; Balan, A.: Machinability studies on Al 7075/BN/Al2O3 squeeze cast hybrid nanocomposite under different machining environments. Mater. Manuf. Process. 33, 587–595 (2018)CrossRef Kannan, C.; Ramanujam, R.; Balan, A.: Machinability studies on Al 7075/BN/Al2O3 squeeze cast hybrid nanocomposite under different machining environments. Mater. Manuf. Process. 33, 587–595 (2018)CrossRef
10.
Zurück zum Zitat Khodabakhshi, F.; Simchi, A.: The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites. Mater. Design 130, 26–36 (2017)CrossRef Khodabakhshi, F.; Simchi, A.: The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites. Mater. Design 130, 26–36 (2017)CrossRef
11.
Zurück zum Zitat Khdair, A.I.; Fathy, A.: Enhanced strength and ductility of Al-SiC nanocomposites synthesized by accumulative roll bonding. J. Mater. Res. Technol. 9, 478–489 (2020)CrossRef Khdair, A.I.; Fathy, A.: Enhanced strength and ductility of Al-SiC nanocomposites synthesized by accumulative roll bonding. J. Mater. Res. Technol. 9, 478–489 (2020)CrossRef
12.
Zurück zum Zitat Mishra, R.S.; Ma, Z.Y.; Charit, I.: Friction stir processing: a novel technique for fabrication of surface composite. Mater. Sci. Eng. A 341, 307–310 (2003)CrossRef Mishra, R.S.; Ma, Z.Y.; Charit, I.: Friction stir processing: a novel technique for fabrication of surface composite. Mater. Sci. Eng. A 341, 307–310 (2003)CrossRef
13.
Zurück zum Zitat Khodabakhshi, F.; Arab, S.M.; Švec, P.; Gerlich, A.P.: Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening. Mater. Charact. 132, 92–107 (2017)CrossRef Khodabakhshi, F.; Arab, S.M.; Švec, P.; Gerlich, A.P.: Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening. Mater. Charact. 132, 92–107 (2017)CrossRef
14.
Zurück zum Zitat Sharma, V.; Prakash, U.; Kumar, B.: Surface composites by friction stir processing: A review. J. Mater. Process. Tech. 224, 117–134 (2015)CrossRef Sharma, V.; Prakash, U.; Kumar, B.: Surface composites by friction stir processing: A review. J. Mater. Process. Tech. 224, 117–134 (2015)CrossRef
16.
Zurück zum Zitat Khodabakhshi, F.; Nosko, M.; Gerlich, A.P.: Dynamic restoration and crystallographic texture of a friction-stir processed Al–Mg–SiC surface nanocomposite. Mater. Sci. Technol. 34(14), 1773–1791 (2018)CrossRef Khodabakhshi, F.; Nosko, M.; Gerlich, A.P.: Dynamic restoration and crystallographic texture of a friction-stir processed Al–Mg–SiC surface nanocomposite. Mater. Sci. Technol. 34(14), 1773–1791 (2018)CrossRef
17.
Zurück zum Zitat Liu, Y.; Chen, G.; Zhang, H.; Yang, C.; Zhang, S.; Liu, Q.; Zhou, M.; Shi, Q.: In situ exfoliation of graphite for fabrication of graphene/aluminum composites by friction stir processing. Mater. Lett. (301) 130280 (2021). Liu, Y.; Chen, G.; Zhang, H.; Yang, C.; Zhang, S.; Liu, Q.; Zhou, M.; Shi, Q.: In situ exfoliation of graphite for fabrication of graphene/aluminum composites by friction stir processing. Mater. Lett. (301) 130280 (2021).
18.
Zurück zum Zitat Dixit, S.; Mahata, A.; Mahapatra, D.R.; Kailas, S.V.; Chattopadhyay, K.: Multi-layer graphene reinforced aluminum–manufacturing of high strength composite by friction stir alloying. Compos. B Eng. 136, 63–71 (2018)CrossRef Dixit, S.; Mahata, A.; Mahapatra, D.R.; Kailas, S.V.; Chattopadhyay, K.: Multi-layer graphene reinforced aluminum–manufacturing of high strength composite by friction stir alloying. Compos. B Eng. 136, 63–71 (2018)CrossRef
19.
Zurück zum Zitat Jain, V.K.S.; Yazar, K.; Muthukumaran, S.: Development and characterization of Al5083-CNTs/SiC composites via friction stir processing. J. Alloys Compd. 798, 82–92 (2019)CrossRef Jain, V.K.S.; Yazar, K.; Muthukumaran, S.: Development and characterization of Al5083-CNTs/SiC composites via friction stir processing. J. Alloys Compd. 798, 82–92 (2019)CrossRef
20.
Zurück zum Zitat Sharma, A.; Fujii, H.; Paul, J.: Influence of reinforcement incorporation approach on mechanical and tribological properties of AA6061-CNT nanocomposite fabricated via FSP. J. Manuf. Process 59, 604–620 (2020)CrossRef Sharma, A.; Fujii, H.; Paul, J.: Influence of reinforcement incorporation approach on mechanical and tribological properties of AA6061-CNT nanocomposite fabricated via FSP. J. Manuf. Process 59, 604–620 (2020)CrossRef
21.
Zurück zum Zitat Khodabakhshi, F.; Gerlich, A.; Švec, P.: Reactive friction-stir processing of an Al-Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): microstructural characteristics and mechanical properties. Mater. Charact. 131, 359–373 (2017)CrossRef Khodabakhshi, F.; Gerlich, A.; Švec, P.: Reactive friction-stir processing of an Al-Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): microstructural characteristics and mechanical properties. Mater. Charact. 131, 359–373 (2017)CrossRef
22.
Zurück zum Zitat Fustes, J.; Gomes, A.; da Silva Pereira, M.: Electrodeposition of Zn–TiO 2 nanocomposite films—effect of bath composition. J. Solid State Electrochem. (12) 1435–1443 (2008). Fustes, J.; Gomes, A.; da Silva Pereira, M.: Electrodeposition of Zn–TiO 2 nanocomposite films—effect of bath composition. J. Solid State Electrochem. (12) 1435–1443 (2008).
23.
Zurück zum Zitat Berube, L. P.; L'Espérance, G.: A quantitative method of determining the degree of texture of zinc electrodeposits. J. Electrochem. Soc. (136) 2314 (1989). Berube, L. P.; L'Espérance, G.: A quantitative method of determining the degree of texture of zinc electrodeposits. J. Electrochem. Soc. (136) 2314 (1989).
24.
Zurück zum Zitat Nasir, E.M.: Texture coefficient and conductivity dependence on the annealing and thicknesses of thin CdS films. Int. Rev. Phys. 7(1), 22–25 (2013) Nasir, E.M.: Texture coefficient and conductivity dependence on the annealing and thicknesses of thin CdS films. Int. Rev. Phys. 7(1), 22–25 (2013)
25.
Zurück zum Zitat Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J.: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60, 130–207 (2014)CrossRef Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J.: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60, 130–207 (2014)CrossRef
26.
Zurück zum Zitat McNelley, T.; Swaminathan, S.; Su, J.: Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr. Mater. 58, 349–354 (2008)CrossRef McNelley, T.; Swaminathan, S.; Su, J.: Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr. Mater. 58, 349–354 (2008)CrossRef
27.
Zurück zum Zitat Khodabakhshi, F.; Simchi, A.; Kokabi, A.; Gerlich, A.; Nosko, M.: Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater. Sci. Eng. A 642, 204–214 (2015)CrossRef Khodabakhshi, F.; Simchi, A.; Kokabi, A.; Gerlich, A.; Nosko, M.: Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater. Sci. Eng. A 642, 204–214 (2015)CrossRef
28.
Zurück zum Zitat Jiang, Y.; Tan, Z.; Fan, G.; Zhang, Z.; Xiong, D.-B.; Guo, Q.; Li, Z.; Zhang, D.: Nucleation and growth mechanisms of interfacial carbide in graphene nanosheet/Al composites. Carbon 161, 17–24 (2020)CrossRef Jiang, Y.; Tan, Z.; Fan, G.; Zhang, Z.; Xiong, D.-B.; Guo, Q.; Li, Z.; Zhang, D.: Nucleation and growth mechanisms of interfacial carbide in graphene nanosheet/Al composites. Carbon 161, 17–24 (2020)CrossRef
29.
Zurück zum Zitat Khodabakhshi, F.; Simchi, A.; Kokabi, A.; Nosko, M.; Simanĉik, F.; Švec, P.: Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Mater. Sci. Eng. A 605, 108–118 (2014)CrossRef Khodabakhshi, F.; Simchi, A.; Kokabi, A.; Nosko, M.; Simanĉik, F.; Švec, P.: Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Mater. Sci. Eng. A 605, 108–118 (2014)CrossRef
30.
Zurück zum Zitat Khodabakhshi, F.; Simchi, A.; Kokabi, A.; Švec, P.; Simančík, F.; Gerlich, A.: Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy. Mater. Sci. Eng. A 642, 215–229 (2015)CrossRef Khodabakhshi, F.; Simchi, A.; Kokabi, A.; Švec, P.; Simančík, F.; Gerlich, A.: Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy. Mater. Sci. Eng. A 642, 215–229 (2015)CrossRef
31.
Zurück zum Zitat Ammouri, A.; Kridli, G.; Ayoub, G.; Hamade, R.: Relating grain size to the Zener-Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing. J. Mater. Process. Tech. 222, 301–306 (2015)CrossRef Ammouri, A.; Kridli, G.; Ayoub, G.; Hamade, R.: Relating grain size to the Zener-Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing. J. Mater. Process. Tech. 222, 301–306 (2015)CrossRef
32.
Zurück zum Zitat Hansen, N.: Hall-Petch relation and boundary strengthening. Scr. Mater. 51, 801–806 (2004)CrossRef Hansen, N.: Hall-Petch relation and boundary strengthening. Scr. Mater. 51, 801–806 (2004)CrossRef
33.
Zurück zum Zitat Khodabakhshi, F.; Gerlich, A.; Simchi, A.; Kokabi, A.: Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites. Mater. Sci. Eng. A 620, 471–482 (2015)CrossRef Khodabakhshi, F.; Gerlich, A.; Simchi, A.; Kokabi, A.: Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites. Mater. Sci. Eng. A 620, 471–482 (2015)CrossRef
34.
Zurück zum Zitat Kim, C.; Lee, J.; Plichta, M.: Plastic relaxation of thermoelastic stress in aluminum/ceramic composites. Metall. Trans. A 21, 673–682 (1990)CrossRef Kim, C.; Lee, J.; Plichta, M.: Plastic relaxation of thermoelastic stress in aluminum/ceramic composites. Metall. Trans. A 21, 673–682 (1990)CrossRef
Metadaten
Titel
Mechanical and Microstructural Analysis of Exfoliated Graphite Nanoplatelets-Reinforced Aluminum Matrix Composites Synthesized via Friction Stir Processing
verfasst von
Xiaofeng Yu
Wenbiao Gong
Hua Wu
Lili Duan
Publikationsdatum
21.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 3/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-07051-6

Weitere Artikel der Ausgabe 3/2023

Arabian Journal for Science and Engineering 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.