Skip to main content
Erschienen in: Acta Mechanica Sinica 2/2017

21.02.2017 | Research Paper

Mechanics of water pore formation in lipid membrane under electric field

verfasst von: Bing Bu, Dechang Li, Jiajie Diao, Baohua Ji

Erschienen in: Acta Mechanica Sinica | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the process of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diameter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Following the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alberts, B., Johnson, A., Lewis, J., et al.: Molecular Biology of the Cell, 5th edn. Garland Science, New York (2007) Alberts, B., Johnson, A., Lewis, J., et al.: Molecular Biology of the Cell, 5th edn. Garland Science, New York (2007)
2.
Zurück zum Zitat Gozen, I., Dommersnes, P.: Pore dynamics in lipid membranes. Eur. Phys. J-Spec. Top. 223, 1813–1829 (2014)CrossRef Gozen, I., Dommersnes, P.: Pore dynamics in lipid membranes. Eur. Phys. J-Spec. Top. 223, 1813–1829 (2014)CrossRef
3.
Zurück zum Zitat Sandre, O., Moreaux, L., Brochard-Wyart, F.: Dynamics of transient pores in stretched vesicles. Proc. Natl. Acad. Sci. USA 96, 10591–10596 (1999)CrossRef Sandre, O., Moreaux, L., Brochard-Wyart, F.: Dynamics of transient pores in stretched vesicles. Proc. Natl. Acad. Sci. USA 96, 10591–10596 (1999)CrossRef
4.
Zurück zum Zitat Podbilewicz, B.: Virus and cell fusion mechanisms. Annu. Rev. Cell Dev. Biol. 30, 111–139 (2014)CrossRef Podbilewicz, B.: Virus and cell fusion mechanisms. Annu. Rev. Cell Dev. Biol. 30, 111–139 (2014)CrossRef
5.
Zurück zum Zitat Fuhrmans, M., Marelli, G., Smirnova, Y.G., et al.: Mechanics of membrane fusion/pore formation. Chem. Phys. Lipids 185, 109–128 (2015)CrossRef Fuhrmans, M., Marelli, G., Smirnova, Y.G., et al.: Mechanics of membrane fusion/pore formation. Chem. Phys. Lipids 185, 109–128 (2015)CrossRef
6.
Zurück zum Zitat Pattni, B.S., Chupin, V.V., Torchilin, V.P.: New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015)CrossRef Pattni, B.S., Chupin, V.V., Torchilin, V.P.: New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015)CrossRef
7.
Zurück zum Zitat Lai, Y., Zhao, L., Bu, B., et al.: Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion. Phys. Biol. 12, 25003 (2015)CrossRef Lai, Y., Zhao, L., Bu, B., et al.: Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion. Phys. Biol. 12, 25003 (2015)CrossRef
8.
Zurück zum Zitat He, L., Wu, L.-G.G.: The debate on the kiss-and-run fusion at synapses. Trends Neurosci. 30, 447–455 (2007)CrossRef He, L., Wu, L.-G.G.: The debate on the kiss-and-run fusion at synapses. Trends Neurosci. 30, 447–455 (2007)CrossRef
9.
Zurück zum Zitat Marx, V.: A deep look at synaptic dynamics. Nature 515, 293–297 (2014)CrossRef Marx, V.: A deep look at synaptic dynamics. Nature 515, 293–297 (2014)CrossRef
10.
Zurück zum Zitat Brunger, A.T., Cipriano, D.J., Diao, J.: Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit. Rev. Biochem. Mol. Biol. 50, 231–241 (2015)CrossRef Brunger, A.T., Cipriano, D.J., Diao, J.: Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit. Rev. Biochem. Mol. Biol. 50, 231–241 (2015)CrossRef
11.
Zurück zum Zitat Alabi, A.A., Tsien, R.W.: Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu. Rev. Physiol. 75, 393–422 (2013)CrossRef Alabi, A.A., Tsien, R.W.: Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu. Rev. Physiol. 75, 393–422 (2013)CrossRef
12.
Zurück zum Zitat Chernomordik, L.V., Kozlov, M.M.: Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683 (2008)CrossRef Chernomordik, L.V., Kozlov, M.M.: Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683 (2008)CrossRef
13.
Zurück zum Zitat van Meer, G., Voelker, D.R., Feigenson, G.W.: Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008)CrossRef van Meer, G., Voelker, D.R., Feigenson, G.W.: Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008)CrossRef
14.
Zurück zum Zitat Aihara, H., Miyazaki, J.: Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867–870 (1998)CrossRef Aihara, H., Miyazaki, J.: Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867–870 (1998)CrossRef
15.
Zurück zum Zitat Heller, L.C., Heller, R.: In vivo electroporation for gene therapy. Hum. Gene Ther. 17, 890–897 (2006)CrossRef Heller, L.C., Heller, R.: In vivo electroporation for gene therapy. Hum. Gene Ther. 17, 890–897 (2006)CrossRef
16.
Zurück zum Zitat Kotnik, T., Frey, W., Sack, M., et al.: Electroporation-based applications in biotechnology. Trends Biotechnol. 33, 480–488 (2015)CrossRef Kotnik, T., Frey, W., Sack, M., et al.: Electroporation-based applications in biotechnology. Trends Biotechnol. 33, 480–488 (2015)CrossRef
17.
Zurück zum Zitat Weaver, J.C., Chizmadzhev, Y.A.: Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41, 135–160 (1996)CrossRef Weaver, J.C., Chizmadzhev, Y.A.: Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41, 135–160 (1996)CrossRef
18.
Zurück zum Zitat Gehl, J.: Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta. Physiol. Scand. 177, 437–447 (2003)CrossRef Gehl, J.: Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta. Physiol. Scand. 177, 437–447 (2003)CrossRef
19.
Zurück zum Zitat Mehierhuert, S., Guy, R.: Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 57, 733–753 (2005)CrossRef Mehierhuert, S., Guy, R.: Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 57, 733–753 (2005)CrossRef
20.
Zurück zum Zitat Weaver, J.C.: Electroporation: a general phenomenon for manipulating cells and tissues. J. Cell. Biochem. 51, 426–435 (1993)CrossRef Weaver, J.C.: Electroporation: a general phenomenon for manipulating cells and tissues. J. Cell. Biochem. 51, 426–435 (1993)CrossRef
21.
Zurück zum Zitat Tieleman, D.P.: The molecular basis of electroporation. BMC Biochem. 5, 10 (2004)CrossRef Tieleman, D.P.: The molecular basis of electroporation. BMC Biochem. 5, 10 (2004)CrossRef
22.
Zurück zum Zitat Böckmann, R.A., de Groot, B.L., Kakorin, S., et al.: Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys. J. 95, 1837–1850 (2008)CrossRef Böckmann, R.A., de Groot, B.L., Kakorin, S., et al.: Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys. J. 95, 1837–1850 (2008)CrossRef
23.
Zurück zum Zitat Fernández, L.M., Marshall, G., Sagués, F., et al.: Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J. Phys. Chem. B 114, 6855–6865 (2010)CrossRef Fernández, L.M., Marshall, G., Sagués, F., et al.: Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J. Phys. Chem. B 114, 6855–6865 (2010)CrossRef
24.
Zurück zum Zitat Hu, Q., Joshi, R.P., Schoenbach, K.H.: Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 31902 (2005)CrossRef Hu, Q., Joshi, R.P., Schoenbach, K.H.: Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 31902 (2005)CrossRef
25.
Zurück zum Zitat Tieleman, P.D., Leontiadou, H., Mark, A.E., et al.: Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125, 6382–6383 (2003)CrossRef Tieleman, P.D., Leontiadou, H., Mark, A.E., et al.: Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125, 6382–6383 (2003)CrossRef
26.
Zurück zum Zitat Tarek, M.: Membrane electroporation: a molecular dynamics simulation. Biophys. J. 88, 4045–4053 (2005)CrossRef Tarek, M.: Membrane electroporation: a molecular dynamics simulation. Biophys. J. 88, 4045–4053 (2005)CrossRef
27.
Zurück zum Zitat Casciola, M., Bonhenry, D., Liberti, M., et al.: A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100, 11–17 (2014)CrossRef Casciola, M., Bonhenry, D., Liberti, M., et al.: A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100, 11–17 (2014)CrossRef
28.
Zurück zum Zitat Gurtovenko, A.A., Vattulainen, I.: Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J. Am. Chem. Soc. 127, 17570–17571 (2005)CrossRef Gurtovenko, A.A., Vattulainen, I.: Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J. Am. Chem. Soc. 127, 17570–17571 (2005)CrossRef
29.
Zurück zum Zitat Melcr, J., Bonhenry, D., Timr, S., et al.: Transmembrane potential modeling: comparison between methods of constant electric field and ion imbalance. J. Chem. Theory. Comput. 12, 2418–2425 (2016)CrossRef Melcr, J., Bonhenry, D., Timr, S., et al.: Transmembrane potential modeling: comparison between methods of constant electric field and ion imbalance. J. Chem. Theory. Comput. 12, 2418–2425 (2016)CrossRef
30.
Zurück zum Zitat Gurtovenko, A.A., Lyulina, A.S.: Electroporation of asymmetric phospholipid membranes. J. Phys. Chem. B 118, 9909–9918 (2014)CrossRef Gurtovenko, A.A., Lyulina, A.S.: Electroporation of asymmetric phospholipid membranes. J. Phys. Chem. B 118, 9909–9918 (2014)CrossRef
31.
Zurück zum Zitat Levine, Z.A., Vernier, T.P.: Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J. Membr. Biol. 236, 27–36 (2010)CrossRef Levine, Z.A., Vernier, T.P.: Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J. Membr. Biol. 236, 27–36 (2010)CrossRef
32.
Zurück zum Zitat Dehez, F., Delemotte, L., Kramar, P., et al.: Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J. Phys. Chem. C 118, 6752–6757 (2014)CrossRef Dehez, F., Delemotte, L., Kramar, P., et al.: Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J. Phys. Chem. C 118, 6752–6757 (2014)CrossRef
33.
Zurück zum Zitat Ziegler, M.J., Vernier, P.T.: Interface water dynamics and porating electric fields for phospholipid bilayers. J. Phys. Chem. B 112, 13588–13596 (2008)CrossRef Ziegler, M.J., Vernier, P.T.: Interface water dynamics and porating electric fields for phospholipid bilayers. J. Phys. Chem. B 112, 13588–13596 (2008)CrossRef
34.
Zurück zum Zitat Ho, M.-C.C., Levine, Z.A., Vernier, P.T.: Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers. J. Membr. Biol. 246, 793–801 (2013)CrossRef Ho, M.-C.C., Levine, Z.A., Vernier, P.T.: Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers. J. Membr. Biol. 246, 793–801 (2013)CrossRef
35.
Zurück zum Zitat Tokman, M., Lee, J.H., Levine, Z.A., et al.: Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS ONE 8, e61111 (2013)CrossRef Tokman, M., Lee, J.H., Levine, Z.A., et al.: Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS ONE 8, e61111 (2013)CrossRef
36.
Zurück zum Zitat Vernier, P.T., Levine, Z.A., Gundersen, M.A.: Water bridges in electropermeabilized phospholipid bilayers. Proc. IEEE 101, 494–504 (2013)CrossRef Vernier, P.T., Levine, Z.A., Gundersen, M.A.: Water bridges in electropermeabilized phospholipid bilayers. Proc. IEEE 101, 494–504 (2013)CrossRef
37.
Zurück zum Zitat Vernier, P. T.: Nanoscale restructuring of lipid bilayers in nanosecond electric fields. In: Advanced Electroporation Techniques in Biology and Medicine. CRC Press, 161–174 (2010) Vernier, P. T.: Nanoscale restructuring of lipid bilayers in nanosecond electric fields. In: Advanced Electroporation Techniques in Biology and Medicine. CRC Press, 161–174 (2010)
38.
Zurück zum Zitat Casciola, M., Tarek, M.: A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochim. Biophys. Acta-Biomembr. 1858, 2278–2289 (2016)CrossRef Casciola, M., Tarek, M.: A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochim. Biophys. Acta-Biomembr. 1858, 2278–2289 (2016)CrossRef
39.
Zurück zum Zitat Sun, S., Wong, J.T.Y., Zhang, T.-Y.: Atomistic simulations of electroporation in water preembedded membranes. J. Phys. Chem. B 115, 13355–13359 (2011)CrossRef Sun, S., Wong, J.T.Y., Zhang, T.-Y.: Atomistic simulations of electroporation in water preembedded membranes. J. Phys. Chem. B 115, 13355–13359 (2011)CrossRef
40.
Zurück zum Zitat Polak, A., Tarek, M., Tomšič, M., et al.: Electroporation of archaeal lipid membranes using MD simulations. Bioelectrochemistry 100, 18–26 (2014)CrossRef Polak, A., Tarek, M., Tomšič, M., et al.: Electroporation of archaeal lipid membranes using MD simulations. Bioelectrochemistry 100, 18–26 (2014)CrossRef
41.
Zurück zum Zitat Vernier, T.P., Ziegler, M.J.: Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J. Phys. Chem. B 111, 12993–12996 (2007)CrossRef Vernier, T.P., Ziegler, M.J.: Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J. Phys. Chem. B 111, 12993–12996 (2007)CrossRef
42.
Zurück zum Zitat Jo, S., Kim, T., Iyer, V.G., et al.: CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008)CrossRef Jo, S., Kim, T., Iyer, V.G., et al.: CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008)CrossRef
43.
Zurück zum Zitat Jo, S., Kim, T., Im, W.: Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2, e880 (2007)CrossRef Jo, S., Kim, T., Im, W.: Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2, e880 (2007)CrossRef
44.
Zurück zum Zitat Jo, S., Lim, J.B., Klauda, J.B., et al.: CHARMM-GUI Membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009)CrossRef Jo, S., Lim, J.B., Klauda, J.B., et al.: CHARMM-GUI Membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009)CrossRef
45.
Zurück zum Zitat Lee, J., Cheng, X., Swails, J.M., et al.: CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2015)CrossRef Lee, J., Cheng, X., Swails, J.M., et al.: CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2015)CrossRef
46.
Zurück zum Zitat Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., et al.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983)CrossRef Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., et al.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983)CrossRef
47.
Zurück zum Zitat Abraham, M., Murtola, T., Schulz, R., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)CrossRef Abraham, M., Murtola, T., Schulz, R., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)CrossRef
48.
Zurück zum Zitat Klauda, J.B., Venable, R.M., Freites, A.J., et al.: Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010)CrossRef Klauda, J.B., Venable, R.M., Freites, A.J., et al.: Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010)CrossRef
49.
Zurück zum Zitat Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 14101 (2007)CrossRef Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 14101 (2007)CrossRef
50.
Zurück zum Zitat Parrinello, M.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981)CrossRef Parrinello, M.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981)CrossRef
51.
Zurück zum Zitat Hess, B.: P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008)CrossRef Hess, B.: P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008)CrossRef
52.
Zurück zum Zitat Essmann, U., Perera, L., Berkowitz, M.L., et al.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995)CrossRef Essmann, U., Perera, L., Berkowitz, M.L., et al.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995)CrossRef
53.
Zurück zum Zitat Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRef Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRef
54.
Zurück zum Zitat Limongelli, V., Bonomi, M., Parrinello, M.: Funnel metadynamics as accurate binding free-energy method. Proc. Natl. Acad. Sci. USA 110, 6358–6363 (2013)CrossRef Limongelli, V., Bonomi, M., Parrinello, M.: Funnel metadynamics as accurate binding free-energy method. Proc. Natl. Acad. Sci. USA 110, 6358–6363 (2013)CrossRef
55.
Zurück zum Zitat Barducci, A., Bonomi, M., Parrinello, M.: Metadynamics. Wires. Comput. Mol. Sci. 1, 826–843 (2011)CrossRef Barducci, A., Bonomi, M., Parrinello, M.: Metadynamics. Wires. Comput. Mol. Sci. 1, 826–843 (2011)CrossRef
56.
Zurück zum Zitat Spiwok, V., Lipovová, P., Králová, B.: Metadynamics in essential coordinates: free energy simulation of conformational changes. J. Phys. Chem. B 111, 3073–3076 (2007)CrossRef Spiwok, V., Lipovová, P., Králová, B.: Metadynamics in essential coordinates: free energy simulation of conformational changes. J. Phys. Chem. B 111, 3073–3076 (2007)CrossRef
57.
Zurück zum Zitat Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 20603 (2008)CrossRef Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 20603 (2008)CrossRef
58.
Zurück zum Zitat Li, D., Liu, M.S., Ji, B.: Mapping the dynamics landscape of conformational transitions in enzyme: the adenylate kinase case. Biophys. J. 109, 647–660 (2015)CrossRef Li, D., Liu, M.S., Ji, B.: Mapping the dynamics landscape of conformational transitions in enzyme: the adenylate kinase case. Biophys. J. 109, 647–660 (2015)CrossRef
59.
Zurück zum Zitat Bonomi, M., Branduardi, D., Bussi, G., et al.: PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180, 1961–1972 (2009) Bonomi, M., Branduardi, D., Bussi, G., et al.: PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180, 1961–1972 (2009)
60.
Zurück zum Zitat Biarnés, X., Pietrucci, F., Marinelli, F., et al.: METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations. Comput. Phys. Commun. 183, 203–211 (2012) Biarnés, X., Pietrucci, F., Marinelli, F., et al.: METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations. Comput. Phys. Commun. 183, 203–211 (2012)
61.
Zurück zum Zitat Sun, S., Wong, J.T.Y., Zhang, T.-Y.: Molecular dynamics simulations of phase transition of lamellar lipid membrane in water under an electric field. Soft Matter 7, 147–152 (2010) Sun, S., Wong, J.T.Y., Zhang, T.-Y.: Molecular dynamics simulations of phase transition of lamellar lipid membrane in water under an electric field. Soft Matter 7, 147–152 (2010)
62.
Zurück zum Zitat Li, D., Ji, B., Hwang, K.-C., et al.: Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket. PLoS ONE 6, e19268 (2011)CrossRef Li, D., Ji, B., Hwang, K.-C., et al.: Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket. PLoS ONE 6, e19268 (2011)CrossRef
63.
Zurück zum Zitat Li, D.-C., Ji, B.-H.: Free energy calculation of single molecular interaction using Jarzynski’s identity method: the case of HIV-1 protease inhibitor system. Acta. Mech. Sin. 28, 891–903 (2012)CrossRef Li, D.-C., Ji, B.-H.: Free energy calculation of single molecular interaction using Jarzynski’s identity method: the case of HIV-1 protease inhibitor system. Acta. Mech. Sin. 28, 891–903 (2012)CrossRef
64.
Zurück zum Zitat Xu, C., Li, D., Cheng, Y., et al.: Pulling out a peptide chain from \({\upbeta }\)-sheet crystallite: propagation of instability of H-bonds under shear force. Acta. Mech. Sin. 31, 416–424 (2015)CrossRef Xu, C., Li, D., Cheng, Y., et al.: Pulling out a peptide chain from \({\upbeta }\)-sheet crystallite: propagation of instability of H-bonds under shear force. Acta. Mech. Sin. 31, 416–424 (2015)CrossRef
65.
Zurück zum Zitat Xu, Z., Li, D., Ji, B.: Quantification of the stiffness and strength of cadherin ectodomain binding with different ions. Theo. Appl. Mech. Lett. 4, 034001 (2014)CrossRef Xu, Z., Li, D., Ji, B.: Quantification of the stiffness and strength of cadherin ectodomain binding with different ions. Theo. Appl. Mech. Lett. 4, 034001 (2014)CrossRef
66.
Zurück zum Zitat Cheng, Y., Koh, L.-D.D., Li, D., et al.: On the strength of \({\upbeta }\)-sheet crystallites of Bombyx mori silk fibroin. J. R. Soc. Interface 11, 20140305 (2014)CrossRef Cheng, Y., Koh, L.-D.D., Li, D., et al.: On the strength of \({\upbeta }\)-sheet crystallites of Bombyx mori silk fibroin. J. R. Soc. Interface 11, 20140305 (2014)CrossRef
67.
Zurück zum Zitat Cheng, Y., Koh, L.-D., Li, D., et al.: Peptide–Graphene interactions enhance the mechanical properties of silk fibroin. ACS Appl. Mater. Inter. 7, 21787–21796 (2015)CrossRef Cheng, Y., Koh, L.-D., Li, D., et al.: Peptide–Graphene interactions enhance the mechanical properties of silk fibroin. ACS Appl. Mater. Inter. 7, 21787–21796 (2015)CrossRef
68.
Zurück zum Zitat Tepper, H.L., Voth, G.A.: Mechanisms of passive ion permeation through lipid bilayers: insights from simulations. J. Phys. Chem. B 110, 21327–21337 (2006)CrossRef Tepper, H.L., Voth, G.A.: Mechanisms of passive ion permeation through lipid bilayers: insights from simulations. J. Phys. Chem. B 110, 21327–21337 (2006)CrossRef
69.
Zurück zum Zitat Al-Sakere, B., Andre, F., Bernat, C., et al.: Tumor ablation with irreversible electroporation. PLoS ONE 2, e1135 (2007)CrossRef Al-Sakere, B., Andre, F., Bernat, C., et al.: Tumor ablation with irreversible electroporation. PLoS ONE 2, e1135 (2007)CrossRef
70.
Zurück zum Zitat Gurtovenko, A.A., Vattulainen, I.: Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys. J. 92, 1878–1890 (2007)CrossRef Gurtovenko, A.A., Vattulainen, I.: Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys. J. 92, 1878–1890 (2007)CrossRef
71.
Zurück zum Zitat Rems, L., Ušaj, M., Kandušer, M., et al.: Cell electrofusion using nanosecond electric pulses. Sci. Rep. 3, 3382 (2013)CrossRef Rems, L., Ušaj, M., Kandušer, M., et al.: Cell electrofusion using nanosecond electric pulses. Sci. Rep. 3, 3382 (2013)CrossRef
72.
Zurück zum Zitat Zimmermann, U., Vienken, J.: Electric field-induced cell-to-cell fusion. J. Membr. Biol. 67, 165–182 (1982)CrossRef Zimmermann, U., Vienken, J.: Electric field-induced cell-to-cell fusion. J. Membr. Biol. 67, 165–182 (1982)CrossRef
73.
Zurück zum Zitat Kotnik, T.: Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer. Phys. Life Rev. 10, 351–370 (2013)CrossRef Kotnik, T.: Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer. Phys. Life Rev. 10, 351–370 (2013)CrossRef
74.
Zurück zum Zitat Bu, B., Tian, Z., Li, D., et al.: High transmembrane voltage raised by close contact initiates fusion pore. Front. Mol. Neurosci. 9, 136 (2016)CrossRef Bu, B., Tian, Z., Li, D., et al.: High transmembrane voltage raised by close contact initiates fusion pore. Front. Mol. Neurosci. 9, 136 (2016)CrossRef
Metadaten
Titel
Mechanics of water pore formation in lipid membrane under electric field
verfasst von
Bing Bu
Dechang Li
Jiajie Diao
Baohua Ji
Publikationsdatum
21.02.2017
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 2/2017
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0635-1

Weitere Artikel der Ausgabe 2/2017

Acta Mechanica Sinica 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.