Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2013

01.03.2013 | Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Mechanisms and Kinetics of Environmentally Assisted Cracking: Current Status, Issues, and Suggestions for Further Work

verfasst von: S. P. Lynch

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mechanisms and kinetics of metal-induced embrittlement, hydrogen-embrittlement, and stress-corrosion cracking are discussed, and long-standing controversies are addressed by reviewing critical observations. Recommendations are also made regarding further work (including repetition of previous work using more advanced measurement and characterisation techniques) that should be carried out in order to resolve some of the contentious issues. The evidence to date suggests that adsorption-based mechanisms, involving weakening of substrate interatomic bonds so that dislocation emission or decohesion is facilitated, accounts for embrittlement in many systems. Embrittling adsorbed species include some metal atoms, hydrogen, and complex ions produced by de-alloying. Other viable mechanisms of embrittlement include those based on (1) dissolution of anodic grain-boundary regions, and (2) decohesion at grain boundaries owing to segregated hydrogen and impurities. The hydrogen-enhanced localised-plasticity mechanism, based on solute hydrogen facilitating dislocation activity in the plastic zone ahead of cracks, makes a contribution in some cases, but is relatively unimportant compared with these other mechanisms for most fracture modes. The film-induced cleavage mechanism, proposed especially for stress-corrosion cracking in systems involving de-alloying at crack tips, is questionable on numerous grounds, and is probably not viable. Rate-controlling processes for environmentally assisted cracking are not well established, except for solid-metal induced embrittlement where surface self-diffusion of embrittling atoms to crack tips controls cracking kinetics. In some systems, adsorption kinetics are probably rate-controlling for liquid-metal embrittlement, hydrogen-environment embrittlement, and stress-corrosion cracking. In other cases, rate-controlling processes could include the rate of anodic or cathodic reactions at and behind crack tips (responsible for producing embrittling species such as hydrogen) and rates of hydrogen diffusion ahead of cracks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
These effects of temperature are also opposite to what one would expect if dissolution was involved in crack growth. Increasing temperature decreases the severity of LME (measured from elongations or reductions of area after tensile tests) in other materials,[810] but the data are difficult to interpret since both crack initiation and growth are involved. For LME involving grain-boundary diffusion, increasing temperature increases the kinetics of embrittlement as would be expected.
 
2
In the original paper,[58] the dimples were described as ‘mounds’, but it is now accepted that the features were dimples[80] after it was pointed out that this was probably the case.[81] Fine dislocation cells were observed beneath the fracture surfaces in the study,[58] and voids could well have been nucleated at dislocation-cell boundaries, as has been observed by in situ TEM studies in the absence of hydrogen.[79] It was originally suggested that decohesion was involved[58] but, given that it is now accepted that fracture surfaces were dimpled, it seems more likely that AIDE predominates.[81]
 
3
Recent ultra-high resolution SEM of mating areas of opposite fracture surfaces of a steel confirms that cleavage-like facets are dimpled on a nanoscale (15–20 nm diameter and 1–5 nm depth). See Ref. [82].
 
4
Linear extrapolation of diffusion data for Ni appears to be reasonable down to at least 123 K (−150 °C), based on magnetic-relaxation measurements of jump frequencies at 173 K to 123 K (−100 °C to −150 °C), and comparisons with jump frequencies calculated from diffusion measurements at high temperatures.[88] Linear extrapolation to even lower temperatures is also probably valid since quantum-tunnelling effects, leading to diffusion faster than predicted from linear extrapolation of high-temperature diffusion data, appear not to be significant for fcc metals (unlike bcc metals). The difference between fcc and bcc metals probably occurs due to the greater distance (by a factor of about two) between the octahedral interstitial sites of hydrogen in fcc metals and the tetrahedral interstitial sites of hydrogen in bcc metals.[88]
 
Literatur
1.
Zurück zum Zitat S.P. Lynch: in Stress Corrosion Cracking: Theory and Practice. V.S. Raja and T. Shoji, eds., Woodhead Publishing, Cambridge, 2011, ch. 1, pp. 3-89, and ch. 2, pp. 90-130, and references therein. S.P. Lynch: in Stress Corrosion Cracking: Theory and Practice. V.S. Raja and T. Shoji, eds., Woodhead Publishing, Cambridge, 2011, ch. 1, pp. 3-89, and ch. 2, pp. 90-130, and references therein.
2.
Zurück zum Zitat R.C. Newman: in Shreir’s Corrosion, 4th ed., vol. 2, J.A. Richardson et al., eds., Elsevier, Amsterdam, 2010, pp. 864–901. R.C. Newman: in Shreir’s Corrosion, 4th ed., vol. 2, J.A. Richardson et al., eds., Elsevier, Amsterdam, 2010, pp. 864–901.
3.
Zurück zum Zitat H. Hänninen: in Comprehensive Structural Integrity, Environmentally Assisted Fracture, vol. 6, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier, Amsterdam, 2003, pp. 1–29. H. Hänninen: in Comprehensive Structural Integrity, Environmentally Assisted Fracture, vol. 6, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier, Amsterdam, 2003, pp. 1–29.
4.
Zurück zum Zitat T. Magnin: in Materials Science and Technology: A Comprehensive Treatment, Corrosion and Environmental Degradation, vol. 1, R.W. Cahn, P. Haasen, and E.J. Kramer, eds. (M. Schütze, vol. ed.), Wiley, New York, 2000, pp. 207–63. T. Magnin: in Materials Science and Technology: A Comprehensive Treatment, Corrosion and Environmental Degradation, vol. 1, R.W. Cahn, P. Haasen, and E.J. Kramer, eds. (M. Schütze, vol. ed.), Wiley, New York, 2000, pp. 207–63.
5.
Zurück zum Zitat R.P. Gangloff: in Comprehensive Structural Integrity, vol. 6, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier, Amsterdam, 2003, pp. 31–101. R.P. Gangloff: in Comprehensive Structural Integrity, vol. 6, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier, Amsterdam, 2003, pp. 31–101.
6.
Zurück zum Zitat S.P. Lynch: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 9, vol. 1, R.P. Gangloff and B. Somerday eds., Woodhead, U.K., 2012, pp. 274–46, and references therein. S.P. Lynch: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 9, vol. 1, R.P. Gangloff and B. Somerday eds., Woodhead, U.K., 2012, pp. 274–46, and references therein.
8.
Zurück zum Zitat N.S. Stoloff: in Embrittlement by Liquid and Solid Metals, M.H. Kamdar, ed., Met. Soc. AIME, New York, 1984, pp. 3–26, and other papers in these proceedings. N.S. Stoloff: in Embrittlement by Liquid and Solid Metals, M.H. Kamdar, ed., Met. Soc. AIME, New York, 1984, pp. 3–26, and other papers in these proceedings.
9.
Zurück zum Zitat S.P. Lynch: Materials. Characterization, 1992, vol.28, pp.279-289, and references therein.CrossRef S.P. Lynch: Materials. Characterization, 1992, vol.28, pp.279-289, and references therein.CrossRef
10.
Zurück zum Zitat B. Joseph, M. Picat, and F. Barbier: Eur. Phys. J. AP, 1999, vol.5, pp. 19-31.CrossRef B. Joseph, M. Picat, and F. Barbier: Eur. Phys. J. AP, 1999, vol.5, pp. 19-31.CrossRef
11.
Zurück zum Zitat J. Luo, H. Cheng, K. M. Asl, C. J. Kiely, and M.P. Harmer: Science, 2011 (Sept.), vol. 333, pp.1730-1733.CrossRef J. Luo, H. Cheng, K. M. Asl, C. J. Kiely, and M.P. Harmer: Science, 2011 (Sept.), vol. 333, pp.1730-1733.CrossRef
12.
Zurück zum Zitat E. Pereiro-López, W. Ludwig, and D. Bellet: Acta Mater., 2004, vol.52, pp.321-332.CrossRef E. Pereiro-López, W. Ludwig, and D. Bellet: Acta Mater., 2004, vol.52, pp.321-332.CrossRef
13.
Zurück zum Zitat N. Marié, K. Wolski, and M. Biscondi: Scripta Mater., 2000, vol.43, pp. 943-949.CrossRef N. Marié, K. Wolski, and M. Biscondi: Scripta Mater., 2000, vol.43, pp. 943-949.CrossRef
14.
Zurück zum Zitat K.Ina and H. Koizumi: Mater.Sci. Engng A, 2004, vol.387-389, pp. 390-394. K.Ina and H. Koizumi: Mater.Sci. Engng A, 2004, vol.387-389, pp. 390-394.
15.
17.
Zurück zum Zitat D.N. Fager and W.F. Spurr: Corrosion, 1970, vol.26, pp. 409-419. D.N. Fager and W.F. Spurr: Corrosion, 1970, vol.26, pp. 409-419.
18.
Zurück zum Zitat S.P. Lynch: Mater. Sci. Engng, 1989, vol. A108, pp. 203-212. S.P. Lynch: Mater. Sci. Engng, 1989, vol. A108, pp. 203-212.
20.
23.
24.
Zurück zum Zitat S.P. Lynch: Acta Metall, 1988, vol. 20, Overview No. 74, pp. 2639–61, and references therein. S.P. Lynch: Acta Metall, 1988, vol. 20, Overview No. 74, pp. 2639–61, and references therein.
25.
Zurück zum Zitat O. Yu. Kolesnychenko, R. de Kort, and H. van Kempen: Surf. Sci. 2001, vol. 490, L573–78. O. Yu. Kolesnychenko, R. de Kort, and H. van Kempen: Surf. Sci. 2001, vol. 490, L573–78.
26.
Zurück zum Zitat S.P. Lynch, B.C. Muddle, and T. Pasang: Philos. Mag. 2002, vol. 82, pp.3361-3373. S.P. Lynch, B.C. Muddle, and T. Pasang: Philos. Mag. 2002, vol. 82, pp.3361-3373.
27.
Zurück zum Zitat S. M. Bruemmer and L. E. Thomas: Surface and Interface Analysis, 2001, vol.31, pp.571-581.CrossRef S. M. Bruemmer and L. E. Thomas: Surface and Interface Analysis, 2001, vol.31, pp.571-581.CrossRef
28.
Zurück zum Zitat L. E. Thomas and S. M. Bruemmer: Corrosion, 2000, vol.56, pp.572-587.CrossRef L. E. Thomas and S. M. Bruemmer: Corrosion, 2000, vol.56, pp.572-587.CrossRef
29.
Zurück zum Zitat Y. Takahashi, M. Tanaka, K. Higashida, H. Noguchi: Scripta Mater. 2009, vol.61 pp.145-148.CrossRef Y. Takahashi, M. Tanaka, K. Higashida, H. Noguchi: Scripta Mater. 2009, vol.61 pp.145-148.CrossRef
30.
Zurück zum Zitat Y. Takahashi, M. Tanaka, K. Higashida, K. Yamaguchi, H. Noguchi: Acta Mater., 2010, vol. 58, pp.1972-1981.CrossRef Y. Takahashi, M. Tanaka, K. Higashida, K. Yamaguchi, H. Noguchi: Acta Mater., 2010, vol. 58, pp.1972-1981.CrossRef
31.
Zurück zum Zitat Y. Takahashi, H. Nishikawa, Y. Oda, H. Noguchi: Mater. Lett. 2010, vol.64, pp.2416-2419.CrossRef Y. Takahashi, H. Nishikawa, Y. Oda, H. Noguchi: Mater. Lett. 2010, vol.64, pp.2416-2419.CrossRef
32.
Zurück zum Zitat W.R. Goggin and J.W. Moberly: Trans ASM,1966, vol. 59, pp.315-323. W.R. Goggin and J.W. Moberly: Trans ASM,1966, vol. 59, pp.315-323.
33.
Zurück zum Zitat E.D. Sweet, S. P. Lynch, C. G. Bennett, R. B. Nethercott, and I. Musulin: Metall. and Mater. Trans. A, 1996, vol.27A, pp.3530-3541.CrossRef E.D. Sweet, S. P. Lynch, C. G. Bennett, R. B. Nethercott, and I. Musulin: Metall. and Mater. Trans. A, 1996, vol.27A, pp.3530-3541.CrossRef
34.
Zurück zum Zitat F. A. Shunk and W. R. Warke: Scripta Metall., 1974, vol.8, pp.519-526.CrossRef F. A. Shunk and W. R. Warke: Scripta Metall., 1974, vol.8, pp.519-526.CrossRef
35.
36.
Zurück zum Zitat J. Li, A.H.W. Ngan, and P. Gumbsch: Acta Mater., 2003, vol. 51, pp.5711-5742.CrossRef J. Li, A.H.W. Ngan, and P. Gumbsch: Acta Mater., 2003, vol. 51, pp.5711-5742.CrossRef
37.
Zurück zum Zitat S. Ogata, Y. Umeno, and M. Kohyama: Modell. Simul. Mater. Sci. Eng. 2009, vol. 17, p. 013001. S. Ogata, Y. Umeno, and M. Kohyama: Modell. Simul. Mater. Sci. Eng. 2009, vol. 17, p. 013001.
38.
Zurück zum Zitat O.N. Mryasov, and A.J. Freeman: Mater. Sci. Eng., 1999, vol.A269, pp. 80-93. O.N. Mryasov, and A.J. Freeman: Mater. Sci. Eng., 1999, vol.A269, pp. 80-93.
39.
Zurück zum Zitat A.K. Nair, D.H. Warner, R.G. Hennig, and W.A. Curtin: Scripta Mater., 2010, vol. 63, pp. 1212-1215.CrossRef A.K. Nair, D.H. Warner, R.G. Hennig, and W.A. Curtin: Scripta Mater., 2010, vol. 63, pp. 1212-1215.CrossRef
40.
Zurück zum Zitat P. Gordon: Metall. Trans A, 1978, vol. 9A, pp.267-273. P. Gordon: Metall. Trans A, 1978, vol. 9A, pp.267-273.
41.
42.
Zurück zum Zitat M.O. Speidel: in The Theory of Stress Corrosion Cracking in Alloys. J.C. Scully, ed., NATO, Brussels, 1971, pp. 289–344. M.O. Speidel: in The Theory of Stress Corrosion Cracking in Alloys. J.C. Scully, ed., NATO, Brussels, 1971, pp. 289–344.
43.
Zurück zum Zitat J.A. Feeney and M.J. Blackburn: in The Theory of Stress Corrosion Cracking in Alloys. J.C. Scully, ed., NATO, Brussels, 1971, pp. 355–398. J.A. Feeney and M.J. Blackburn: in The Theory of Stress Corrosion Cracking in Alloys. J.C. Scully, ed., NATO, Brussels, 1971, pp. 355–398.
44.
Zurück zum Zitat J.A. Kapp: in Embrittlement by Liquid and Solid Metals, M.H. Kamdar, ed., Met. Soc. AIME, New York, 1984, pp. 117–31. J.A. Kapp: in Embrittlement by Liquid and Solid Metals, M.H. Kamdar, ed., Met. Soc. AIME, New York, 1984, pp. 117–31.
45.
Zurück zum Zitat R.E. Clegg and P.D. King: in Damage and Fracture Mechanics: Computer Aided Assessment and Control, A. Carpinteri and C.A. Brebbia, eds., 1998, pp. 557–564. R.E. Clegg and P.D. King: in Damage and Fracture Mechanics: Computer Aided Assessment and Control, A. Carpinteri and C.A. Brebbia, eds., 1998, pp. 557–564.
46.
Zurück zum Zitat S.P. Lynch: in Environmental Degradation of Materials in Aggressive Environments, M.R. Louthan, Jr., R.P. McNitt, and R.D. Sisson, Jr., eds., Virginia Polytechnic Inst., 1981, pp. 229–244. S.P. Lynch: in Environmental Degradation of Materials in Aggressive Environments, M.R. Louthan, Jr., R.P. McNitt, and R.D. Sisson, Jr., eds., Virginia Polytechnic Inst., 1981, pp. 229–244.
47.
Zurück zum Zitat Z. Hadjem-Hamouche, T. Auger, and I. Guillot: Corros. Sci., 2009, vol.51, pp.2580-2587.CrossRef Z. Hadjem-Hamouche, T. Auger, and I. Guillot: Corros. Sci., 2009, vol.51, pp.2580-2587.CrossRef
48.
Zurück zum Zitat D.A. Wheeler, R.G. Hoagland, and J.P. Hirth: Corrosion, 1989, vol. 45, pp.207-212.CrossRef D.A. Wheeler, R.G. Hoagland, and J.P. Hirth: Corrosion, 1989, vol. 45, pp.207-212.CrossRef
49.
Zurück zum Zitat J.T. Lukowski D.B. Kasul, L.A. Heldt, and C.L. White: Scripta Metall Mater., 1990, vol.24, pp.1959-1964.CrossRef J.T. Lukowski D.B. Kasul, L.A. Heldt, and C.L. White: Scripta Metall Mater., 1990, vol.24, pp.1959-1964.CrossRef
50.
Zurück zum Zitat S.P. Lynch: Mater. Sci. Eng. A. 2007, vol.468-470, pp.74-80. S.P. Lynch: Mater. Sci. Eng. A. 2007, vol.468-470, pp.74-80.
51.
Zurück zum Zitat A. Pundt and R. Kirchheim: Annual Rev. Mater. Res., 2006, vol.36, pp.555-608.CrossRef A. Pundt and R. Kirchheim: Annual Rev. Mater. Res., 2006, vol.36, pp.555-608.CrossRef
52.
Zurück zum Zitat A.A. Pisarev: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 1, vol. 2, R.P. Gangloff and B. Somerday, eds., Woodhead, U.K., 2012, pp. 3–26. A.A. Pisarev: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 1, vol. 2, R.P. Gangloff and B. Somerday, eds., Woodhead, U.K., 2012, pp. 3–26.
54.
Zurück zum Zitat S.P. Lynch: in Hydrogen Effects on Mechanical Behavior and Corrosion Deformation Interactions, N.R. Moody et al., eds., TMS, Warrendale, PA, 2003, pp. 449–466. S.P. Lynch: in Hydrogen Effects on Mechanical Behavior and Corrosion Deformation Interactions, N.R. Moody et al., eds., TMS, Warrendale, PA, 2003, pp. 449–466.
55.
Zurück zum Zitat I.M. Robertson, D. Lillig, and P.J. Ferreira: in Effects of Hydrogen on Materials, B.P. Somerday, P. Sofronis, and R. Jones, eds., ASM International, 2009, pp. 22–37. I.M. Robertson, D. Lillig, and P.J. Ferreira: in Effects of Hydrogen on Materials, B.P. Somerday, P. Sofronis, and R. Jones, eds., ASM International, 2009, pp. 22–37.
57.
Zurück zum Zitat M. Dadfarnia, P. Novak, D.C. Ahn, J.B. Liu, P. Sofronis, D.D. Johnson, and I.M. Robertson: Adv. Mater. 2010, vol. 22, pp. 1128-1135.CrossRef M. Dadfarnia, P. Novak, D.C. Ahn, J.B. Liu, P. Sofronis, D.D. Johnson, and I.M. Robertson: Adv. Mater. 2010, vol. 22, pp. 1128-1135.CrossRef
58.
Zurück zum Zitat M.L. Martin, I.M. Robertson, P. Sofronis: Acta Mater., 2011, vol.59, pp.3680-3687.CrossRef M.L. Martin, I.M. Robertson, P. Sofronis: Acta Mater., 2011, vol.59, pp.3680-3687.CrossRef
59.
Zurück zum Zitat M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol.60, pp.2739-2745.CrossRef M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol.60, pp.2739-2745.CrossRef
60.
Zurück zum Zitat J.W. Davenport and P.J. Estrup: in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, D.A. King and D.P. Woodruff, eds., Elsevier, Amsterdam, 1990, vol. 3, pp. 1–37. J.W. Davenport and P.J. Estrup: in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, D.A. King and D.P. Woodruff, eds., Elsevier, Amsterdam, 1990, vol. 3, pp. 1–37.
61.
Zurück zum Zitat T.E. Fischer: in Advanced Techniques for Characterizing Hydrogen in Metals, N.F. Fiore and B.J. Berkowitz, eds., Met. Soc. AIME, 1982, pp. 135–48. T.E. Fischer: in Advanced Techniques for Characterizing Hydrogen in Metals, N.F. Fiore and B.J. Berkowitz, eds., Met. Soc. AIME, 1982, pp. 135–48.
62.
63.
Zurück zum Zitat E. Protopopoff and P. Marcus: in Corrosion Mechanisms in Theory and Practice, 2nd edn, P. Marcus, ed., Marcel Dekker, New York, 2002, pp. 53–96. E. Protopopoff and P. Marcus: in Corrosion Mechanisms in Theory and Practice, 2nd edn, P. Marcus, ed., Marcel Dekker, New York, 2002, pp. 53–96.
64.
Zurück zum Zitat J. Oudar: in Corrosion Mechanisms in Theory and Practice, 2nd edn, P. Marcus, ed., Marcel Dekker, New York, 2002, pp. 19–51. J. Oudar: in Corrosion Mechanisms in Theory and Practice, 2nd edn, P. Marcus, ed., Marcel Dekker, New York, 2002, pp. 19–51.
65.
Zurück zum Zitat W. Moritz, R.J. Behm, G. Ertl, G. Kleinle, V. Penka, W. Reimer, and M. Skottke: in The Structure of Surfaces II, Springer, New York, 1988, pp. 207–13. W. Moritz, R.J. Behm, G. Ertl, G. Kleinle, V. Penka, W. Reimer, and M. Skottke: in The Structure of Surfaces II, Springer, New York, 1988, pp. 207–13.
66.
Zurück zum Zitat Y. Kuk, P.J. Silverman and H.Q. Nguyen: Phys. Rev. Lett., 1987, vol.59, (No. 13), pp.1452-1455.CrossRef Y. Kuk, P.J. Silverman and H.Q. Nguyen: Phys. Rev. Lett., 1987, vol.59, (No. 13), pp.1452-1455.CrossRef
67.
68.
Zurück zum Zitat M.S. Daw and M.I. Baskes: in Chemistry and Physics of Fracture, R.H. Jones and R.M. Latanision, eds., Martinus Nijhoff, The Netherlands, 1987, pp. 196–18. M.S. Daw and M.I. Baskes: in Chemistry and Physics of Fracture, R.H. Jones and R.M. Latanision, eds., Martinus Nijhoff, The Netherlands, 1987, pp. 196–18.
69.
Zurück zum Zitat R.G. Hoagland and H.L. Heinisch: J. Mater. Res., 1992, vol.7, pp.2080-2088.CrossRef R.G. Hoagland and H.L. Heinisch: J. Mater. Res., 1992, vol.7, pp.2080-2088.CrossRef
70.
Zurück zum Zitat K.N. Solanki, D.K. Ward, and D.J. Bammann: Metall. Mater. Trans. A, 2011, vol. 42A, pp.340-347.CrossRef K.N. Solanki, D.K. Ward, and D.J. Bammann: Metall. Mater. Trans. A, 2011, vol. 42A, pp.340-347.CrossRef
71.
Zurück zum Zitat G. Lu, Q. Zhang, N. Kioussis, and E. Kaxiras: Phys. Rev. Lett. 2001, vol. 87, p. 9:095501-1. G. Lu, Q. Zhang, N. Kioussis, and E. Kaxiras: Phys. Rev. Lett. 2001, vol. 87, p. 9:095501-1.
72.
Zurück zum Zitat S. Taketomi, R. Matsumoto, N. Miyazaki: Int. J. Mech. Sci., 2010, vol. 52, pp. 334-338.CrossRef S. Taketomi, R. Matsumoto, N. Miyazaki: Int. J. Mech. Sci., 2010, vol. 52, pp. 334-338.CrossRef
75.
76.
Zurück zum Zitat H. Vehoff and W. Rothe: Acta Metall 1983, vol. 31, Overview No. 30, pp. 1781–1793. H. Vehoff and W. Rothe: Acta Metall 1983, vol. 31, Overview No. 30, pp. 1781–1793.
77.
78.
Zurück zum Zitat G. Lu and E. Kaxiras: Phys. Rev. Lett., 2005, vol. 94, pp. 155501-1-155501-4. G. Lu and E. Kaxiras: Phys. Rev. Lett., 2005, vol. 94, pp. 155501-1-155501-4.
79.
Zurück zum Zitat K. Jagannadham and H.G.F. Wilsdorf: Mater. Sci. and Engng, 1986, vol. 81, pp. 273-292.CrossRef K. Jagannadham and H.G.F. Wilsdorf: Mater. Sci. and Engng, 1986, vol. 81, pp. 273-292.CrossRef
80.
Zurück zum Zitat I.M. Robertson, M.L. Martin, and J. Fenske: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B. Somerday, eds., ch. 9, vol. 1, Woodhead, U.K., 2012, pp. 166–206. I.M. Robertson, M.L. Martin, and J. Fenske: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B. Somerday, eds., ch. 9, vol. 1, Woodhead, U.K., 2012, pp. 166–206.
82.
Zurück zum Zitat T. Neejay, R. Srinivasan, and Ju Li: Acta Mater., 2012, vol. 60, pp. 5160–71.CrossRef T. Neejay, R. Srinivasan, and Ju Li: Acta Mater., 2012, vol. 60, pp. 5160–71.CrossRef
83.
Zurück zum Zitat C.E. Price and R.S. Fredell: Metall. Trans A, 1986, vol. 17A, pp. 889-898. C.E. Price and R.S. Fredell: Metall. Trans A, 1986, vol. 17A, pp. 889-898.
84.
Zurück zum Zitat H.H. Johnson: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, 1974, pp. 35–49. H.H. Johnson: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, 1974, pp. 35–49.
85.
Zurück zum Zitat M.H. Kamdar: Embrittlement of Nickel by Gaseous Hydrogen, 3D10, 2 nd Inter, Congress on Hydrogen in Metals, Pergamon Press, 1977. M.H. Kamdar: Embrittlement of Nickel by Gaseous Hydrogen, 3D10, 2 nd Inter, Congress on Hydrogen in Metals, Pergamon Press, 1977.
86.
Zurück zum Zitat H. Wipf: Topics in Applied Physics, vol. 73, ch .3 1997, pp. 51–91. H. Wipf: Topics in Applied Physics, vol. 73, ch .3 1997, pp. 51–91.
87.
Zurück zum Zitat W. Wei: Crack Kinetics in the Nickel-Hydrogen System, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1984. W. Wei: Crack Kinetics in the Nickel-Hydrogen System, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1984.
88.
Zurück zum Zitat H. Grabert and H.R. Schober: Topics in Applied Physics, vol. 73, ch. 2, 1997, pp. 5–49. H. Grabert and H.R. Schober: Topics in Applied Physics, vol. 73, ch. 2, 1997, pp. 5–49.
89.
Zurück zum Zitat R.M. Latanision: in Surface Effects in Crystal Plasticity, R.M. Latanision and J.T. Fourie, eds., NATO Advanced Study Inst. Series E: Applied Science-No. 17, Noordhoff Int. Publ., 1977, pp. 3–47. R.M. Latanision: in Surface Effects in Crystal Plasticity, R.M. Latanision and J.T. Fourie, eds., NATO Advanced Study Inst. Series E: Applied Science-No. 17, Noordhoff Int. Publ., 1977, pp. 3–47.
91.
Zurück zum Zitat C.D. Beachem: Personal Communication, late 1970s. C.D. Beachem: Personal Communication, late 1970s.
92.
Zurück zum Zitat H.K. Birnbaum: in Hydrogen Effects on Materials Behavior, N.R. Moody and A.W Thompson, eds., TMS, 1990, pp. 639–658, and discussion pp. 659–660. H.K. Birnbaum: in Hydrogen Effects on Materials Behavior, N.R. Moody and A.W Thompson, eds., TMS, 1990, pp. 639–658, and discussion pp. 659–660.
93.
Zurück zum Zitat H.K. Birnbaum, I.M. Robertson, P. Sofronis, and D. Teter: in Corrosion-Deformation Interactions, T. Magnin, ed., Inst. of Mat., London, 1997, pp. 172–195, and references therein. H.K. Birnbaum, I.M. Robertson, P. Sofronis, and D. Teter: in Corrosion-Deformation Interactions, T. Magnin, ed., Inst. of Mat., London, 1997, pp. 172–195, and references therein.
94.
Zurück zum Zitat H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng., 1994, vol.A176, pp.191-202. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng., 1994, vol.A176, pp.191-202.
95.
Zurück zum Zitat N.R. Moody and F.A. Greulich: Scripta Metall., 1985, vol. 19, pp.1107-1111.CrossRef N.R. Moody and F.A. Greulich: Scripta Metall., 1985, vol. 19, pp.1107-1111.CrossRef
96.
Zurück zum Zitat N.R. Moody, R.E. Stoltz, and W. Perra: Metall. Trans. A, 1987, vol. 18A, pp. 1469-1482. N.R. Moody, R.E. Stoltz, and W. Perra: Metall. Trans. A, 1987, vol. 18A, pp. 1469-1482.
97.
Zurück zum Zitat P.D. Hicks and C.J. Altstetter: Metall. Trans. A, 1992, vol. 32A, pp. 237-249. P.D. Hicks and C.J. Altstetter: Metall. Trans. A, 1992, vol. 32A, pp. 237-249.
98.
Zurück zum Zitat K.A. Nibur, B.P. Somerday, D.K. Balch, and C. San Marchi: Acta Mater., 2009, vol. 57, pp. 3795-3809.CrossRef K.A. Nibur, B.P. Somerday, D.K. Balch, and C. San Marchi: Acta Mater., 2009, vol. 57, pp. 3795-3809.CrossRef
99.
Zurück zum Zitat R. Jones: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 9, vol. 2, R.P. Gangloff and B. Somerday, eds., Woodhead, U.K., 2012, pp. 471–484. R. Jones: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 9, vol. 2, R.P. Gangloff and B. Somerday, eds., Woodhead, U.K., 2012, pp. 471–484.
100.
Zurück zum Zitat D.C. Ahn, P. Sofronis, and R.H. Dodds Jr.: Int. J. of Hydrogen Energy, 2007, vol. 32, pp. 3734-3742.CrossRef D.C. Ahn, P. Sofronis, and R.H. Dodds Jr.: Int. J. of Hydrogen Energy, 2007, vol. 32, pp. 3734-3742.CrossRef
101.
Zurück zum Zitat D.C. Ahn, P. Sofronis, and R.H. Dodds Jr.: Int. J. Fract., 2007, vol. 145, pp. 135-157.CrossRef D.C. Ahn, P. Sofronis, and R.H. Dodds Jr.: Int. J. Fract., 2007, vol. 145, pp. 135-157.CrossRef
102.
Zurück zum Zitat T. Tabata and H.K. Birnbaum: Scripta Metall.,1983, vol. 17, pp. 947-950.CrossRef T. Tabata and H.K. Birnbaum: Scripta Metall.,1983, vol. 17, pp. 947-950.CrossRef
103.
Zurück zum Zitat G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Scripta Metall., 1986, vol. 20, pp. 653-658.CrossRef G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Scripta Metall., 1986, vol. 20, pp. 653-658.CrossRef
104.
105.
Zurück zum Zitat D.F. Teter, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 2001, vol.49, pp.4313-4323.CrossRef D.F. Teter, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 2001, vol.49, pp.4313-4323.CrossRef
106.
Zurück zum Zitat C.D. Beachem and G.R. Yoder: Metall. Trans., 1973, vol. 4, pp. 1145-1153.CrossRef C.D. Beachem and G.R. Yoder: Metall. Trans., 1973, vol. 4, pp. 1145-1153.CrossRef
107.
108.
Zurück zum Zitat C.J. McMahon, Jr.: Eng. Frac. Mech. 2001, vol. 68. pp. 773–88. C.J. McMahon, Jr.: Eng. Frac. Mech. 2001, vol. 68. pp. 773–88.
109.
Zurück zum Zitat S.P. Lynch: Mater. Forum, 1988, vol.11, pp. 268-283. S.P. Lynch: Mater. Forum, 1988, vol.11, pp. 268-283.
110.
Zurück zum Zitat W.A. McInteer, A.W. Thompson, and I.M. Bernstein: Acta Metall., 1980, vol. 28, pp. 887-894.CrossRef W.A. McInteer, A.W. Thompson, and I.M. Bernstein: Acta Metall., 1980, vol. 28, pp. 887-894.CrossRef
111.
Zurück zum Zitat I.M. Robertson and H.K. Birnbaum: Scripta Metall., 1984, vol. 18, pp. 269-274.CrossRef I.M. Robertson and H.K. Birnbaum: Scripta Metall., 1984, vol. 18, pp. 269-274.CrossRef
112.
Zurück zum Zitat A.H. Windle and G.C. Smith: Metal Sci. J., 1970, vol. 4, pp. 136-144. A.H. Windle and G.C. Smith: Metal Sci. J., 1970, vol. 4, pp. 136-144.
113.
Zurück zum Zitat G.A. Young and J.R. Scully: in Hydrogen Effects on Materials Behavior and Corrosion Deformation Interactions, N.R. Moody et al., eds., TMS, 2003, pp. 893–907. G.A. Young and J.R. Scully: in Hydrogen Effects on Materials Behavior and Corrosion Deformation Interactions, N.R. Moody et al., eds., TMS, 2003, pp. 893–907.
114.
Zurück zum Zitat A. Turnbull: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 4, vol. 2, R.P. Gangloff and B. Somerday, eds., Woodhead, U.K., 2011, pp. 89–128. A. Turnbull: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ch. 4, vol. 2, R.P. Gangloff and B. Somerday, eds., Woodhead, U.K., 2011, pp. 89–128.
116.
117.
118.
Zurück zum Zitat R.C. Newman, T. Shahrabi, and K. Sieradzki: Scripta Metall., 1989, vol.23, pp.71-74.CrossRef R.C. Newman, T. Shahrabi, and K. Sieradzki: Scripta Metall., 1989, vol.23, pp.71-74.CrossRef
119.
Zurück zum Zitat M. Saito, G.S. Smith, and R.C. Newman: Corros. Sci., 1993, vol.35, pp.411-413.CrossRef M. Saito, G.S. Smith, and R.C. Newman: Corros. Sci., 1993, vol.35, pp.411-413.CrossRef
120.
Zurück zum Zitat A. Barnes, N.A. Senior, and R.C. Newman: Metall. and Mater. Trans. A, 2009, vol.40A, pp.58-68.CrossRef A. Barnes, N.A. Senior, and R.C. Newman: Metall. and Mater. Trans. A, 2009, vol.40A, pp.58-68.CrossRef
121.
Zurück zum Zitat D. Kiener, W. Grosinger, G. Dehm, and R. Pippan: Acta Mater., 2008, vol.56, pp.580-592.CrossRef D. Kiener, W. Grosinger, G. Dehm, and R. Pippan: Acta Mater., 2008, vol.56, pp.580-592.CrossRef
122.
Zurück zum Zitat J.J. Lewandowski and A.L. Greer: Nature Materials, 2006, vol.5, pp.15-18.CrossRef J.J. Lewandowski and A.L. Greer: Nature Materials, 2006, vol.5, pp.15-18.CrossRef
123.
Zurück zum Zitat C.J. Gilbert, J.W. Ager III, V. Schroeder, R.O. Ritchie, J.P. Lloyd, and J.R. Graham: Appl. Phys. Letters, 1999, vol.74, pp.3809-3811.CrossRef C.J. Gilbert, J.W. Ager III, V. Schroeder, R.O. Ritchie, J.P. Lloyd, and J.R. Graham: Appl. Phys. Letters, 1999, vol.74, pp.3809-3811.CrossRef
124.
Zurück zum Zitat U. Bertocci, F.I. Thomas, and E.N. Pugh: Corrosion, 1984, vol.40, pp.439-440.CrossRef U. Bertocci, F.I. Thomas, and E.N. Pugh: Corrosion, 1984, vol.40, pp.439-440.CrossRef
125.
126.
127.
128.
Zurück zum Zitat H. Matsushima, A. Taranovskyy, C. Haak, Y. Gründer, and O.M. Magnussen: J. Am. Chem. Soc., 2009, vol.131, pp.10362-10363.CrossRef H. Matsushima, A. Taranovskyy, C. Haak, Y. Gründer, and O.M. Magnussen: J. Am. Chem. Soc., 2009, vol.131, pp.10362-10363.CrossRef
129.
Zurück zum Zitat H. Vehoff, H. Stenzel, and P. Neumann: Z. Metallkde, 1987, vol.78, pp.550-556. H. Vehoff, H. Stenzel, and P. Neumann: Z. Metallkde, 1987, vol.78, pp.550-556.
130.
Zurück zum Zitat K. Sieradzki and R.C. Newman: Philos. Mag. A, 1985, vol.51, pp.95-132.CrossRef K. Sieradzki and R.C. Newman: Philos. Mag. A, 1985, vol.51, pp.95-132.CrossRef
131.
Zurück zum Zitat R.E. Ricker, J.L. Fink, J.S. Harris, and A.J. Shapiro: Scripta Metall. Mater., vol.26, 1019-1023, 1992.CrossRef R.E. Ricker, J.L. Fink, J.S. Harris, and A.J. Shapiro: Scripta Metall. Mater., vol.26, 1019-1023, 1992.CrossRef
133.
Zurück zum Zitat T. Livne, X. Chen, and W.W. Gerberich: Scripta Metall., 20, 659-662, 1986.CrossRef T. Livne, X. Chen, and W.W. Gerberich: Scripta Metall., 20, 659-662, 1986.CrossRef
134.
Zurück zum Zitat R.P. Gangloff and R.P. Wei: Metall. Trans. A, 8A, 1043-1053, 1977. R.P. Gangloff and R.P. Wei: Metall. Trans. A, 8A, 1043-1053, 1977.
135.
Zurück zum Zitat R.P. Wei: in Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS, 1990, pp. 789–813. R.P. Wei: in Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS, 1990, pp. 789–813.
136.
Zurück zum Zitat M. Lu, P.S. Pao, T.W. Weir, G.W. Simmons, and R.W. Wei: Metall. Trans. A, 1981, vol. 12A, pp. 805-811. M. Lu, P.S. Pao, T.W. Weir, G.W. Simmons, and R.W. Wei: Metall. Trans. A, 1981, vol. 12A, pp. 805-811.
137.
Zurück zum Zitat C.M. Ransom and P.J. Ficalora: Metall. Trans. A., 11A, 801-807,1980. C.M. Ransom and P.J. Ficalora: Metall. Trans. A., 11A, 801-807,1980.
138.
139.
Zurück zum Zitat M.R. Shanabarger: in Advanced Techniques for Characterizing Hydrogen in Metals, N.F. Fiore and B.J. Berkowitz, eds., Met. Soc. AIME, 1982, pp. 155–169. M.R. Shanabarger: in Advanced Techniques for Characterizing Hydrogen in Metals, N.F. Fiore and B.J. Berkowitz, eds., Met. Soc. AIME, 1982, pp. 155–169.
140.
Zurück zum Zitat S.P. Knight, N.Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch: Corros. Sci., 2010, vol. 52, pp. 4073-4080.CrossRef S.P. Knight, N.Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch: Corros. Sci., 2010, vol. 52, pp. 4073-4080.CrossRef
141.
Zurück zum Zitat A. Turnbull: in Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment, and Structures, R.D. Kane, ed., ASTM STP 1401, 2000, pp. 23–39. A. Turnbull: in Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment, and Structures, R.D. Kane, ed., ASTM STP 1401, 2000, pp. 23–39.
142.
Zurück zum Zitat S.P. Lynch: in Corrosion-Deformation Interactions, T. Magnin and J.M. Gras, eds., Les Editions de Physique Les Ulis, 1993, pp. 401–13. S.P. Lynch: in Corrosion-Deformation Interactions, T. Magnin and J.M. Gras, eds., Les Editions de Physique Les Ulis, 1993, pp. 401–13.
143.
Zurück zum Zitat R.M.N. Pelloux: in Fracture 1969, Proc. 2 nd Int. Conf. on Fracture, Brighton, Chapman and Hall, London, 1969, pp. 731–44. R.M.N. Pelloux: in Fracture 1969, Proc. 2 nd Int. Conf. on Fracture, Brighton, Chapman and Hall, London, 1969, pp. 731–44.
Metadaten
Titel
Mechanisms and Kinetics of Environmentally Assisted Cracking: Current Status, Issues, and Suggestions for Further Work
verfasst von
S. P. Lynch
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2013
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1359-2

Weitere Artikel der Ausgabe 3/2013

Metallurgical and Materials Transactions A 3/2013 Zur Ausgabe

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Atomistic Investigation of the Role of Grain Boundary Structure on Hydrogen Segregation and Embrittlement in α-Fe

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Studies of Evaluation of Hydrogen Embrittlement Property of High-Strength Steels with Consideration of the Effect of Atmospheric Corrosion

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.