Skip to main content
Erschienen in: Metallurgist 7-8/2020

12.11.2020

Mechanisms for Forming Iron-Containing Intermetallics Prepared by Aluminothermy and the Effect of Special Treatment Methods on their Properties

verfasst von: O. N. Komarov, S. G. Zhilin, V. V. Predein, A. V. Popov

Erschienen in: Metallurgist | Ausgabe 7-8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Scientists around the world are conducting research in the production of new materials and alloys with a good set of physicomechanical properties with the aim of their prospective application in a wide variety of industries. Today, researchers in this field are faced with the problem of improving known and creating new methods for producing heat-resistant, thermally stable, and wear-resistant materials. For example, alloys based on iron aluminides have good anti-corrosion properties and oxidation resistance due to formation of aluminum oxide, as well as low cost. Iron aluminides belong to a class of especially light promising structural materials and are used in mechanical engineering, metallurgy and electrical engineering.
Preparation of Fe–Al aluminides for the production of materials and coatings is currently being accomplished using isostatic pressing and sintering in a vacuum, arc and plasma spraying, electroslag remelting, and self-propagating high-temperature synthesis, which do not fully meet contemporary requirements, since the production processes for preparing these alloys using known methods are multi-stage. Development of simple and productive technology for producing high-quality intermetallic compounds in the Fe–Al system is an urgent scientific and technical task. So far the most feasible approach is one that provides preparation of iron aluminides by combined aluminothermic reduction of the original metal oxides using SHS-metallurgy in one stage.
Mechanical and operating properties of compounds of the Fe–Al system are largely determined by lattice parameters and structural features. All intermetallic compounds of the Fe–Al system exhibit a brittle fracture pattern. In order to adjust the physicomechanical and operating properties various elements, such as chromium, niobium, carbon, molybdenum, tungsten, etc., are added to an alloy composition based on the Fe–Al system. These elements are introduced into the alloy by assembling special charge materials in which the elements are present in pure form or in the form of compounds, including oxides, in various combinations above, up to, and equal to the stoichiometric ratio. The starting components of charge mixtures are cheap low-cost materials, including waste from engineering and metallurgical enterprises.
Studies of the properties of the experimental alloys obtained, in particular chemical composition, phases formed, microstructure, strength, hardness, wear resistance, corrosion and oxidation confirm their suitability for operation in high temperature and corrosive environments. At the same time, it is possible to correct further the properties by treating the resulting alloys with the methods of deformation and heat treatment, as a result of which the latter not only increase in strength and yield strength, but also increase in elongation associated with a change in grain size and shape. Development of new alloys based on iron aluminides, combining a set of the required properties and chemical composition, allows them to be used as independent structural materials, and as modifiers in smelting various alloys. At the same time, it is possible to expand the field of application of alloys based on iron aluminide with wider use in the aerospace industry, where these materials may replace expensive nickel aluminides, titanium alloys, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Tardi, “Demand and supply of steel metal scrap – changing balance,” Cherny Metally, No. 8 (980), 50–57 (2013) P. Tardi, “Demand and supply of steel metal scrap – changing balance,” Cherny Metally, No. 8 (980), 50–57 (2013)
2.
Zurück zum Zitat A. Hasanbeigi, “Comparison of iron and steel production energy use and energy intensity in China and the US,” J. Cleaner Production, 65, 108–119 (2014). A. Hasanbeigi, “Comparison of iron and steel production energy use and energy intensity in China and the US,” J. Cleaner Production, 65, 108–119 (2014).
3.
Zurück zum Zitat F. Flues, D. Rubbelke, and S. Vogele, “An analysis of the economic determinants of energy efficiency in the European iron and steel industry,” J. Cleaner Production, 104, 250–263 (2015). F. Flues, D. Rubbelke, and S. Vogele, “An analysis of the economic determinants of energy efficiency in the European iron and steel industry,” J. Cleaner Production, 104, 250–263 (2015).
4.
Zurück zum Zitat N. N. Gugis and S. M. Petrik, “Russia in the world ferrous metal market,” Stal’, No. 3, 61–64 (2019). N. N. Gugis and S. M. Petrik, “Russia in the world ferrous metal market,” Stal’, No. 3, 61–64 (2019).
5.
Zurück zum Zitat B. A. Kolachev, A. A. Il’in, and P. D. Drozdov, “Composition, structure, and mechanical properties of binary intermetallics,” Izv. Vuz., Tsvet. Met., No. 6, 41–52 (1997). B. A. Kolachev, A. A. Il’in, and P. D. Drozdov, “Composition, structure, and mechanical properties of binary intermetallics,” Izv. Vuz., Tsvet. Met., No. 6, 41–52 (1997).
6.
Zurück zum Zitat V. I. Bogdanov, V. A. Popov, V. K. Portnoi, and A. V. Ruban, “Method for calculating coefficients of concentrational variations in lattice constants and the distribution of impurity atoms between sub-lattices in intermetallic compounds,” Bull. Russian Acad. Sci.: Physics, 77, No. 11, 1360–1362 (2013). V. I. Bogdanov, V. A. Popov, V. K. Portnoi, and A. V. Ruban, “Method for calculating coefficients of concentrational variations in lattice constants and the distribution of impurity atoms between sub-lattices in intermetallic compounds,” Bull. Russian Acad. Sci.: Physics, 77, No. 11, 1360–1362 (2013).
7.
Zurück zum Zitat A. I. Lotkov and A. A. Baturin, “Physical nature of martensite transformations in B2-type Ti compounds and TiNi-based alloys,” Physical Mesomechanics, 14, No. 5–6, 261–274 (2011). A. I. Lotkov and A. A. Baturin, “Physical nature of martensite transformations in B2-type Ti compounds and TiNi-based alloys,” Physical Mesomechanics, 14, No. 5–6, 261–274 (2011).
8.
Zurück zum Zitat F. Hadef, “Synthesis and disordering of B2 TM–Al (TM = Fe, Ni, Co) intermetallic alloys by high energy ball milling: A review,” Powder Technolog., 311, 556 (2017). F. Hadef, “Synthesis and disordering of B2 TM–Al (TM = Fe, Ni, Co) intermetallic alloys by high energy ball milling: A review,” Powder Technolog., 311, 556 (2017).
9.
Zurück zum Zitat H. Mochizuki, M.Yokota, and S. Hattori, “Effects of materials and solution temperatures on cavitation erosion of pure titanium and titanium alloy in seawater,” Wear, 262, 522–528 (2007). H. Mochizuki, M.Yokota, and S. Hattori, “Effects of materials and solution temperatures on cavitation erosion of pure titanium and titanium alloy in seawater,” Wear, 262, 522–528 (2007).
10.
Zurück zum Zitat J. Stella, L. Gerke, and M. Pohl, “Study of cavitation erosion and adhesive wear in CuSnNi alloys produced by different casting processes,” Wear, 303, 541–545 (2013). J. Stella, L. Gerke, and M. Pohl, “Study of cavitation erosion and adhesive wear in CuSnNi alloys produced by different casting processes,” Wear, 303, 541–545 (2013).
11.
Zurück zum Zitat H. S. Grewal, H. Singh, and A. Agrawal, “Microstructural and mechanical characterization of thermal sprayed nickel-alumina composite coatings,” Surface & Coatings Technology, 216, 78–92 (2013). H. S. Grewal, H. Singh, and A. Agrawal, “Microstructural and mechanical characterization of thermal sprayed nickel-alumina composite coatings,” Surface & Coatings Technology, 216, 78–92 (2013).
12.
Zurück zum Zitat A. B. Badalov, B. A. Gafurov, I. U. Mirsaidov, and I. Hakerov, “Thermal stability and thermodynamic properties of tris tetrahydrofuranates lanthanide boro-hydrides,” Intern. J. Hydrogen Energy, 36, No. 1, 1217–1219 (2011). A. B. Badalov, B. A. Gafurov, I. U. Mirsaidov, and I. Hakerov, “Thermal stability and thermodynamic properties of tris tetrahydrofuranates lanthanide boro-hydrides,” Intern. J. Hydrogen Energy, 36, No. 1, 1217–1219 (2011).
13.
Zurück zum Zitat N. V. Petrushin, and E. S. Elyutin, “Effect of alloying on melting temperature of Ni3Al intermetallic,” Vopr. Materialoved., No. 1, 75–83 (2017). N. V. Petrushin, and E. S. Elyutin, “Effect of alloying on melting temperature of Ni3Al intermetallic,” Vopr. Materialoved., No. 1, 75–83 (2017).
14.
Zurück zum Zitat M. D. Starostenkov, A. V. Yashin, and N. V. Sinica, “Structural transformation in nanowires CuAu I with superstructure of L10 of tetragonal symmetry at uniaxial tension deformation,” Key Engineering Materials, 592–593, 51–54 (2014). M. D. Starostenkov, A. V. Yashin, and N. V. Sinica, “Structural transformation in nanowires CuAu I with superstructure of L10 of tetragonal symmetry at uniaxial tension deformation,” Key Engineering Materials, 592–593, 51–54 (2014).
15.
Zurück zum Zitat N. V. Kazantseva, V. P. Pilyugin, S. E. Danilov and V. Y. Kolosov, “Effect of severe plastic deformation on the structure and crystal-lattice distortions in the Ni3(Al,X) (X = Ti, Nb) intermetallic compound,” The Physics of Metals and Metallography, 116, No. 5, 501–508 (2015). N. V. Kazantseva, V. P. Pilyugin, S. E. Danilov and V. Y. Kolosov, “Effect of severe plastic deformation on the structure and crystal-lattice distortions in the Ni3(Al,X) (X = Ti, Nb) intermetallic compound,” The Physics of Metals and Metallography, 116, No. 5, 501–508 (2015).
16.
Zurück zum Zitat W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C. H. Lai, and J.-W. Yeh, “Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys,” Intermetallics, 26, 44–51 (2012). W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C. H. Lai, and J.-W. Yeh, “Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys,” Intermetallics, 26, 44–51 (2012).
17.
Zurück zum Zitat Y. H. Zhu, Z. W. Zhu, S. Chen, H. M. Fu, H. W. Zhang, H. Li, A. M. Wang, and H. F. Zhang, “Simultaneously enhancing strength and toughness of Zr-based bulk metallic glasses via minor Hf addition,” Intermetallics, 118, 106685 (2019). Y. H. Zhu, Z. W. Zhu, S. Chen, H. M. Fu, H. W. Zhang, H. Li, A. M. Wang, and H. F. Zhang, “Simultaneously enhancing strength and toughness of Zr-based bulk metallic glasses via minor Hf addition,” Intermetallics, 118, 106685 (2019).
18.
Zurück zum Zitat H. Wang, D. Zhu, C. Zou, and Z. Wei, “Effect of high pressure on the lamellar spacing and mechanical properties of Ti–48Al alloy,” Rare Metal Materials and Engineering, 41(1), 42–44 (2012). H. Wang, D. Zhu, C. Zou, and Z. Wei, “Effect of high pressure on the lamellar spacing and mechanical properties of Ti–48Al alloy,” Rare Metal Materials and Engineering, 41(1), 42–44 (2012).
19.
Zurück zum Zitat C. Mangler, C. Gammer, H. P. Karnthaler, and C. Rentenberger, “Structural modifications during heating of bulk nanocrystalline FeAl produced by high-pressure torsion,” Acta Materialia, 58(17), 5631–5638 (2010). C. Mangler, C. Gammer, H. P. Karnthaler, and C. Rentenberger, “Structural modifications during heating of bulk nanocrystalline FeAl produced by high-pressure torsion,” Acta Materialia, 58(17), 5631–5638 (2010).
20.
Zurück zum Zitat Y. C. Liao, T. H. Li, P. H. Tsai, J. S. C. Jang, K. C. Hsieh, C. Y. Chen, J. C. Huang, H. J. Wu, Y. C. Lo, C. W. Huang, and I. Y. Tsao, “Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys,” Intermetallics, 117, 106673 (2020). Y. C. Liao, T. H. Li, P. H. Tsai, J. S. C. Jang, K. C. Hsieh, C. Y. Chen, J. C. Huang, H. J. Wu, Y. C. Lo, C. W. Huang, and I. Y. Tsao, “Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys,” Intermetallics, 117, 106673 (2020).
21.
Zurück zum Zitat A. Gali and E. P. George, “Tensile properties of high- and medium-entropy alloys,” Intermetallics, 39, 74–78 (2013). A. Gali and E. P. George, “Tensile properties of high- and medium-entropy alloys,” Intermetallics, 39, 74–78 (2013).
22.
Zurück zum Zitat G. Morris David, A. Munoz-Morris Maria, and Jesus Chao, “Development of high strength, high ductility and high creep resistant iron aluminide,” Intermetallics, 12, 821–826 (2004). G. Morris David, A. Munoz-Morris Maria, and Jesus Chao, “Development of high strength, high ductility and high creep resistant iron aluminide,” Intermetallics, 12, 821–826 (2004).
23.
Zurück zum Zitat S. Ya. Betsofen, A. A. Ilin, O. E. Osintsev, and M. S. Betsofen, “Phase compositions of aluminum alloys and the volume effects of the phase transformations in them,” Russian Metallurgy (Metally), 2008, No. 6, 506–512 (2008). S. Ya. Betsofen, A. A. Ilin, O. E. Osintsev, and M. S. Betsofen, “Phase compositions of aluminum alloys and the volume effects of the phase transformations in them,” Russian Metallurgy (Metally), 2008, No. 6, 506–512 (2008).
24.
Zurück zum Zitat M. Yu. Kollerov, A. A. Ilyin, D. E. Gusev, I. S. Polkin, A. S. Fainbron, and S. V. Khachin “Structural aspects of the manufacture of semiproducts made from titanium nickelide-based alloys,” Russian Metallurgy (Metally), 2007, No. 5, 408–414 (2007). M. Yu. Kollerov, A. A. Ilyin, D. E. Gusev, I. S. Polkin, A. S. Fainbron, and S. V. Khachin “Structural aspects of the manufacture of semiproducts made from titanium nickelide-based alloys,” Russian Metallurgy (Metally), 2007, No. 5, 408–414 (2007).
25.
Zurück zum Zitat A. Biesiekierski, J. Wang, M. A.-H. Gepreel, and C. Wen, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomaterialia, 8, 1661–1669 (2012). A. Biesiekierski, J. Wang, M. A.-H. Gepreel, and C. Wen, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomaterialia, 8, 1661–1669 (2012).
26.
Zurück zum Zitat S. S. Nayak, M. Wollgarten, J. Banhari, S. K. Pabi, and B. S. Murty, Materials Science and Engineering: A, 527, 2370–2378 (2010). S. S. Nayak, M. Wollgarten, J. Banhari, S. K. Pabi, and B. S. Murty, Materials Science and Engineering: A, 527, 2370–2378 (2010).
27.
Zurück zum Zitat Y. Zhanga, B .A. Pint, G. W. Garner, K. M. Cooley, and J. A. Haynes, “Effect of cycle length on the oxidation performance of iron aluminide coatings,” Surface & Coatings Technology, 188–189, 35–40 (2004). Y. Zhanga, B .A. Pint, G. W. Garner, K. M. Cooley, and J. A. Haynes, “Effect of cycle length on the oxidation performance of iron aluminide coatings,” Surface & Coatings Technology, 188–189, 35–40 (2004).
28.
Zurück zum Zitat C. T. Liu, E. P. George, P. J. Maziasz, and J. H. Schneibel, “Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design,” Material Science and Engineering: A, 258, 84–98 (1998). C. T. Liu, E. P. George, P. J. Maziasz, and J. H. Schneibel, “Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design,” Material Science and Engineering: A, 258, 84–98 (1998).
29.
Zurück zum Zitat V. L. Sirovatka, V. E. Oliker, and M. S. Yakovleva, “Intermetallic systems Fe–Al: preparation, properties, coatings (review),” Materialovedenie, No. 3, 46–52 (2013). V. L. Sirovatka, V. E. Oliker, and M. S. Yakovleva, “Intermetallic systems Fe–Al: preparation, properties, coatings (review),” Materialovedenie, No. 3, 46–52 (2013).
30.
Zurück zum Zitat S. C. Deevi and V. K. Sikka, “Nickel and iron aluminides an overview on proper ties, processing, and applications,” Intermetallics, 4, 357–375 (1996). S. C. Deevi and V. K. Sikka, “Nickel and iron aluminides an overview on proper ties, processing, and applications,” Intermetallics, 4, 357–375 (1996).
31.
Zurück zum Zitat Jiqiang Ma, Junying Hao, Qinling Bi, LiCai Fu, Jun Yang, and Weimin Liu, “Tribological properties of a Fe3Al material in sulfuric acid corrosive environment,” Wear, 268, 264–268 (2010). Jiqiang Ma, Junying Hao, Qinling Bi, LiCai Fu, Jun Yang, and Weimin Liu, “Tribological properties of a Fe3Al material in sulfuric acid corrosive environment,” Wear, 268, 264–268 (2010).
32.
Zurück zum Zitat L. N. D’yachkova, P. A. Vityaz’, A. F. Il’yushchenko, L. Ya. Voronetskaya, and N. M. Parnitskii, “Effect of ultrafine iron aluminide addition on structure and properties of powder materials based on iron and copper,” Dokl. Nats. Akad. Belarusi, 63, No. 3, 360–369 (2019). L. N. D’yachkova, P. A. Vityaz’, A. F. Il’yushchenko, L. Ya. Voronetskaya, and N. M. Parnitskii, “Effect of ultrafine iron aluminide addition on structure and properties of powder materials based on iron and copper,” Dokl. Nats. Akad. Belarusi, 63, No. 3, 360–369 (2019).
33.
Zurück zum Zitat A. I. Kovtunov, and T. V. Chermashentseva, “Study of the operating properties of surfacing alloys based on the iron-aluminum system,” Vopr. Metarialoved., No. 3, 91–96 (2012). A. I. Kovtunov, and T. V. Chermashentseva, “Study of the operating properties of surfacing alloys based on the iron-aluminum system,” Vopr. Metarialoved., No. 3, 91–96 (2012).
34.
Zurück zum Zitat A. I. Kovtunov, Yu. Yu. Khokhlov, and S. V. Myamin, “Features of formation and properties of steel – iron aluminide materials,” Tekhnol. Metallov, No. 7, 22-26 (2019). A. I. Kovtunov, Yu. Yu. Khokhlov, and S. V. Myamin, “Features of formation and properties of steel – iron aluminide materials,” Tekhnol. Metallov, No. 7, 22-26 (2019).
35.
Zurück zum Zitat W. Tian, K. Vanmeensel, P.Wang , G.Zhan, Y. Li, J. Vleugels, and Van der Biest, “Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering,” Materials Letters, 61, 4442–4445 (2007). W. Tian, K. Vanmeensel, P.Wang , G.Zhan, Y. Li, J. Vleugels, and Van der Biest, “Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering,” Materials Letters, 61, 4442–4445 (2007).
36.
Zurück zum Zitat A. V. Kasimtsev, G. V. Markova, A. V. Shuitsev, Yu. V. Levinskii, T. A. Sviridova, and A. V. Alpatov, “Powder calcium hydride intermetallic TiNi,” Isv. Vuz. Poroshk. Metall Funkts. Pokryt., No. 3, 31–37 (2014). A. V. Kasimtsev, G. V. Markova, A. V. Shuitsev, Yu. V. Levinskii, T. A. Sviridova, and A. V. Alpatov, “Powder calcium hydride intermetallic TiNi,” Isv. Vuz. Poroshk. Metall Funkts. Pokryt., No. 3, 31–37 (2014).
37.
Zurück zum Zitat Khan Nasrullah, M. Shoab Shah, and R. Ahmad, Plasma Science and Technology, 12(4), 452–460 (2010). Khan Nasrullah, M. Shoab Shah, and R. Ahmad, Plasma Science and Technology, 12(4), 452–460 (2010).
38.
Zurück zum Zitat C. T. Liu, E. P. George, P. J. Maziasz, and J. H. Schneibel, “Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design,” Material Science and Engineering: A, 258, 84–98 (1998). C. T. Liu, E. P. George, P. J. Maziasz, and J. H. Schneibel, “Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design,” Material Science and Engineering: A, 258, 84–98 (1998).
39.
Zurück zum Zitat V. V. Gostishchev, I. A. Astapov, A. V. Serdyuk, and Khosen Ri, “High temperature synthesis of cast composite based on nickel aluminide and molybdenum boride,” Khim. Tekhnol., 16, No. 8, 469–473 (2015) V. V. Gostishchev, I. A. Astapov, A. V. Serdyuk, and Khosen Ri, “High temperature synthesis of cast composite based on nickel aluminide and molybdenum boride,” Khim. Tekhnol., 16, No. 8, 469–473 (2015)
40.
Zurück zum Zitat V. V. Kurbatkina, E. I. Patsera and E. A. Levashov, “Preparation of nickel monoaluminaide submicron powder by self-propagating high-temperature synthesis method using a functional additive of niobium chloride,” Tsvet. Met., No. 12, 57–64 (2017). V. V. Kurbatkina, E. I. Patsera and E. A. Levashov, “Preparation of nickel monoaluminaide submicron powder by self-propagating high-temperature synthesis method using a functional additive of niobium chloride,” Tsvet. Met., No. 12, 57–64 (2017).
41.
Zurück zum Zitat A. S. Rogachev, A. Varma, and A. G. Merzhanov, “The mechanism of self-propagating high-temperature synthesis of nickel aluminides, Part I: Formation of the product microstructure in a combustion wave,” Int. J. Self-Propagating High-Temperature Synthesis, 2, No. 1, 25–38 (1993). A. S. Rogachev, A. Varma, and A. G. Merzhanov, “The mechanism of self-propagating high-temperature synthesis of nickel aluminides, Part I: Formation of the product microstructure in a combustion wave,” Int. J. Self-Propagating High-Temperature Synthesis, 2, No. 1, 25–38 (1993).
42.
Zurück zum Zitat A. V. Simonyan, V. I. Ponomarev, N. Yu. Khomenko, G. A. Vishnyakeva, V. A. Gorshkov, and V. I. Yukhvid, “Cast nickel aluminide syntheses by SHS method,” Neorgan. Materialy, 34, No. 6, 684–687 (1998). A. V. Simonyan, V. I. Ponomarev, N. Yu. Khomenko, G. A. Vishnyakeva, V. A. Gorshkov, and V. I. Yukhvid, “Cast nickel aluminide syntheses by SHS method,” Neorgan. Materialy, 34, No. 6, 684–687 (1998).
43.
Zurück zum Zitat V. V. Kurbatkina, E. I. Patsera and E. A. Levashov, “Preparation of sub-micron nickel monoaluminide powder by self-propagating high-temperature synthesis method using functional additive of sodium chloride,” Tsvet. Met., No. 12, 57–64 (2017). V. V. Kurbatkina, E. I. Patsera and E. A. Levashov, “Preparation of sub-micron nickel monoaluminide powder by self-propagating high-temperature synthesis method using functional additive of sodium chloride,” Tsvet. Met., No. 12, 57–64 (2017).
44.
Zurück zum Zitat D. E. Andreev, V. N. Sanin, and V. I. Yukhvid, Preparation of cast alloys based on titanium aluminide by a centrifugal SHS method,” Neorgan. Materialy., 45, No. 8, 934–940 (2009). D. E. Andreev, V. N. Sanin, and V. I. Yukhvid, Preparation of cast alloys based on titanium aluminide by a centrifugal SHS method,” Neorgan. Materialy., 45, No. 8, 934–940 (2009).
45.
Zurück zum Zitat V. A. Gorshkov, P. A. Miloserdov, A. V. Karpov, A. S. Shchukin, and A. E. Sytschev, “Investigation of the composition and properties of a Cr2AlC MAX phase-based material prepared by metallothermic SHS,” The Physics of Metals and Metallography, 120, No. 5, 471–475 (2019). V. A. Gorshkov, P. A. Miloserdov, A. V. Karpov, A. S. Shchukin, and A. E. Sytschev, “Investigation of the composition and properties of a Cr2AlC MAX phase-based material prepared by metallothermic SHS,” The Physics of Metals and Metallography, 120, No. 5, 471–475 (2019).
46.
Zurück zum Zitat A. S. Mukasyan and A. S. Rogachev, “Discrete reaction waves: Gasless combustion of solid powder mixtures,” Progress in Energy and Combustion Science, 34, 377–416 (2008). A. S. Mukasyan and A. S. Rogachev, “Discrete reaction waves: Gasless combustion of solid powder mixtures,” Progress in Energy and Combustion Science, 34, 377–416 (2008).
47.
Zurück zum Zitat V. I. Nikitin, A. P. Amosov, A. G. Merzhanov, and G. S. Lukyanov, “Research and production of SHS master alloys for manufacture of aluminium alloys,” Int. J. Self-Propagating High-Temperature Synthesis, 4, No. 1, 105–112 (1995). V. I. Nikitin, A. P. Amosov, A. G. Merzhanov, and G. S. Lukyanov, “Research and production of SHS master alloys for manufacture of aluminium alloys,” Int. J. Self-Propagating High-Temperature Synthesis, 4, No. 1, 105–112 (1995).
48.
Zurück zum Zitat M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, “Manufacturing and processing of NiTi implants: A review,” Progress in Material Science, 57, No. 5, 911–946 (2012). M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, “Manufacturing and processing of NiTi implants: A review,” Progress in Material Science, 57, No. 5, 911–946 (2012).
49.
Zurück zum Zitat A. V. Kasimtsev, S. N. Yudin, A. I. Logacheva, and T. A. Sviridova, “Properties of the intermetallic phase Nb3Al prepared by a calcium hydride reduction process,” Inorganic Materials, 51, No. 1, 43–50 (2015). A. V. Kasimtsev, S. N. Yudin, A. I. Logacheva, and T. A. Sviridova, “Properties of the intermetallic phase Nb3Al prepared by a calcium hydride reduction process,” Inorganic Materials, 51, No. 1, 43–50 (2015).
50.
Zurück zum Zitat Z. Jianxin, C. Mengjun , and Z. Fushen, “Application of self-propagating high temperature synthesis for environmental protection,” Progress in Chemistry, 21 (7–8), 1693–1704 (2009). Z. Jianxin, C. Mengjun , and Z. Fushen, “Application of self-propagating high temperature synthesis for environmental protection,” Progress in Chemistry, 21 (7–8), 1693–1704 (2009).
51.
Zurück zum Zitat A. G. Merzhanov, “Solid flames: discoveries, concepts, and horizons of cognition,” Combustion Science and Technology, 98 (4–6). P. 307–336 (1994). A. G. Merzhanov, “Solid flames: discoveries, concepts, and horizons of cognition,” Combustion Science and Technology, 98 (4–6). P. 307–336 (1994).
52.
Zurück zum Zitat J. W. McCauley and J. A. Puszynski, “Historical perspective and contribution of US researchers into the field of self-propagating high-temperature synthesis (SHS)/combustion synthesis (CS): Personal reflections,” Int. J. Self-Propagating High-Temperature Synthesis, 17, No. 1, 58–75 (2008). J. W. McCauley and J. A. Puszynski, “Historical perspective and contribution of US researchers into the field of self-propagating high-temperature synthesis (SHS)/combustion synthesis (CS): Personal reflections,” Int. J. Self-Propagating High-Temperature Synthesis, 17, No. 1, 58–75 (2008).
53.
Zurück zum Zitat A. T. Evtushenko, S. Pazare, and S. S. Torbunov, “Self-propagating high-temperature synthesis of tool steel,” Metal Science and Heat Treatment, 49, No. 3–4, 200–203 (2007). A. T. Evtushenko, S. Pazare, and S. S. Torbunov, “Self-propagating high-temperature synthesis of tool steel,” Metal Science and Heat Treatment, 49, No. 3–4, 200–203 (2007).
54.
Zurück zum Zitat D. Vallauri, I. C. Atías Adrián, and A. Chrysanthou, “TiC-TiB2 composites: A review of phase relationships, processing and properties,” J. European Ceramic Society, 28, No. 8, 1697–1713 (2008). D. Vallauri, I. C. Atías Adrián, and A. Chrysanthou, “TiC-TiB2 composites: A review of phase relationships, processing and properties,” J. European Ceramic Society, 28, No. 8, 1697–1713 (2008).
55.
Zurück zum Zitat T. L. Talako, T. F. Grigor’eva, A. I. Letsko, A. P. Barinova, P. A. Vitiaz, and N. Z. Lyakhov, “Mechano-activated SHS of FeAlbased nanocomposite powders,” Int. J. Self-Propagating High Temperature Synthesis, 18, No. 2, 125–132 (2009). T. L. Talako, T. F. Grigor’eva, A. I. Letsko, A. P. Barinova, P. A. Vitiaz, and N. Z. Lyakhov, “Mechano-activated SHS of FeAlbased nanocomposite powders,” Int. J. Self-Propagating High Temperature Synthesis, 18, No. 2, 125–132 (2009).
56.
Zurück zum Zitat G. V. Shkadinskaya and K. G. Shkadinsky, “Thermal stability of FeAl intermetallics prepared by SHS sintering,” Int. J. Self- Propagating High-Temperature Synthesis, 17, No. 3, 177–182 (2008). G. V. Shkadinskaya and K. G. Shkadinsky, “Thermal stability of FeAl intermetallics prepared by SHS sintering,” Int. J. Self- Propagating High-Temperature Synthesis, 17, No. 3, 177–182 (2008).
57.
Zurück zum Zitat G. A. Baglyuk, A. I. Tolochin, A.V. Tolochina, R.V. Yakovenko, A. N. Gripachevskii, and M. E. Golovkova, “Effect of process conditions on the structure and properties of the hot-forged Fe3Al intermetallic alloy,” Powder Metallurgy and Metal Ceramics, 55, 297–305 (2016). G. A. Baglyuk, A. I. Tolochin, A.V. Tolochina, R.V. Yakovenko, A. N. Gripachevskii, and M. E. Golovkova, “Effect of process conditions on the structure and properties of the hot-forged Fe3Al intermetallic alloy,” Powder Metallurgy and Metal Ceramics, 55, 297–305 (2016).
58.
Zurück zum Zitat A. V. Popov, V. V. Predein, S. G. Zhilin, and O. N. Komarov, “Influence of heat treatment modes on the formation of structure and physical and mechanical properties of cast blanks from the aluminothermic alloys,” J. Physics: Conference Series, 1431, No.1, 01204 (2020). A. V. Popov, V. V. Predein, S. G. Zhilin, and O. N. Komarov, “Influence of heat treatment modes on the formation of structure and physical and mechanical properties of cast blanks from the aluminothermic alloys,” J. Physics: Conference Series, 1431, No.1, 01204 (2020).
59.
Zurück zum Zitat O. N. Komarov, S. G. Zhilin, D. A. Potianikhin, V. V. Predein, E. E. Abashkin, A. A. Sosnin, and A. V. Popov, “The influence of structure on strength properties of casting steel obtained with the use of thermite materials,” АIP Conference Proceedings, 1785, 040027-1-040027-5 (2016). O. N. Komarov, S. G. Zhilin, D. A. Potianikhin, V. V. Predein, E. E. Abashkin, A. A. Sosnin, and A. V. Popov, “The influence of structure on strength properties of casting steel obtained with the use of thermite materials,” АIP Conference Proceedings, 1785, 040027-1-040027-5 (2016).
61.
Zurück zum Zitat Huibin Zhanga, Wei Xie, Haiyan Gao, Weijun Shen, and Yuehui He, “Suppression of the SHS reaction s during synthesis of porous FeAl intermetallics by introducing silicon,” J. Alloys and Compounds, 735, 1435–1438 (2018). Huibin Zhanga, Wei Xie, Haiyan Gao, Weijun Shen, and Yuehui He, “Suppression of the SHS reaction s during synthesis of porous FeAl intermetallics by introducing silicon,” J. Alloys and Compounds, 735, 1435–1438 (2018).
62.
Zurück zum Zitat C.-L. Li, P.-Q. La, H. Liu, Y.-P. Wei, Y.-P. Bai, X.-F. Lu, and J.-M. Chen, “Effect of Si element on microstructure and mechanical properties of bulk nanocrystalline Fe–Al–Cr, Fe–Al–Mn materials prepared by aluminothermic reaction,” Materials Science and Engineering of Powder Metallurgy, 16, No. 6, 892–899 (2011). C.-L. Li, P.-Q. La, H. Liu, Y.-P. Wei, Y.-P. Bai, X.-F. Lu, and J.-M. Chen, “Effect of Si element on microstructure and mechanical properties of bulk nanocrystalline Fe–Al–Cr, Fe–Al–Mn materials prepared by aluminothermic reaction,” Materials Science and Engineering of Powder Metallurgy, 16, No. 6, 892–899 (2011).
63.
Zurück zum Zitat P. Q. La, X. F. Lu, Y. Yang, Y. P. Wei, Y. Zhao, and C. J. Cheng, “Effect of Mo on microstructure and mechanical properties of bulk nanocrystalline Fe3Al materials prepared by aluminothermic reaction,” Material Science and Technology, 27, 1303–1308 (2011). P. Q. La, X. F. Lu, Y. Yang, Y. P. Wei, Y. Zhao, and C. J. Cheng, “Effect of Mo on microstructure and mechanical properties of bulk nanocrystalline Fe3Al materials prepared by aluminothermic reaction,” Material Science and Technology, 27, 1303–1308 (2011).
64.
Zurück zum Zitat P. La, X. Li, Y.Wei, and X. Lu, “Effect of alloy element V on microstructure and mechanical properties of Fe3Al based nanocrystalline materials,” Powder Metallurgy Technology, 32, No. 3, 163–166 (2014). P. La, X. Li, Y.Wei, and X. Lu, “Effect of alloy element V on microstructure and mechanical properties of Fe3Al based nanocrystalline materials,” Powder Metallurgy Technology, 32, No. 3, 163–166 (2014).
65.
Zurück zum Zitat P. La, Y. Wei, Y. Yang, H. Wang, and Y. Bai, “Effect of Ni on microstructure and mechanical properties of bulk nanocrystalline Fe–Al based alloys prepared by aluminothermic reaction,” Materials Science Forum, 745–746, 715–721 (2013). P. La, Y. Wei, Y. Yang, H. Wang, and Y. Bai, “Effect of Ni on microstructure and mechanical properties of bulk nanocrystalline Fe–Al based alloys prepared by aluminothermic reaction,” Materials Science Forum, 745–746, 715–721 (2013).
66.
Zurück zum Zitat Y. P. Wei, P. Q. La, M D. Que, W. S. Li, Y. Yang, H. D. Wang, X. F. Lu, Y. Zhao, and C. J. Cheng, “Microstructures and mechanical properties of bulk nanocrystalline Fe3Al materials with 5, 10 and 15 wt. % Cu prepared by aluminothermic reaction,” Advanced Materials Research, 236–238, 2191–2196 (2011). Y. P. Wei, P. Q. La, M D. Que, W. S. Li, Y. Yang, H. D. Wang, X. F. Lu, Y. Zhao, and C. J. Cheng, “Microstructures and mechanical properties of bulk nanocrystalline Fe3Al materials with 5, 10 and 15 wt. % Cu prepared by aluminothermic reaction,” Advanced Materials Research, 236–238, 2191–2196 (2011).
67.
Zurück zum Zitat P. Q. La, Y. P. Wei , Y. Yang, Y. P. Bai, X. F. Lu, and X. Guo, “Effect of annealing on microstructure and mechanical properties of bulk nanocrystalline Fe3Al alloy with 5 wt. % Cu prepared by aluminothermic reaction,” Material Science and Engineering: A, 528, 7140–7148 (2011). P. Q. La, Y. P. Wei , Y. Yang, Y. P. Bai, X. F. Lu, and X. Guo, “Effect of annealing on microstructure and mechanical properties of bulk nanocrystalline Fe3Al alloy with 5 wt. % Cu prepared by aluminothermic reaction,” Material Science and Engineering: A, 528, 7140–7148 (2011).
68.
Zurück zum Zitat P. Q. La, H. Wang, Y. Bai, Y. Yang, Y. Wei, and L. Xuefeng, “Microstructures and mechanical properties of bulk nanocrystalline materials with 5, 10 and 15 wt. % Cr prepared by aluminothermic reaction,” Material Science and Engineering: A, 528, 6489–6496 (2011). P. Q. La, H. Wang, Y. Bai, Y. Yang, Y. Wei, and L. Xuefeng, “Microstructures and mechanical properties of bulk nanocrystalline materials with 5, 10 and 15 wt. % Cr prepared by aluminothermic reaction,” Material Science and Engineering: A, 528, 6489–6496 (2011).
69.
Zurück zum Zitat Hongding Wang, Peiqing La, Xuemei Liu, Yupeng Wei, and Huisheng Jiao, “Effect of chromium content on microstructure and mechanical properties of large dimensional bulk nanocrystalline based Fe–Al–Cr alloys prepared by aluminothermic reaction,” Materials and Design, 47, 125–132 (2013). Hongding Wang, Peiqing La, Xuemei Liu, Yupeng Wei, and Huisheng Jiao, “Effect of chromium content on microstructure and mechanical properties of large dimensional bulk nanocrystalline based Fe–Al–Cr alloys prepared by aluminothermic reaction,” Materials and Design, 47, 125–132 (2013).
70.
Zurück zum Zitat Peiqing La, Yupeng Wei, Ruijiao Lv, Yang Zhao, and Yang Yang, “Effect of Mn element on microstructure and mechanical properties of bulk nanocrystalline Fe3Al based materials prepared by aluminothermic reaction,” Materials Science and Engineering: A, 527, 2313–2319 (2010). Peiqing La, Yupeng Wei, Ruijiao Lv, Yang Zhao, and Yang Yang, “Effect of Mn element on microstructure and mechanical properties of bulk nanocrystalline Fe3Al based materials prepared by aluminothermic reaction,” Materials Science and Engineering: A, 527, 2313–2319 (2010).
71.
Zurück zum Zitat M. Krasnowski and T. Kulik, “Nanocrystalline Al–Fe intermetallics-lightweight alloys with high hardness,” Intermetallics, 18, No. 1, 47–50 (2010). M. Krasnowski and T. Kulik, “Nanocrystalline Al–Fe intermetallics-lightweight alloys with high hardness,” Intermetallics, 18, No. 1, 47–50 (2010).
72.
Zurück zum Zitat J. Bystrzycki and A. Fraczkiewicz, “Microstructure and tensile behavior of Fe–16Al-based alloy after severe plastic deformation,” Intermetallics, 18, No. 7, 1338–1343 (2010). J. Bystrzycki and A. Fraczkiewicz, “Microstructure and tensile behavior of Fe–16Al-based alloy after severe plastic deformation,” Intermetallics, 18, No. 7, 1338–1343 (2010).
73.
Zurück zum Zitat P.-Q. La, H.-D. Wang, Y. Yang, Y.-P. Bai, Y.-P. Wei, and X.-F Lu, “Effect of annealing on grain size and mechanical properties of bulk nanocrystalline Fe3Al material with 10% Cr prepared by aluminothermic reaction,” Nanotechnology and Precision Engineering, 10, No. 3, 229–236 (2012). P.-Q. La, H.-D. Wang, Y. Yang, Y.-P. Bai, Y.-P. Wei, and X.-F Lu, “Effect of annealing on grain size and mechanical properties of bulk nanocrystalline Fe3Al material with 10% Cr prepared by aluminothermic reaction,” Nanotechnology and Precision Engineering, 10, No. 3, 229–236 (2012).
74.
Zurück zum Zitat Peiqing La, Yupeng Wei, Yang Yang, Yaping Bai, Xuefeng Lu, Xin Guo, and Hongding Wang, “Effect of annealing on microstructure and mechanical properties of bulk nanocrystalline Fe3Al alloy with 5 wt. % Cu prepared by aluminothermic reaction,” Materials Science and Engineering A, 528, 7140–7148 (2011). Peiqing La, Yupeng Wei, Yang Yang, Yaping Bai, Xuefeng Lu, Xin Guo, and Hongding Wang, “Effect of annealing on microstructure and mechanical properties of bulk nanocrystalline Fe3Al alloy with 5 wt. % Cu prepared by aluminothermic reaction,” Materials Science and Engineering A, 528, 7140–7148 (2011).
75.
Zurück zum Zitat P.-Q. La, X.-F. Lu, Y.Yang, Y.-P. Bai, and Y.-P. Wei, “Effects of annealing on microstructure and mechanical properties of bulk nanocrystalline Fe3Al based alloy prepared by aluminothermic reaction,” Materials Science Forum, 688, 57–61 (2011). P.-Q. La, X.-F. Lu, Y.Yang, Y.-P. Bai, and Y.-P. Wei, “Effects of annealing on microstructure and mechanical properties of bulk nanocrystalline Fe3Al based alloy prepared by aluminothermic reaction,” Materials Science Forum, 688, 57–61 (2011).
76.
Zurück zum Zitat P.-Q. La, C.-G. Chu, Y.-P. Bai, Y.-P. Wei, Q. Meng, and X.-F. Lu, “Corrosion resistance and high-temperature anti-oxidation property of bulk nanocrystalline Fe3Al based materials,” Materials Science and Engineering of Powder Metallurgy, 17, No. 3, 361–364 (2012). P.-Q. La, C.-G. Chu, Y.-P. Bai, Y.-P. Wei, Q. Meng, and X.-F. Lu, “Corrosion resistance and high-temperature anti-oxidation property of bulk nanocrystalline Fe3Al based materials,” Materials Science and Engineering of Powder Metallurgy, 17, No. 3, 361–364 (2012).
77.
Zurück zum Zitat C.-L. Li, P.-Q. La, H. Liu, Y.-P. Wei, X.-F. Lu, and J.-M. Chen, “Effect of annealing time on microstructure and properties of bulk nanocrystalline Fe3Al -based materials,” Transactions of Materials and Heat Treatment, 33, No. 4, 17–21 (2012). C.-L. Li, P.-Q. La, H. Liu, Y.-P. Wei, X.-F. Lu, and J.-M. Chen, “Effect of annealing time on microstructure and properties of bulk nanocrystalline Fe3Al -based materials,” Transactions of Materials and Heat Treatment, 33, No. 4, 17–21 (2012).
78.
Zurück zum Zitat D.V. Dudina, M. A. Legan, N. V. Fedorova, A. N. Novoselov, A. G. Anisimov, and M. A. Esikova, “Structural and mechanical characterization of porous iron aluminide FeAl obtained by pressureless spark plasma sintering,” Materials Science and Engineering: A, 695, 309–314 (2017). D.V. Dudina, M. A. Legan, N. V. Fedorova, A. N. Novoselov, A. G. Anisimov, and M. A. Esikova, “Structural and mechanical characterization of porous iron aluminide FeAl obtained by pressureless spark plasma sintering,” Materials Science and Engineering: A, 695, 309–314 (2017).
79.
Zurück zum Zitat D. Arthur Jebastine Sunderraj, K. Arun Vasantha Geethan, and D. Ananthapadmanaban, “SEM and EDAX Evaluation of Al–Fe Alloy,” Int. Journal of Engineering and Advanced Technology (IJEAT), 9, No. 1, 2651–2654 (2019). D. Arthur Jebastine Sunderraj, K. Arun Vasantha Geethan, and D. Ananthapadmanaban, “SEM and EDAX Evaluation of Al–Fe Alloy,” Int. Journal of Engineering and Advanced Technology (IJEAT), 9, No. 1, 2651–2654 (2019).
80.
Zurück zum Zitat P. Mai, G. Liu, Y. Chen, J. Li, and S. He, “Preparation of Fe3Al alloy by combustion synthesis melt-casting under ultra-high gravity,” Materials and Manufacturing Processes, 27, No. 5, 486–489 (2012). P. Mai, G. Liu, Y. Chen, J. Li, and S. He, “Preparation of Fe3Al alloy by combustion synthesis melt-casting under ultra-high gravity,” Materials and Manufacturing Processes, 27, No. 5, 486–489 (2012).
81.
Zurück zum Zitat Yong-In Kim, Wonsik Lee, Jin Man Jang, Sang Wook Ui, Gye Seok An, Hyuk Kwon, Sung-Churl Choi, and Se-Hyun Ko, “Effects of aluminum content and particle size on volume expansion during the sintering of Fe–Al mixed powders,” J. Alloys and Compounds, 747, 211–216 (2018). Yong-In Kim, Wonsik Lee, Jin Man Jang, Sang Wook Ui, Gye Seok An, Hyuk Kwon, Sung-Churl Choi, and Se-Hyun Ko, “Effects of aluminum content and particle size on volume expansion during the sintering of Fe–Al mixed powders,” J. Alloys and Compounds, 747, 211–216 (2018).
82.
Zurück zum Zitat E. Pochec, S. Jozwiak, K. Karczewski, and Z. Bojar, “Fe–Al phase formation around SHS reactions under isothermal conditions,” J. Alloys Compounds, 509, 1124–1128 (2011). E. Pochec, S. Jozwiak, K. Karczewski, and Z. Bojar, “Fe–Al phase formation around SHS reactions under isothermal conditions,” J. Alloys Compounds, 509, 1124–1128 (2011).
83.
Zurück zum Zitat D Siemiaszko and R. Moscicki, “Kinetics study on the SHS reaction in massive samples with high heating rate in the Fe–Al system,” J. Alloys Compounds, 632, 335–342 (2015). D Siemiaszko and R. Moscicki, “Kinetics study on the SHS reaction in massive samples with high heating rate in the Fe–Al system,” J. Alloys Compounds, 632, 335–342 (2015).
84.
Zurück zum Zitat H. Sina, J. Corneliusson, K. Turba, and S. Iyengar, “A study on the formation of iron aluminide (FeAl) from elemental powders,” J. Alloys Compounds, 636, 261–269 (2015). H. Sina, J. Corneliusson, K. Turba, and S. Iyengar, “A study on the formation of iron aluminide (FeAl) from elemental powders,” J. Alloys Compounds, 636, 261–269 (2015).
85.
Zurück zum Zitat Ji Hoon Kim, Myung Hoon Cho, Hong-Min Shim, and Soo Hyung Kim, “Fabrication and thermal behavior of Al/Fe2O3 energetic composites for effective interfacial bonding between dissimilar metallic substrates,” J. Industrial and Engineering Chemistry, 78, 84–89 (2019). Ji Hoon Kim, Myung Hoon Cho, Hong-Min Shim, and Soo Hyung Kim, “Fabrication and thermal behavior of Al/Fe2O3 energetic composites for effective interfacial bonding between dissimilar metallic substrates,” J. Industrial and Engineering Chemistry, 78, 84–89 (2019).
86.
Zurück zum Zitat Sun Fenglian, Liu Yang, Wang Yang, and Zou Pengfei, “The effect of Cu content on performance of SnAgCuBiNi/Cu soldering,” in: Proceedings from the 5th Intel-national Brazing and Soldering Conference (2012). Sun Fenglian, Liu Yang, Wang Yang, and Zou Pengfei, “The effect of Cu content on performance of SnAgCuBiNi/Cu soldering,” in: Proceedings from the 5th Intel-national Brazing and Soldering Conference (2012).
Metadaten
Titel
Mechanisms for Forming Iron-Containing Intermetallics Prepared by Aluminothermy and the Effect of Special Treatment Methods on their Properties
verfasst von
O. N. Komarov
S. G. Zhilin
V. V. Predein
A. V. Popov
Publikationsdatum
12.11.2020
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 7-8/2020
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-020-01058-w

Weitere Artikel der Ausgabe 7-8/2020

Metallurgist 7-8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.