Skip to main content
Erschienen in: Rheologica Acta 6/2006

01.08.2006 | Original Contribution

Melt shear rheology of carbon nanofiber/polystyrene composites

verfasst von: Yingru Wang, Jianhua Xu, Stephen E. Bechtel, Kurt W. Koelling

Erschienen in: Rheologica Acta | Ausgabe 6/2006

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rheological behavior and morphology of carbon nanofiber/polystyrene (CNF/PS) composites in their melt phase have been characterized both through experimental measurements and modeling. Composites prepared in the two different processes of solvent casting and melt blending are contrasted; melt-blended and solvent-cast composites were each prepared with CNF loadings of 2, 5, and 10 wt%. A morphological study revealed that the melt blending process results in composites with shorter CNFs than in the solvent-cast composites, due to damage caused by the higher stresses the CNFs encounter in melt blending, and that both processes retain the diameter of the as-received CNFs. The addition of carbon nanofiber to the polystyrene through either melt blending or solvent casting increases the linear viscoelastic moduli, G′ and G″, and steady-state viscosity, η, in the melt phase monotonically with CNF concentration, more so in solvent cast composites with their longer CNFs. The melt phase of solvent-cast composites with higher CNF concentrations exhibit a plateau of the elastic modulus, G′, at low frequencies, an apparent yield stress, and large first normal stress difference, N 1, at low strain rates, which can be attributed to contact-based network nanostructure formed by the long CNFs. A nanostructurally-based model for CNF/PS composites in their melt phase is presented which considers the composite system as rigid rods in a viscoelastic fluid matrix. Except for two coupling parameters, all material constants in the model for the composite systems are deduced from morphological and shear flow measurements of its separate nanofiber and polymer melt constituents of the composite. These two coupling parameters are polymer–fiber interaction parameter, σ, and interfiber interaction parameter, C I. Through comparison with our experimental measurements of the composite systems, we deduce that σ is effectively 1 (corresponding to no polymer–fiber interaction) for all CNF/PS nanocomposites studied. The dependence of CNF orientation on strain rate which we observe in our experiments is captured in the model by considering the interfiber interaction parameter, C I, as a function of strain rate. Applied to shear flows, the model predicts the melt-phase, steady-state viscosities, and normal stress differences of the CNF/PS composites as functions of shear rate, polymer matrix properties, fiber length, and mass concentration consistent with our experimental measurements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784CrossRefADS Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784CrossRefADS
Zurück zum Zitat Advani SG, Tucker CL (1990) Closure approximations for three-dimensional structure tensors. J Rheol 34(3):367–386CrossRefADS Advani SG, Tucker CL (1990) Closure approximations for three-dimensional structure tensors. J Rheol 34(3):367–386CrossRefADS
Zurück zum Zitat Azaiez J (1996) Constitutive equations for fiber suspensions in viscoelastic media. J Non-Newton Fluid Mech 66:35–54CrossRef Azaiez J (1996) Constitutive equations for fiber suspensions in viscoelastic media. J Non-Newton Fluid Mech 66:35–54CrossRef
Zurück zum Zitat Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27(3):315–323CrossRef Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27(3):315–323CrossRef
Zurück zum Zitat Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Wiley, New York Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Wiley, New York
Zurück zum Zitat Caldeira G, Maia JM, Carneiro OS, Covas JA, Bernardo CA (1998) Production and characterization of innovative carbon fiber–polycarbonate composites. Polym Compos 19(2):147–151CrossRef Caldeira G, Maia JM, Carneiro OS, Covas JA, Bernardo CA (1998) Production and characterization of innovative carbon fiber–polycarbonate composites. Polym Compos 19(2):147–151CrossRef
Zurück zum Zitat Carneiro OS, Maia JM (2000a) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part I: the influence of fiber type, processing conditions and level of incorporation. Polym Compos 21(6):960–969CrossRef Carneiro OS, Maia JM (2000a) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part I: the influence of fiber type, processing conditions and level of incorporation. Polym Compos 21(6):960–969CrossRef
Zurück zum Zitat Carneiro OS, Maia JM (2000b) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part II: the influence of matrix type. Polym Compos 21(6):970–977CrossRef Carneiro OS, Maia JM (2000b) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part II: the influence of matrix type. Polym Compos 21(6):970–977CrossRef
Zurück zum Zitat Carneiro OS, Covas JA, Bernardo CA, Caldeira G, Van Hattum FWJ, Ting JM, Alig RL, Lake ML (1998) Production and assessment of polycarbonate composites reinforced with vapor-grown carbon fibers. Compos Sci Technol 58(3–4):401–407CrossRef Carneiro OS, Covas JA, Bernardo CA, Caldeira G, Van Hattum FWJ, Ting JM, Alig RL, Lake ML (1998) Production and assessment of polycarbonate composites reinforced with vapor-grown carbon fibers. Compos Sci Technol 58(3–4):401–407CrossRef
Zurück zum Zitat Cintra JS, Tucker CL (1995) Orthotropic closure approximation for flow-induced fiber orientation. J Rheol 39(6):1095–1122CrossRefADS Cintra JS, Tucker CL (1995) Orthotropic closure approximation for flow-induced fiber orientation. J Rheol 39(6):1095–1122CrossRefADS
Zurück zum Zitat Cox WP, Merz EH (1958) Correlation of dynamic and steady viscosities. J Polym Sci 28:619–622CrossRef Cox WP, Merz EH (1958) Correlation of dynamic and steady viscosities. J Polym Sci 28:619–622CrossRef
Zurück zum Zitat Dinh SM, Armstrong RC (1984) A rheological equation of state for semi-concentrated fiber suspensions. J Rheol 28:207–227CrossRefADSMATH Dinh SM, Armstrong RC (1984) A rheological equation of state for semi-concentrated fiber suspensions. J Rheol 28:207–227CrossRefADSMATH
Zurück zum Zitat Doi M, Edwards SF (1987) The theory of polymer dynamics. Clarendon, Oxford Doi M, Edwards SF (1987) The theory of polymer dynamics. Clarendon, Oxford
Zurück zum Zitat Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35(4):647–685CrossRefADS Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35(4):647–685CrossRefADS
Zurück zum Zitat Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York
Zurück zum Zitat Folgar F, Tucker CL (1984) Orientation behaviour of fibres in concentrated suspensions. J Reinf Plast Compos 3:98–119CrossRef Folgar F, Tucker CL (1984) Orientation behaviour of fibres in concentrated suspensions. J Reinf Plast Compos 3:98–119CrossRef
Zurück zum Zitat Glasgow DG, Jacobsen RL, Burton DJ, Kwag C, Kennel E, Lake ML, Brittain WJ, Rice BP (2003) Carbon nanofiber polymer composites. International SAMPE Symposium and Exhibition Glasgow DG, Jacobsen RL, Burton DJ, Kwag C, Kennel E, Lake ML, Brittain WJ, Rice BP (2003) Carbon nanofiber polymer composites. International SAMPE Symposium and Exhibition
Zurück zum Zitat Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Potschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5–6):1153–1158CrossRef Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Potschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5–6):1153–1158CrossRef
Zurück zum Zitat Heremans J (1985) Electrical conductivity of vapor-grown carbon fibers. Carbon 23(4):431–436CrossRef Heremans J (1985) Electrical conductivity of vapor-grown carbon fibers. Carbon 23(4):431–436CrossRef
Zurück zum Zitat Heremans J, Beetz CP Jr (1985) Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys Rev B Condens Matter Mater Phys 32(4):1981–1986ADS Heremans J, Beetz CP Jr (1985) Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys Rev B Condens Matter Mater Phys 32(4):1981–1986ADS
Zurück zum Zitat Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41(5):889–893CrossRef Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41(5):889–893CrossRef
Zurück zum Zitat Kearns JC, Shambaugh RL (2002) Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci 86(8):2079–2084CrossRef Kearns JC, Shambaugh RL (2002) Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci 86(8):2079–2084CrossRef
Zurück zum Zitat Kinloch IA, Roberts SA, Windle AH (2002) A rheological study of concentrated aqueous nanotube dispersions. Polymer 43:7483–7491CrossRef Kinloch IA, Roberts SA, Windle AH (2002) A rheological study of concentrated aqueous nanotube dispersions. Polymer 43:7483–7491CrossRef
Zurück zum Zitat Koyama T (1972) Formation of carbon fibers from benzene. Carbon 10:757CrossRef Koyama T (1972) Formation of carbon fibers from benzene. Carbon 10:757CrossRef
Zurück zum Zitat Koyama T, Endo M (1973) Structure and growth processes of vapor-grown carbon fibers (in Japanese). Ohyo Butsuri 42:690 Koyama T, Endo M (1973) Structure and growth processes of vapor-grown carbon fibers (in Japanese). Ohyo Butsuri 42:690
Zurück zum Zitat Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102CrossRef Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102CrossRef
Zurück zum Zitat Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734CrossRef Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734CrossRef
Zurück zum Zitat Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA (2002) Fibers from polypropylene/nano carbon fiber composites. Polymer 43(5):1701–1703CrossRef Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA (2002) Fibers from polypropylene/nano carbon fiber composites. Polymer 43(5):1701–1703CrossRef
Zurück zum Zitat Lake ML, Glasgow DG, Kwag C, Burton DJ (2002) Carbon nanofiber polymer composites: electrical and mechanical properties. International SAMPE Symposium and Exhibition Lake ML, Glasgow DG, Kwag C, Burton DJ (2002) Carbon nanofiber polymer composites: electrical and mechanical properties. International SAMPE Symposium and Exhibition
Zurück zum Zitat Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, Oxford Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, Oxford
Zurück zum Zitat Larson RG, Winey KI, Patel SS, Watanabe H, Bruinsma R (1993) The rheology of layered liquids: lamellar block copolymers and smectic liquid crystals. Rheol Acta 32:245–253CrossRef Larson RG, Winey KI, Patel SS, Watanabe H, Bruinsma R (1993) The rheology of layered liquids: lamellar block copolymers and smectic liquid crystals. Rheol Acta 32:245–253CrossRef
Zurück zum Zitat Liu C, Zhang J, He J, Hu G (2003) Gelation in carbon nanotube/polymer composites. Polymer 44(24):7529–7532CrossRef Liu C, Zhang J, He J, Hu G (2003) Gelation in carbon nanotube/polymer composites. Polymer 44(24):7529–7532CrossRef
Zurück zum Zitat Lozano K, Barrera EV (2001) Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J Appl Polym Sci 79:125–133CrossRef Lozano K, Barrera EV (2001) Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J Appl Polym Sci 79:125–133CrossRef
Zurück zum Zitat Lozano K, Bonilla-rios J, Barrera EV (2001) A study on nanofiber-reinforced thermoplastic composites (II): investigation of the mixing rheology and conduc-tion properties. J Appl Polym Sci 80:1162–1172CrossRef Lozano K, Bonilla-rios J, Barrera EV (2001) A study on nanofiber-reinforced thermoplastic composites (II): investigation of the mixing rheology and conduc-tion properties. J Appl Polym Sci 80:1162–1172CrossRef
Zurück zum Zitat Lozano K, Yang S, Zeng Q (2004) Rheological analysis of vapor-grown carbon nanofiber-reinforced polyethylene composites. J Appl Poly Sci 93(1):155–162CrossRef Lozano K, Yang S, Zeng Q (2004) Rheological analysis of vapor-grown carbon nanofiber-reinforced polyethylene composites. J Appl Poly Sci 93(1):155–162CrossRef
Zurück zum Zitat Ma H, Zeng J, Realff ML, Kumar S, Schiraldi DA (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos Sci Technol 63(11):1617–1628CrossRef Ma H, Zeng J, Realff ML, Kumar S, Schiraldi DA (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos Sci Technol 63(11):1617–1628CrossRef
Zurück zum Zitat Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley, New York Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley, New York
Zurück zum Zitat Patton RD, Pittman CU Jr, Wang L, Hill JR (1999) Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices. Compos Part A Appl Sci Manuf 30A(9):1081–1091CrossRef Patton RD, Pittman CU Jr, Wang L, Hill JR (1999) Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices. Compos Part A Appl Sci Manuf 30A(9):1081–1091CrossRef
Zurück zum Zitat Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255CrossRef Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255CrossRef
Zurück zum Zitat Prasse T, Cavaille J-Y, Bauhofer W (2003) Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment. Compos Sci Technol 63(13):1835–1841CrossRef Prasse T, Cavaille J-Y, Bauhofer W (2003) Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment. Compos Sci Technol 63(13):1835–1841CrossRef
Zurück zum Zitat Richard P, Prasse T, Cavaille JY, Chazeau L, Gauthier C, Duchet J (2003) Reinforcement of rubbery epoxy by carbon nanofibres. Mater Sci Eng A Struct Mater Prop Microstruct Process A352(1–2):344–348 Richard P, Prasse T, Cavaille JY, Chazeau L, Gauthier C, Duchet J (2003) Reinforcement of rubbery epoxy by carbon nanofibres. Mater Sci Eng A Struct Mater Prop Microstruct Process A352(1–2):344–348
Zurück zum Zitat Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864–1872CrossRef Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864–1872CrossRef
Zurück zum Zitat Speck JS, Endo M, Dresselhaus MS (1989) Structure and intercalation of thin benzene derived carbon fibers. J Cryst Growth 94(4):834–848CrossRefADS Speck JS, Endo M, Dresselhaus MS (1989) Structure and intercalation of thin benzene derived carbon fibers. J Cryst Growth 94(4):834–848CrossRefADS
Zurück zum Zitat Tibbetts GG (1983) Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl Phys Lett 42(8):666–668CrossRefADS Tibbetts GG (1983) Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl Phys Lett 42(8):666–668CrossRefADS
Zurück zum Zitat Tibbetts GG, Beetz CP Jr (1987) Mechanical properties of vapor-grown carbon fibers. J Phys D Appl Phys 20(3):292–297CrossRefADS Tibbetts GG, Beetz CP Jr (1987) Mechanical properties of vapor-grown carbon fibers. J Phys D Appl Phys 20(3):292–297CrossRefADS
Zurück zum Zitat Tibbetts GG, McHugh JJ (1999) Mechanical properties of vapor grown carbon fiber composites with thermoplastic matrices. J Mater Res 14:2871–2880CrossRefADS Tibbetts GG, McHugh JJ (1999) Mechanical properties of vapor grown carbon fiber composites with thermoplastic matrices. J Mater Res 14:2871–2880CrossRefADS
Zurück zum Zitat Tibbetts GG, Endo M, Beetz CP Jr (1986) Carbon fibers grown from the vapor phase: a novel material. SAMPE Journal 22(5):30–35, 60 Tibbetts GG, Endo M, Beetz CP Jr (1986) Carbon fibers grown from the vapor phase: a novel material. SAMPE Journal 22(5):30–35, 60
Zurück zum Zitat Tucker CL (1991) Fiber regimes for fiber suspensions in narrow gaps. J Non-Newton Fluid Mech 39:239–268CrossRef Tucker CL (1991) Fiber regimes for fiber suspensions in narrow gaps. J Non-Newton Fluid Mech 39:239–268CrossRef
Zurück zum Zitat Van Hattum FWJ, Bernardo CA, Finegan JC, Tibbetts GG, Alig RL, Lake ML (1999) A study of the thermomechanical properties of carbon fiber–polypropylene composites. Polym Compos 20(5):683–688CrossRef Van Hattum FWJ, Bernardo CA, Finegan JC, Tibbetts GG, Alig RL, Lake ML (1999) A study of the thermomechanical properties of carbon fiber–polypropylene composites. Polym Compos 20(5):683–688CrossRef
Zurück zum Zitat Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44(6):537–562CrossRef Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44(6):537–562CrossRef
Zurück zum Zitat Ying Z, Du J-H, Bai S, Li F, Liu C, Cheng H-M (2002) Mechanical properties of surfactant-coating carbon nanofiber/epoxy composite. Int J Nanosci 1(5–6):425–430CrossRef Ying Z, Du J-H, Bai S, Li F, Liu C, Cheng H-M (2002) Mechanical properties of surfactant-coating carbon nanofiber/epoxy composite. Int J Nanosci 1(5–6):425–430CrossRef
Zurück zum Zitat Zhong W-H, Li J, Xu LR, Michel JA, Sullivan LM, Lukehart CM (2004) Graphitic carbon nanofiber (GCNF)/polymer materials. I. GCNF/epoxy monoliths using hexanediamine linker molecules. J Nanosci Nanotechnol 4(7):794–802CrossRefPubMed Zhong W-H, Li J, Xu LR, Michel JA, Sullivan LM, Lukehart CM (2004) Graphitic carbon nanofiber (GCNF)/polymer materials. I. GCNF/epoxy monoliths using hexanediamine linker molecules. J Nanosci Nanotechnol 4(7):794–802CrossRefPubMed
Metadaten
Titel
Melt shear rheology of carbon nanofiber/polystyrene composites
verfasst von
Yingru Wang
Jianhua Xu
Stephen E. Bechtel
Kurt W. Koelling
Publikationsdatum
01.08.2006
Verlag
Springer-Verlag
Erschienen in
Rheologica Acta / Ausgabe 6/2006
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-005-0077-8

Weitere Artikel der Ausgabe 6/2006

Rheologica Acta 6/2006 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.