Skip to main content

2016 | OriginalPaper | Buchkapitel

2. Memristor Modeling

verfasst von : Ioannis Vourkas, Georgios Ch. Sirakoulis

Erschienen in: Memristor-Based Nanoelectronic Computing Circuits and Architectures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a SPICE-compatible device model of a voltage-controlled bipolar memristor which explains memristive behavior while primarily attributing the switching effect to an effective tunneling distance modulation. This model satisfies the desired memristive fingerprints and involves significantly low-complexity operation under an unlimited set of frequencies over a wide range of applied voltages. The SPICE simulation results are found in good qualitative and quantitative agreement with the theoretical formulation of the model. Also, the model represents well the complex switching behavior of memristor when fitted to other widely used published models. Therefore, it can be used to provide accurate enough circuit simulations for a wide range of memristor devices and voltage inputs, while it can be incorporated as a circuit element in any current computer-aided design work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(May), 80–83 (2008)CrossRef D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(May), 80–83 (2008)CrossRef
2.
Zurück zum Zitat K. Eshraghian, O. Kavehei, K.R. Cho, J.M. Chappell, A. Iqbal, S.F. Al-Sarawi, D. Abbott, Memristive device fundamentals and modeling: applications to circuits and systems simulation. IEEE Proc. 100(6), 1991–2007 (2012)CrossRef K. Eshraghian, O. Kavehei, K.R. Cho, J.M. Chappell, A. Iqbal, S.F. Al-Sarawi, D. Abbott, Memristive device fundamentals and modeling: applications to circuits and systems simulation. IEEE Proc. 100(6), 1991–2007 (2012)CrossRef
3.
Zurück zum Zitat T. Prodromakis, B.P. Peh, C. Papavassiliou, C. Toumazou, A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Dev. 58(9), 3099–3105 (2011)CrossRef T. Prodromakis, B.P. Peh, C. Papavassiliou, C. Toumazou, A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Dev. 58(9), 3099–3105 (2011)CrossRef
4.
Zurück zum Zitat M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors and meminductors. IEEE Proc. 97(10), 1717–1724 (2009)CrossRef M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors and meminductors. IEEE Proc. 97(10), 1717–1724 (2009)CrossRef
5.
Zurück zum Zitat E. Lehtonen, M. Laiho, CNN using memristors for neighborhood connections, in 12th International Workshop Cellular Nanoscale Network Applications (CNNA), Berkeley, CA (2010) E. Lehtonen, M. Laiho, CNN using memristors for neighborhood connections, in 12th International Workshop Cellular Nanoscale Network Applications (CNNA), Berkeley, CA (2010)
6.
Zurück zum Zitat S. Shin, K. Kim, S. Kang, Compact models for memristors based on charge-flux constitutive relationships, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010) S. Shin, K. Kim, S. Kang, Compact models for memristors based on charge-flux constitutive relationships, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010)
7.
Zurück zum Zitat C. Yakopcic, T.M. Taha, G. Subramanyam, R.E. Pino, S. Rogers, A memristor device model. IEEE El. Dev. Lett. 32(10), 1436–1438 (2011)CrossRef C. Yakopcic, T.M. Taha, G. Subramanyam, R.E. Pino, S. Rogers, A memristor device model. IEEE El. Dev. Lett. 32(10), 1436–1438 (2011)CrossRef
8.
Zurück zum Zitat S. Kvatinsky, E.G. Friedman, A. Kolodny, U.C. Weiser, TEAM: threshold adaptive memristor model. IEEE Trans. Circ. Syst. I Reg. Papers. 60(1), 211–221 (2013) S. Kvatinsky, E.G. Friedman, A. Kolodny, U.C. Weiser, TEAM: threshold adaptive memristor model. IEEE Trans. Circ. Syst. I Reg. Papers. 60(1), 211–221 (2013)
9.
Zurück zum Zitat M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)CrossRef M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)CrossRef
10.
Zurück zum Zitat Y.N. Joklekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)CrossRefMATH Y.N. Joklekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)CrossRefMATH
11.
Zurück zum Zitat D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)CrossRef D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)CrossRef
12.
Zurück zum Zitat D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A Mater. Sci. Process. 94(3), 515–519 (2009)CrossRef D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A Mater. Sci. Process. 94(3), 515–519 (2009)CrossRef
13.
Zurück zum Zitat R.S. Williams, M.D. Pickett, J.P. Strachan, Physics-based memristor models, in IEEE Int. Symp. Circuits Syst. (ISCAS), Beijing (2013) R.S. Williams, M.D. Pickett, J.P. Strachan, Physics-based memristor models, in IEEE Int. Symp. Circuits Syst. (ISCAS), Beijing (2013)
14.
Zurück zum Zitat Z. Biolek, D. Biolek, V. Biolkova, SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009) Z. Biolek, D. Biolek, V. Biolkova, SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)
15.
Zurück zum Zitat D. Batas, H. Fiedler, A memristor SPICE implementation and a new approach for magnetic flux controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255 (2011)CrossRef D. Batas, H. Fiedler, A memristor SPICE implementation and a new approach for magnetic flux controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255 (2011)CrossRef
16.
Zurück zum Zitat A. Rak, G. Cserey, Macromodeling of the memristor in spice. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010) A. Rak, G. Cserey, Macromodeling of the memristor in spice. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010)
17.
Zurück zum Zitat S. Benderli, T. Wey, On SPICE macromodelling of TiO2 memristors. Electron. Lett. 45(7), 377–379 (2009)CrossRef S. Benderli, T. Wey, On SPICE macromodelling of TiO2 memristors. Electron. Lett. 45(7), 377–379 (2009)CrossRef
18.
Zurück zum Zitat M. Mahvash, A.C. Parker, A memristor SPICE model for designing memristor circuits, in 53rd IEEE International Midwest Symposium on Circuits Systems (MWSCAS), Seattle, WA (2010) M. Mahvash, A.C. Parker, A memristor SPICE model for designing memristor circuits, in 53rd IEEE International Midwest Symposium on Circuits Systems (MWSCAS), Seattle, WA (2010)
19.
Zurück zum Zitat H. Abdalla, M.D. Pickett, SPICE modeling of memristors, in IEEE Int. Symp. Circuits Syst. (ISCAS), Rio de Janeiro (2011) H. Abdalla, M.D. Pickett, SPICE modeling of memristors, in IEEE Int. Symp. Circuits Syst. (ISCAS), Rio de Janeiro (2011)
20.
Zurück zum Zitat M.J. Sharifi, Y.M. Banadaki, General SPICE models for memristor and application to circuit simulation of memristor-based synapses and memory cells. J. Circuit Syst. Comp. 19(2), 407–424 (2010)CrossRef M.J. Sharifi, Y.M. Banadaki, General SPICE models for memristor and application to circuit simulation of memristor-based synapses and memory cells. J. Circuit Syst. Comp. 19(2), 407–424 (2010)CrossRef
21.
Zurück zum Zitat A. Ascoli, F. Corinto, V. Senger, R. Tetzlaff, Memristor model comparison. IEEE Circuits Syst. Mag. 13(2), 89–105 (2013)CrossRef A. Ascoli, F. Corinto, V. Senger, R. Tetzlaff, Memristor model comparison. IEEE Circuits Syst. Mag. 13(2), 89–105 (2013)CrossRef
22.
Zurück zum Zitat Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)CrossRef Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)CrossRef
23.
Zurück zum Zitat I. Vourkas, G.C. Sirakoulis, A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans. Nanotechnol. 11(6), 1151–1159 (2012)CrossRef I. Vourkas, G.C. Sirakoulis, A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans. Nanotechnol. 11(6), 1151–1159 (2012)CrossRef
24.
Zurück zum Zitat L.I. Schiff, Quantum mechanics, in International Series in Pure and Application Physics, 3rd ed. (McGraw-Hill, New York, 1968), pp. 100–104 L.I. Schiff, Quantum mechanics, in International Series in Pure and Application Physics, 3rd ed. (McGraw-Hill, New York, 1968), pp. 100–104
25.
Zurück zum Zitat S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Reg. Papers 60(11), 3008–3021 (2013)MathSciNetCrossRef S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Reg. Papers 60(11), 3008–3021 (2013)MathSciNetCrossRef
26.
Zurück zum Zitat I. Vourkas, A. Batsos, G.Ch. Sirakoulis, SPICE modeling of nonlinear memristive behavior. Int. J. Circ. Theor. Appl. 43(5), 553–565 (2015) I. Vourkas, A. Batsos, G.Ch. Sirakoulis, SPICE modeling of nonlinear memristive behavior. Int. J. Circ. Theor. Appl. 43(5), 553–565 (2015)
27.
Zurück zum Zitat H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal-oxide RRAM. IEEE Proc. 100(6), 1951–1970 (2012)CrossRef H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal-oxide RRAM. IEEE Proc. 100(6), 1951–1970 (2012)CrossRef
28.
Zurück zum Zitat L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102(4), 765–783 (2011)CrossRefMATH L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102(4), 765–783 (2011)CrossRefMATH
29.
Zurück zum Zitat K. Eshraghian, K.-R. Cho, O. Kavehei, S.-K. Kang, D. Abbott, S.-M. Kang, Memristor MOS content addressable memory (MCAM): hybrid architecture for future high performance search engines. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(8), 1407–1416 (2011)CrossRef K. Eshraghian, K.-R. Cho, O. Kavehei, S.-K. Kang, D. Abbott, S.-M. Kang, Memristor MOS content addressable memory (MCAM): hybrid architecture for future high performance search engines. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(8), 1407–1416 (2011)CrossRef
30.
Zurück zum Zitat E. Linn, R. Rosezin, C. Kugeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)CrossRef E. Linn, R. Rosezin, C. Kugeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)CrossRef
31.
Zurück zum Zitat A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)CrossRef A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)CrossRef
Metadaten
Titel
Memristor Modeling
verfasst von
Ioannis Vourkas
Georgios Ch. Sirakoulis
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-22647-7_2