Skip to main content

2024 | OriginalPaper | Buchkapitel

5. Menger Sponge Models

verfasst von : Gabor Korvin

Erschienen in: Statistical Rock Physics

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Chapter Highlights

Menger Sponge (in 3D) and Sierpiński Carpet (in 2D) are the most useful fractal models of the rocks’ pore space. Sections 5.1 and 5.2 treat these models, their combinatorial and topological properties. Random and multifractal generalizations are discussed in Sect. 5.3, where the permeability of these models is also studied. A mathematical Appendix 5.4 introduces a useful measure, lacunarity, a tool to distinguish between textures of the same fractal dimension but different geometry. Petrophysical applications are summarized in Table 5.1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allain C, Cloitre M (1991) Characterizing the lacunarity of random and deterministic fractal sets. Phys Rev A 44(6):3552–2558CrossRef Allain C, Cloitre M (1991) Characterizing the lacunarity of random and deterministic fractal sets. Phys Rev A 44(6):3552–2558CrossRef
Zurück zum Zitat Anderson R (1958) One-dimensional continuous curves and a homogeneity theorem. Ann Math 68:1–16CrossRef Anderson R (1958) One-dimensional continuous curves and a homogeneity theorem. Ann Math 68:1–16CrossRef
Zurück zum Zitat Arizabalo RD, Oleschko K, Korvin G, Lozada M, Castrejón R, Ronquillo G (2006) Lacunarity of geophysical well logs in the Cantarell oil field, Gulf of Mexico. Geofísica Int 45(2):99–113 Arizabalo RD, Oleschko K, Korvin G, Lozada M, Castrejón R, Ronquillo G (2006) Lacunarity of geophysical well logs in the Cantarell oil field, Gulf of Mexico. Geofísica Int 45(2):99–113
Zurück zum Zitat Atzeni C, Pia G, Sanna U, Spanu N (2008) A fractal model of the porous microstructure of earth-based materials. Constr Build Mater 22(8):1607–1613CrossRef Atzeni C, Pia G, Sanna U, Spanu N (2008) A fractal model of the porous microstructure of earth-based materials. Constr Build Mater 22(8):1607–1613CrossRef
Zurück zum Zitat Bear J, Verruijt A (1987) Modeling groundwater flow and pollution. Springer, New YorkCrossRef Bear J, Verruijt A (1987) Modeling groundwater flow and pollution. Springer, New YorkCrossRef
Zurück zum Zitat Beck C, Schlögl F (1993) Thermodynamics of chaotic systems: an introduction. Cambridge University Press, New YorkCrossRef Beck C, Schlögl F (1993) Thermodynamics of chaotic systems: an introduction. Cambridge University Press, New YorkCrossRef
Zurück zum Zitat Bendat JS, Piersol AG (1966) Measurement and analysis of random data. Wiley, New York Bendat JS, Piersol AG (1966) Measurement and analysis of random data. Wiley, New York
Zurück zum Zitat Bird NRA, Dexter AR (1997) Simulation of soil water retention using random fractal networks. Eur J Soil Sci 48:633–641CrossRef Bird NRA, Dexter AR (1997) Simulation of soil water retention using random fractal networks. Eur J Soil Sci 48:633–641CrossRef
Zurück zum Zitat Bird NRA, Bartoli F, Dexter AR (1996) Water retention models for fractal soil structures. Eur J Soil Sci 47:1–6CrossRef Bird NRA, Bartoli F, Dexter AR (1996) Water retention models for fractal soil structures. Eur J Soil Sci 47:1–6CrossRef
Zurück zum Zitat Bird N, Perrier E, Rieu M (2000) The water retention function for a model of soil structure with pore and solid fractal distributions. Eur J Soil Sci 55:55–63CrossRef Bird N, Perrier E, Rieu M (2000) The water retention function for a model of soil structure with pore and solid fractal distributions. Eur J Soil Sci 55:55–63CrossRef
Zurück zum Zitat Boufadel MC, Lu S, Molz FJ, Lavallee D (2000) Multifractal scaling of the intrinsic permeability. Water Resour Res 36:3211–3222CrossRef Boufadel MC, Lu S, Molz FJ, Lavallee D (2000) Multifractal scaling of the intrinsic permeability. Water Resour Res 36:3211–3222CrossRef
Zurück zum Zitat Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166 Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166
Zurück zum Zitat Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29:262–273CrossRef Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29:262–273CrossRef
Zurück zum Zitat Carman PC (1956) Flow of gases through porous media. Butterworths Scientific Publications, London Carman PC (1956) Flow of gases through porous media. Butterworths Scientific Publications, London
Zurück zum Zitat Chen Y, Zhang C, Shi M, Peterson GP (2009) Role of surface roughness characterized by fractal geometry on laminar flow in microchannels. Phys Rev E 80(2):026301CrossRef Chen Y, Zhang C, Shi M, Peterson GP (2009) Role of surface roughness characterized by fractal geometry on laminar flow in microchannels. Phys Rev E 80(2):026301CrossRef
Zurück zum Zitat Cihan A, Perfect E, Tyner JS (2007) Water retention models for scale-variant and scale-invariant drainage of mass prefractal porous media. Vadose Zone J. 6:786–792CrossRef Cihan A, Perfect E, Tyner JS (2007) Water retention models for scale-variant and scale-invariant drainage of mass prefractal porous media. Vadose Zone J. 6:786–792CrossRef
Zurück zum Zitat Cihan A, Sukop MC, Tyner JS, Perfect E, Huang H (2009) Analytical predictions and lattice Boltzmann simulations of intrinsic permeability for mass fractal porous media. Vadose Zone Journal 8(1):187–196CrossRef Cihan A, Sukop MC, Tyner JS, Perfect E, Huang H (2009) Analytical predictions and lattice Boltzmann simulations of intrinsic permeability for mass fractal porous media. Vadose Zone Journal 8(1):187–196CrossRef
Zurück zum Zitat Cousins TA (2016) Effect of rough fractal pore-solid interface on single-phase permeability in random fractal porous media. Master of Science in Engineering Thesis. The University of Texas at Austin Cousins TA (2016) Effect of rough fractal pore-solid interface on single-phase permeability in random fractal porous media. Master of Science in Engineering Thesis. The University of Texas at Austin
Zurück zum Zitat Cowan Kenneth Lee, 1987. The Fractal Dimension as a Petrophysical Parameter. MSc in Engineering Thesis, The University of Texas at Austin. Cowan Kenneth Lee, 1987. The Fractal Dimension as a Petrophysical Parameter. MSc in Engineering Thesis, The University of Texas at Austin.
Zurück zum Zitat Danielson RE, Sutherland PL (1986) Porosity. In: Klute A (ed) Methods of soil analysis: Part 1 – Physical and mineralogical methods. American Society of Agronomy, Madison, WI, pp 443–461 Danielson RE, Sutherland PL (1986) Porosity. In: Klute A (ed) Methods of soil analysis: Part 1 – Physical and mineralogical methods. American Society of Agronomy, Madison, WI, pp 443–461
Zurück zum Zitat Dattelbaum DM, Ionita A, Patterson BM, Branch BA, Kuettner L (2020) Shockwave dissipation by interface-dominated porous structures. AIP Adv 10(7):075016CrossRef Dattelbaum DM, Ionita A, Patterson BM, Branch BA, Kuettner L (2020) Shockwave dissipation by interface-dominated porous structures. AIP Adv 10(7):075016CrossRef
Zurück zum Zitat Delesse A (1847) Procédé mécanique pour déterminer la composition des roches. (Extrait). C.r. hebd. séanc. Acad. Sci., Paris 25:544 Delesse A (1847) Procédé mécanique pour déterminer la composition des roches. (Extrait). C.r. hebd. séanc. Acad. Sci., Paris 25:544
Zurück zum Zitat Doughty C, Karasaki K (2002) Flow and transport in hierarchically fractured rock. J Hydrol 263:1–22CrossRef Doughty C, Karasaki K (2002) Flow and transport in hierarchically fractured rock. J Hydrol 263:1–22CrossRef
Zurück zum Zitat Evertsz CJG, Mandelbrot BB (1992) Multifractal measures. In: Peitgen H-O, Jurgens H, Saupe D (eds) Chaos and fractals: new frontiers of science. Springer-Verlag, New York, pp 921–969 Evertsz CJG, Mandelbrot BB (1992) Multifractal measures. In: Peitgen H-O, Jurgens H, Saupe D (eds) Chaos and fractals: new frontiers of science. Springer-Verlag, New York, pp 921–969
Zurück zum Zitat Fallico C, Tarquis AM, De Bartolo S, Veltri M (2010) Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry. Eur J Soil Sci 61:425–436CrossRef Fallico C, Tarquis AM, De Bartolo S, Veltri M (2010) Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry. Eur J Soil Sci 61:425–436CrossRef
Zurück zum Zitat Freund JE (1971) Mathematical statistics. Prentice-Hall Inc., Englewood Cliffs, NJ Freund JE (1971) Mathematical statistics. Prentice-Hall Inc., Englewood Cliffs, NJ
Zurück zum Zitat Friesen I, Mikula RJ (1987) Fractal dimensions of coal particles. J Colloid Interface Sci 120(1):263–271CrossRef Friesen I, Mikula RJ (1987) Fractal dimensions of coal particles. J Colloid Interface Sci 120(1):263–271CrossRef
Zurück zum Zitat Garrison Jr JR, Pearn WC, von Rosenberg DW (1992) The fractal Menger sponge and Sierpinski carpet as models for reservoir rock/pore systems: I. Theory and image analysis of Sierpinski carpets. In Situ 16(4):351–406 Garrison Jr JR, Pearn WC, von Rosenberg DW (1992) The fractal Menger sponge and Sierpinski carpet as models for reservoir rock/pore systems: I. Theory and image analysis of Sierpinski carpets. In Situ 16(4):351–406
Zurück zum Zitat Garrison JR Jr, Pearn WC, Rosenberg DU (1993) The fractal Menger sponge and Sierpinski carpet as models for reservoir rock pore systems: II. Image analysis of natural fractal reservoir rocks. In Situ 17:1–53 Garrison JR Jr, Pearn WC, Rosenberg DU (1993) The fractal Menger sponge and Sierpinski carpet as models for reservoir rock pore systems: II. Image analysis of natural fractal reservoir rocks. In Situ 17:1–53
Zurück zum Zitat Garza-López RA, Naya L, Kozak JJ (2000) Tortuosity factor for permeant flow through a fractal solid. J Chem Phys 112(22):9956–9960CrossRef Garza-López RA, Naya L, Kozak JJ (2000) Tortuosity factor for permeant flow through a fractal solid. J Chem Phys 112(22):9956–9960CrossRef
Zurück zum Zitat Ghanbarian-Alavijeh B, Hunt AG (2012) Comments on “More general capillary pressure and relative permeability models from fractal geometry” by Kewen Li. J Contam Hydrol 140–141:21–23CrossRef Ghanbarian-Alavijeh B, Hunt AG (2012) Comments on “More general capillary pressure and relative permeability models from fractal geometry” by Kewen Li. J Contam Hydrol 140–141:21–23CrossRef
Zurück zum Zitat Ghanbarian-Alavijeh B, Hunt A (2012b) Unsaturated hydraulic conductivity in porous media: percolation theory. Geoderma 187–188:77–84CrossRef Ghanbarian-Alavijeh B, Hunt A (2012b) Unsaturated hydraulic conductivity in porous media: percolation theory. Geoderma 187–188:77–84CrossRef
Zurück zum Zitat Ghanbarian-Alavijeh B, Millán H, Huang G (2011) A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Can J Soil Sci 91(1):1–14CrossRef Ghanbarian-Alavijeh B, Millán H, Huang G (2011) A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Can J Soil Sci 91(1):1–14CrossRef
Zurück zum Zitat Ghanbarian B, Hunt AG, Ewing RP, Sahimi M (2013a) Tortuosity in porous media: a critical review. Soil Sci Soc Am J 77:1461–1477CrossRef Ghanbarian B, Hunt AG, Ewing RP, Sahimi M (2013a) Tortuosity in porous media: a critical review. Soil Sci Soc Am J 77:1461–1477CrossRef
Zurück zum Zitat Ghanbarian B, Hunt AG, Sahimi M, Ewing RP, Skinner TE (2013b) Percolation theory generates a physically based description of tortuosity in saturated and unsaturated porous media. Soil Sci Soc Am J 77:1920–1929CrossRef Ghanbarian B, Hunt AG, Sahimi M, Ewing RP, Skinner TE (2013b) Percolation theory generates a physically based description of tortuosity in saturated and unsaturated porous media. Soil Sci Soc Am J 77:1920–1929CrossRef
Zurück zum Zitat Gibson JR, Lin H, Bruns MA (2006) A comparison of fractal analytical methods on 2- and 3-dimensional computed tomographic scans of soil aggregates. Geoderma 134:335–348CrossRef Gibson JR, Lin H, Bruns MA (2006) A comparison of fractal analytical methods on 2- and 3-dimensional computed tomographic scans of soil aggregates. Geoderma 134:335–348CrossRef
Zurück zum Zitat Giménez D, Rawls WJ, Lauren JG (1999) Scaling properties of saturated hydraulic conductivity in soil. Geoderma 88:205–220CrossRef Giménez D, Rawls WJ, Lauren JG (1999) Scaling properties of saturated hydraulic conductivity in soil. Geoderma 88:205–220CrossRef
Zurück zum Zitat Gouyet J-F (1996) Physics and fractal structures. Springer, New York Gouyet J-F (1996) Physics and fractal structures. Springer, New York
Zurück zum Zitat Hentschel HGE, Procaccia I (1983) The infinite number of generalized dimensions of fractals and strange attractors. Physica 8:435–444 Hentschel HGE, Procaccia I (1983) The infinite number of generalized dimensions of fractals and strange attractors. Physica 8:435–444
Zurück zum Zitat Hu Y, Wang Q, Zhao J, Xie S, Jiang H (2020) A novel porous media permeability model based on fractal theory and ideal particle pore-space geometry assumption. Energies 13(3):510CrossRef Hu Y, Wang Q, Zhao J, Xie S, Jiang H (2020) A novel porous media permeability model based on fractal theory and ideal particle pore-space geometry assumption. Energies 13(3):510CrossRef
Zurück zum Zitat Jin Y, Zhu YB, Li X, Zheng JL, Dong JB (2015) Scaling invariant effects on the permeability of fractal porous media. Transp Porous Media 109(2):433–453CrossRef Jin Y, Zhu YB, Li X, Zheng JL, Dong JB (2015) Scaling invariant effects on the permeability of fractal porous media. Transp Porous Media 109(2):433–453CrossRef
Zurück zum Zitat Katz AJ, Thompson AH (1985) Fractal sandstone pores: implications for conductivity and pore formation. Phys Rev Lett 54(12):1325–1328CrossRef Katz AJ, Thompson AH (1985) Fractal sandstone pores: implications for conductivity and pore formation. Phys Rev Lett 54(12):1325–1328CrossRef
Zurück zum Zitat Kim JW, Sukop MC, Perfect E, Pachepsky YA, Choi H (2011) Geometric and hydrodynamic characteristics of three-dimensional saturated prefractal porous media determined with Lattice Boltzmann modeling. Transp Porous Media 90(3):831–846CrossRef Kim JW, Sukop MC, Perfect E, Pachepsky YA, Choi H (2011) Geometric and hydrodynamic characteristics of three-dimensional saturated prefractal porous media determined with Lattice Boltzmann modeling. Transp Porous Media 90(3):831–846CrossRef
Zurück zum Zitat Korvin G (1992) Fractal models in the earth sciences. Elsevier, Amsterdam Korvin G (1992) Fractal models in the earth sciences. Elsevier, Amsterdam
Zurück zum Zitat Korvin G (1993) The kurtosis of reflection coefficients in a fractal sequence of sedimentary layers. Fractals 1:263–268 Korvin G (1993) The kurtosis of reflection coefficients in a fractal sequence of sedimentary layers. Fractals 1:263–268
Zurück zum Zitat Korvin G (2016) Permeability from microscopy: review of a dream. Arab J Sci Eng 41(6):2045–2065CrossRef Korvin G (2016) Permeability from microscopy: review of a dream. Arab J Sci Eng 41(6):2045–2065CrossRef
Zurück zum Zitat Korvin G (2021) Allometric power laws. In: Daya Sagar B, Cheng Q, McKinley J, Agterberg F (eds) Encyclopedia of mathematical geosciences. Encyclopedia of Earth Sciences Series. Springer, Cham Korvin G (2021) Allometric power laws. In: Daya Sagar B, Cheng Q, McKinley J, Agterberg F (eds) Encyclopedia of mathematical geosciences. Encyclopedia of Earth Sciences Series. Springer, Cham
Zurück zum Zitat Kozeny J (1927) Über Kapillare Leitung des Wassers in Boden Stizungsber. Akad. Wiss. Wien 136:271–306 Kozeny J (1927) Über Kapillare Leitung des Wassers in Boden Stizungsber. Akad. Wiss. Wien 136:271–306
Zurück zum Zitat Krohn CE (1988a) Sandstone fractal and Euclidean pore volume distributions. J Geophys Res: Solid Earth 93(B4):3286–3296CrossRef Krohn CE (1988a) Sandstone fractal and Euclidean pore volume distributions. J Geophys Res: Solid Earth 93(B4):3286–3296CrossRef
Zurück zum Zitat Krohn CE (1988b) Fractal measurements of sandstones, shales, and carbonates. J Geophys Res: Solid Earth 93(B4):3297–3305CrossRef Krohn CE (1988b) Fractal measurements of sandstones, shales, and carbonates. J Geophys Res: Solid Earth 93(B4):3297–3305CrossRef
Zurück zum Zitat Li J, Yu B (2011) Tortuosity of flow paths through a Sierpinski carpet. Chin Phys Lett 28:34701CrossRef Li J, Yu B (2011) Tortuosity of flow paths through a Sierpinski carpet. Chin Phys Lett 28:34701CrossRef
Zurück zum Zitat Li ZL, Tauraso R (2006) Problem 11208. American Mathematical Monthly 113 Li ZL, Tauraso R (2006) Problem 11208. American Mathematical Monthly 113
Zurück zum Zitat Li LC, Lin M, Ji L, Jiang W, Ca G (2018) Rapid evaluation of the permeability of organic-rich shale using the 3D intermingled-fractal model. SPE J 23(6):2175–2187CrossRef Li LC, Lin M, Ji L, Jiang W, Ca G (2018) Rapid evaluation of the permeability of organic-rich shale using the 3D intermingled-fractal model. SPE J 23(6):2175–2187CrossRef
Zurück zum Zitat Liu HH, Molz FJ (1997) Multifractal analyses of hydraulic conductivity distributions. Water Resour Res 33:2483–2488CrossRef Liu HH, Molz FJ (1997) Multifractal analyses of hydraulic conductivity distributions. Water Resour Res 33:2483–2488CrossRef
Zurück zum Zitat Liu K, Ostadhassan M, Zou J, Gentzis T, Rezaee R, Bubach B, Carvajal-Ortiz H (2018) Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale. Fuel 219:296–311CrossRef Liu K, Ostadhassan M, Zou J, Gentzis T, Rezaee R, Bubach B, Carvajal-Ortiz H (2018) Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale. Fuel 219:296–311CrossRef
Zurück zum Zitat Mackeprang C, Myers K (2007) Problem 11208 from Volume 133 No. 3 p. 267 Menger Sponge Map-Coloring. American Mathematical Monthly Mackeprang C, Myers K (2007) Problem 11208 from Volume 133 No. 3 p. 267 Menger Sponge Map-Coloring. American Mathematical Monthly
Zurück zum Zitat Majumdar A, Tien CL (1990) Fractal characterization and simulation of rough surfaces. Wear 136(2):313–327CrossRef Majumdar A, Tien CL (1990) Fractal characterization and simulation of rough surfaces. Wear 136(2):313–327CrossRef
Zurück zum Zitat Mandelbrot BB (1974) Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62:331–358CrossRef Mandelbrot BB (1974) Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62:331–358CrossRef
Zurück zum Zitat Mandelbrot BB (1977) Fractals: form, chance, and dimensions. W. H. Freeman and Co., San Francisco, California Mandelbrot BB (1977) Fractals: form, chance, and dimensions. W. H. Freeman and Co., San Francisco, California
Zurück zum Zitat Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, New York Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, New York
Zurück zum Zitat Mandelbrot BB (1989) Multifractal measures, especially for the geophysicist. PAGEOPH 131:5–42CrossRef Mandelbrot BB (1989) Multifractal measures, especially for the geophysicist. PAGEOPH 131:5–42CrossRef
Zurück zum Zitat Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, Cambridge, UK Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, Cambridge, UK
Zurück zum Zitat Menger K (1932) Kurventheorie. Teubner, Leipzig Menger K (1932) Kurventheorie. Teubner, Leipzig
Zurück zum Zitat Miyazima S, Eugene Stanley H (1987) Intersection of two fractal objects: Useful method of estimating the fractal dimension. Phys Rev B Condens Matter 35(16):8898–8900 Miyazima S, Eugene Stanley H (1987) Intersection of two fractal objects: Useful method of estimating the fractal dimension. Phys Rev B Condens Matter 35(16):8898–8900
Zurück zum Zitat Mortensen NA, Okkels F, Bruus H (2005) Reexamination of Hagen-Poiseuille flow: shape dependence of the hydraulic resistance in microchannels. Phys Rev E 71:057301CrossRef Mortensen NA, Okkels F, Bruus H (2005) Reexamination of Hagen-Poiseuille flow: shape dependence of the hydraulic resistance in microchannels. Phys Rev E 71:057301CrossRef
Zurück zum Zitat Mostafa ME (2008) Finite cube elements method for calculating gravity anomaly and structural index of solid and fractal bodies with defined boundaries. Geophys J Int 172:887–902CrossRef Mostafa ME (2008) Finite cube elements method for calculating gravity anomaly and structural index of solid and fractal bodies with defined boundaries. Geophys J Int 172:887–902CrossRef
Zurück zum Zitat Mukhopadhyay S, Sahimi M (2000) Calculation of effective permeabilities of field-scale porous media. Chem Eng Sci 55:4495–4513CrossRef Mukhopadhyay S, Sahimi M (2000) Calculation of effective permeabilities of field-scale porous media. Chem Eng Sci 55:4495–4513CrossRef
Zurück zum Zitat OEIS®, 2022. A135918 - Genus of stage-n Menger sponge. The On-Line Encyclopedia of Integer Sequences OEIS®, 2022. A135918 - Genus of stage-n Menger sponge. The On-Line Encyclopedia of Integer Sequences
Zurück zum Zitat Oleschko K (1998–1999) Delesse principle and statistical fractal sets: Part 1. Dimensional equivalents. Soil & Tillage Research 49:255–266. Part 2. Unified fractal model for soil porosity. Ibid. 52:247–257 Oleschko K (1998–1999) Delesse principle and statistical fractal sets: Part 1. Dimensional equivalents. Soil & Tillage Research 49:255–266. Part 2. Unified fractal model for soil porosity. Ibid. 52:247–257
Zurück zum Zitat Patil GP (1962) Maximum likelihood estimation for generalized power series distributions and its application to the truncated binomial distribution. Biometrika 49:227–237CrossRef Patil GP (1962) Maximum likelihood estimation for generalized power series distributions and its application to the truncated binomial distribution. Biometrika 49:227–237CrossRef
Zurück zum Zitat Paz-Ferreiro J, da Luz L, Lado M, Vázquez EV (2013) Specific surface area and multifractal parameters of associated nitrogen adsorption and desorption isotherms in soils from Santa Catarina Brazil. Vadose Zone J 12:185–192CrossRef Paz-Ferreiro J, da Luz L, Lado M, Vázquez EV (2013) Specific surface area and multifractal parameters of associated nitrogen adsorption and desorption isotherms in soils from Santa Catarina Brazil. Vadose Zone J 12:185–192CrossRef
Zurück zum Zitat Perfect E (2005) Modeling the primary drainage curve of prefractal porous media. Vadose Zone J 4:959–966CrossRef Perfect E (2005) Modeling the primary drainage curve of prefractal porous media. Vadose Zone J 4:959–966CrossRef
Zurück zum Zitat Perfect E, Gentry W, Sukop MC, Lawson JE (2006) Multifractal Sierpinski carpets: Theory and application to upscaling effective saturated hydraulic conductivity. Geoderma 134:240–252CrossRef Perfect E, Gentry W, Sukop MC, Lawson JE (2006) Multifractal Sierpinski carpets: Theory and application to upscaling effective saturated hydraulic conductivity. Geoderma 134:240–252CrossRef
Zurück zum Zitat Perrier EMA, Bird NRA (2002) Modelling soil fragmentation: the pore solid fractal approach. Soil Tillage Res. 64:91–99CrossRef Perrier EMA, Bird NRA (2002) Modelling soil fragmentation: the pore solid fractal approach. Soil Tillage Res. 64:91–99CrossRef
Zurück zum Zitat Perrier E, Rieu M, Sposito G, Marsily G (1996) Models of the water retention curve for soils with a fractal pore size distribution. Water Resour Res 32:3025–3031CrossRef Perrier E, Rieu M, Sposito G, Marsily G (1996) Models of the water retention curve for soils with a fractal pore size distribution. Water Resour Res 32:3025–3031CrossRef
Zurück zum Zitat Perrier E, Bird N, Rieu M (1999) Generalizing the fractal model of soil structure: the PSF approach. Geoderma 88:137–164CrossRef Perrier E, Bird N, Rieu M (1999) Generalizing the fractal model of soil structure: the PSF approach. Geoderma 88:137–164CrossRef
Zurück zum Zitat Pfeifer P, Avnir D, Farin D (1984) Scaling behaviour of surface irregularity in the molecular domain: from adsorption studies to fractal catalysis. J Stat Phys 36:699–716CrossRef Pfeifer P, Avnir D, Farin D (1984) Scaling behaviour of surface irregularity in the molecular domain: from adsorption studies to fractal catalysis. J Stat Phys 36:699–716CrossRef
Zurück zum Zitat Pia G (2016) High porous Yttria-stabilized Zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceram Int 42(10):11674–11681CrossRef Pia G (2016) High porous Yttria-stabilized Zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceram Int 42(10):11674–11681CrossRef
Zurück zum Zitat Pia G, Casnedi L (2017) Heat transfer in high porous alumina: experimental data interpretation by different modelling approaches. Ceram Int 43(12):9184–9190CrossRef Pia G, Casnedi L (2017) Heat transfer in high porous alumina: experimental data interpretation by different modelling approaches. Ceram Int 43(12):9184–9190CrossRef
Zurück zum Zitat Pia G, Sanna U (2013a) Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials. Appl Therm Eng 61:186–192CrossRef Pia G, Sanna U (2013a) Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials. Appl Therm Eng 61:186–192CrossRef
Zurück zum Zitat Pia G, Sanna U (2013b) A geometrical fractal model for the porosity and thermal conductivity of insulating concrete. Constr Build Mater 44:551–556CrossRef Pia G, Sanna U (2013b) A geometrical fractal model for the porosity and thermal conductivity of insulating concrete. Constr Build Mater 44:551–556CrossRef
Zurück zum Zitat Pia G, Sanna U (2014a) An Intermingled Fractal Units Model and method to predict permeability in porous rock. Int J Eng Sci 75:31–39CrossRef Pia G, Sanna U (2014a) An Intermingled Fractal Units Model and method to predict permeability in porous rock. Int J Eng Sci 75:31–39CrossRef
Zurück zum Zitat Pia G, Sanna U (2014b) An Intermingled Fractal Units Model to evaluate pore size distribution influence on thermal conductivity values in porous materials. Appl Therm Eng 65(1/2):330–336CrossRef Pia G, Sanna U (2014b) An Intermingled Fractal Units Model to evaluate pore size distribution influence on thermal conductivity values in porous materials. Appl Therm Eng 65(1/2):330–336CrossRef
Zurück zum Zitat Pia G, Sassoni E, Franzoni E, Sanna U (2014) Predicting capillary absorption of porous stones by a procedure based on an intermingled fractal units model. Int J Eng Sci 82:196–204 Pia G, Sassoni E, Franzoni E, Sanna U (2014) Predicting capillary absorption of porous stones by a procedure based on an intermingled fractal units model. Int J Eng Sci 82:196–204
Zurück zum Zitat Pia G, Casnedi L, Ionta M et al (2015) On the elastic deformation properties of porous ceramic materials obtained by pore-forming agent method. Ceram Int 41(9):11097–11105CrossRef Pia G, Casnedi L, Ionta M et al (2015) On the elastic deformation properties of porous ceramic materials obtained by pore-forming agent method. Ceram Int 41(9):11097–11105CrossRef
Zurück zum Zitat Pia G, Casnedi L, Sanna U (2016a) Porosity and pore size distribution influence on thermal conductivity of Yttria-stabilized Zirconia: experimental findings and model predictions. Ceram Int 42(5):5802–5809CrossRef Pia G, Casnedi L, Sanna U (2016a) Porosity and pore size distribution influence on thermal conductivity of Yttria-stabilized Zirconia: experimental findings and model predictions. Ceram Int 42(5):5802–5809CrossRef
Zurück zum Zitat Pia G, Siligardi C, Casnedi L, Sanna U (2016b) Pore size distribution and porosity influence on sorptivity of ceramic tiles: from experimental data to fractal modelling. Ceram Int 42(8):9583–9590CrossRef Pia G, Siligardi C, Casnedi L, Sanna U (2016b) Pore size distribution and porosity influence on sorptivity of ceramic tiles: from experimental data to fractal modelling. Ceram Int 42(8):9583–9590CrossRef
Zurück zum Zitat Plotnick RE, Gardner RH, Hargrove WW, Prestegaard K, Perlmutter M (1996) Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys Rev E 53(5):5461–5468CrossRef Plotnick RE, Gardner RH, Hargrove WW, Prestegaard K, Perlmutter M (1996) Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys Rev E 53(5):5461–5468CrossRef
Zurück zum Zitat Power WL, Tullis TE, Weeks JD (1988) Roughness and wear during brittle faulting. J Geophys Res: Solid Earth 93(B12):15268–15278CrossRef Power WL, Tullis TE, Weeks JD (1988) Roughness and wear during brittle faulting. J Geophys Res: Solid Earth 93(B12):15268–15278CrossRef
Zurück zum Zitat Ren W, Zhou H, Zhong J, Xue D, Wang C, Liu Z (2022) A multi-scale fractal approach for coal permeability estimation via MIP and NMR methods. Energies 15(8):2807CrossRef Ren W, Zhou H, Zhong J, Xue D, Wang C, Liu Z (2022) A multi-scale fractal approach for coal permeability estimation via MIP and NMR methods. Energies 15(8):2807CrossRef
Zurück zum Zitat Rieu M, Sposito G (1991a) Fractal fragmentation, soil porosity and soil water properties: I Theory. Soil Sci Soc Am J 55:1231–1238CrossRef Rieu M, Sposito G (1991a) Fractal fragmentation, soil porosity and soil water properties: I Theory. Soil Sci Soc Am J 55:1231–1238CrossRef
Zurück zum Zitat Rieu M, Sposito G (1991b) Fractal fragmentation, soil porosity and soil water properties: II Applications. Soil Sci Soc Am J 55:1239–1244CrossRef Rieu M, Sposito G (1991b) Fractal fragmentation, soil porosity and soil water properties: II Applications. Soil Sci Soc Am J 55:1239–1244CrossRef
Zurück zum Zitat Rieu M, Sposito G (1991c) Relation pression capillaire-teneur en eau dans les milieux poreux fragmentés et identification du caractère fractal de la structure des sols. Metals Technology 1:462–467 Rieu M, Sposito G (1991c) Relation pression capillaire-teneur en eau dans les milieux poreux fragmentés et identification du caractère fractal de la structure des sols. Metals Technology 1:462–467
Zurück zum Zitat Roy A, Perfect E, Dunne WM, Odling N, Kim J-W (2010) Lacunarity analysis of fracture networks: evidence for scale-dependent clustering. J Struct Geol 32(10):1444–1449CrossRef Roy A, Perfect E, Dunne WM, Odling N, Kim J-W (2010) Lacunarity analysis of fracture networks: evidence for scale-dependent clustering. J Struct Geol 32(10):1444–1449CrossRef
Zurück zum Zitat Saucier A (1992a) Effective permeability of multifractal porous media. Physica A 183:381–397CrossRef Saucier A (1992a) Effective permeability of multifractal porous media. Physica A 183:381–397CrossRef
Zurück zum Zitat Saucier A (1992b) Scaling of the effective permeability in multifractal porous media. Physica, A 191:289–294CrossRef Saucier A (1992b) Scaling of the effective permeability in multifractal porous media. Physica, A 191:289–294CrossRef
Zurück zum Zitat Saucier A (1996) Scaling properties of disordered multifractals. Physica A 226:34–63CrossRef Saucier A (1996) Scaling properties of disordered multifractals. Physica A 226:34–63CrossRef
Zurück zum Zitat Schönhöfer P (2014) Fractal Geometries: Scaling of Intrinsic Volumes. Masterarbeit aus der Physik, Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg Schönhöfer P (2014) Fractal Geometries: Scaling of Intrinsic Volumes. Masterarbeit aus der Physik, Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg
Zurück zum Zitat Schröder-Turk GE, Mickel W, Kapfer SC, Schaller FM, Breidenbach B, Hug D, Mecke K (2013) Minkowski tensors of anisotropic spatial structure. New J Phys 15(8):083028CrossRef Schröder-Turk GE, Mickel W, Kapfer SC, Schaller FM, Breidenbach B, Hug D, Mecke K (2013) Minkowski tensors of anisotropic spatial structure. New J Phys 15(8):083028CrossRef
Zurück zum Zitat Sergeyev and D., , 2009 Sergeyev DY (2009) Valuating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge. Chaos Soliton. Fract 2:3042–3046 Sergeyev and D., , 2009 Sergeyev DY (2009) Valuating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge. Chaos Soliton. Fract 2:3042–3046
Zurück zum Zitat Sukop MC, Perfect E, Bird NRA (2001) Water retention of prefractal porous media generated with the homogeneous and heterogeneous algorithms. Water Resour Res 37:2631–2636CrossRef Sukop MC, Perfect E, Bird NRA (2001) Water retention of prefractal porous media generated with the homogeneous and heterogeneous algorithms. Water Resour Res 37:2631–2636CrossRef
Zurück zum Zitat Tee GJ (2015) Tunnel numbers for fractal polyhedra, 1–3. Appendix A in the online version of H. Molina-Abral, P. Real, A. Nakamura and R. Klette, Connectivity calculus of fractal polyhedrons, Pattern Recognition 48 No. 4 (April 2015):1146–1156 Tee GJ (2015) Tunnel numbers for fractal polyhedra, 1–3. Appendix A in the online version of H. Molina-Abral, P. Real, A. Nakamura and R. Klette, Connectivity calculus of fractal polyhedrons, Pattern Recognition 48 No. 4 (April 2015):1146–1156
Zurück zum Zitat Tennekoon L, Boufadel MC, Lavalle D, Weaver J (2003) Multifractal anisotropic scaling of hydraulic conductivity. Water Resour Res 39(7):1193CrossRef Tennekoon L, Boufadel MC, Lavalle D, Weaver J (2003) Multifractal anisotropic scaling of hydraulic conductivity. Water Resour Res 39(7):1193CrossRef
Zurück zum Zitat Toledo PG, Novy RA, Davis HT, Scriven LE (1990) Hydraulic conductivity of porous media at low water content. Soil Sci Soc Am J 54:673–679CrossRef Toledo PG, Novy RA, Davis HT, Scriven LE (1990) Hydraulic conductivity of porous media at low water content. Soil Sci Soc Am J 54:673–679CrossRef
Zurück zum Zitat Turcotte DL (1993) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge UK Turcotte DL (1993) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge UK
Zurück zum Zitat Tyler SW, Wheatcraft SW (1990) Fractal processes in soil water retention. Water Resour Res 26:1047–1054CrossRef Tyler SW, Wheatcraft SW (1990) Fractal processes in soil water retention. Water Resour Res 26:1047–1054CrossRef
Zurück zum Zitat Valdés-Parada FJ, Porter ML, Wood BD (2011) The role of tortuosity in upscaling. Transp Porous Med 88:1–30CrossRef Valdés-Parada FJ, Porter ML, Wood BD (2011) The role of tortuosity in upscaling. Transp Porous Med 88:1–30CrossRef
Zurück zum Zitat Veneziano D, Essiam AK (2003) Flow through porous media with multifractal hydraulic conductivity. Water Resour Res 39(6):1166CrossRef Veneziano D, Essiam AK (2003) Flow through porous media with multifractal hydraulic conductivity. Water Resour Res 39(6):1166CrossRef
Zurück zum Zitat Veneziano D, Essiam AK (2004) Nonlinear spectral analysis of flow through multifractal porous media. Chaos, Solitons FrActals 19:293–307CrossRef Veneziano D, Essiam AK (2004) Nonlinear spectral analysis of flow through multifractal porous media. Chaos, Solitons FrActals 19:293–307CrossRef
Zurück zum Zitat Vita MC, De Bartolo S, Fallico C, Veltri M (2012) Usage of infinitesimals in the Menger’s Sponge model of porosity. Appl Math Comput 218(16):8187–8195 Vita MC, De Bartolo S, Fallico C, Veltri M (2012) Usage of infinitesimals in the Menger’s Sponge model of porosity. Appl Math Comput 218(16):8187–8195
Zurück zum Zitat Wang BY, Jin Y, Chen Q, Zheng JL, Zhu YB, Zhang XB (2014) Derivation of permeability–pore relationship for fractal porous reservoirs using series-parallel flow resistance model and lattice Boltzmann method. Fractals 22:1440005CrossRef Wang BY, Jin Y, Chen Q, Zheng JL, Zhu YB, Zhang XB (2014) Derivation of permeability–pore relationship for fractal porous reservoirs using series-parallel flow resistance model and lattice Boltzmann method. Fractals 22:1440005CrossRef
Zurück zum Zitat Wheatcraft SW, Tyler SW (1988) An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour Res 24:566–578CrossRef Wheatcraft SW, Tyler SW (1988) An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour Res 24:566–578CrossRef
Zurück zum Zitat Wheatcraft SW, Sharp GA, Tyler SW (1991) Fluid flow and solute transport in fractal heterogeneous porous media. In: Bear J, Corapcioglu MY (eds) Transport processes in porous media., Kluwer Academic, Dordrecht, The Netherlands, pp 695–722 Wheatcraft SW, Sharp GA, Tyler SW (1991) Fluid flow and solute transport in fractal heterogeneous porous media. In: Bear J, Corapcioglu MY (eds) Transport processes in porous media., Kluwer Academic, Dordrecht, The Netherlands, pp 695–722
Zurück zum Zitat Xia YX, Cai JC, Wei W, Hu XY, Wang X, Ge XM (2018) A new method for calculating fractal dimensions of porous media based on pore size distribution. Fractals 26:1850006CrossRef Xia YX, Cai JC, Wei W, Hu XY, Wang X, Ge XM (2018) A new method for calculating fractal dimensions of porous media based on pore size distribution. Fractals 26:1850006CrossRef
Zurück zum Zitat Li and Jia-lin, 2009 Xing-Shang L, Xu J-l (2009) A model of void distribution in collapsed zone based on fractal theory. Procedia Earth Planet Sci 1:203–210 Li and Jia-lin, 2009 Xing-Shang L, Xu J-l (2009) A model of void distribution in collapsed zone based on fractal theory. Procedia Earth Planet Sci 1:203–210
Zurück zum Zitat Yu BM, Li JH (2001) Some fractal characters of porous media. Fractals 9:365–372CrossRef Yu BM, Li JH (2001) Some fractal characters of porous media. Fractals 9:365–372CrossRef
Zurück zum Zitat Zhao et al., 2017 Zhao Y, Zhu G, Dong Y, Danesh NN, Chen Z, Zhang T (2017) Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores. Fuel 210:217–226 Zhao et al., 2017 Zhao Y, Zhu G, Dong Y, Danesh NN, Chen Z, Zhang T (2017) Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores. Fuel 210:217–226
Zurück zum Zitat Zhou Y, Wu S, Li Z, Zhu R, Xie S, Zhai X, Lei L (2021) Investigation of microscopic pore structure and permeability prediction in sand-conglomerate reservoirs. J Earth Sci 32(4):818–827 Zhou Y, Wu S, Li Z, Zhu R, Xie S, Zhai X, Lei L (2021) Investigation of microscopic pore structure and permeability prediction in sand-conglomerate reservoirs. J Earth Sci 32(4):818–827
Metadaten
Titel
Menger Sponge Models
verfasst von
Gabor Korvin
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-46700-4_5