Skip to main content

2024 | OriginalPaper | Buchkapitel

4. Random Network Models

verfasst von : Gabor Korvin

Erschienen in: Statistical Rock Physics

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Chapter Highlights

The common way to compute hydraulic and electric flow in porous media is to substitute the pore structure by a network consisting of nodes (for pores) and bonds (for the interconnecting throats). Different ways of constructing such models, and computation of their hydraulic and electric conductivity, are reviewed in Sect. 4.1. Section 4.2 introduces more than a dozen measures used to characterize the randomness and connectedness of such models. Section 4.3 treats three recently discovered phenomena arising in very large-scale networks: the emergence of connectivity and appearance of a giant component in evolving random networks; the scale-free distribution of the nodes’ coordination numbers; and the networks’ “small-world” property (Barabási 2018).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Acharya RC, Sjoerd E, Anton L (2004) Porosity-permeability properties generated with a new 2-parameter 3D hydraulic pore-network model for consolidated and unconsolidated porous media. Adv Water Resour 27:707–723CrossRef Acharya RC, Sjoerd E, Anton L (2004) Porosity-permeability properties generated with a new 2-parameter 3D hydraulic pore-network model for consolidated and unconsolidated porous media. Adv Water Resour 27:707–723CrossRef
Zurück zum Zitat Acharya R, Van der Zee S, Leijnse A (2005) Transport modeling of nonlinearly adsorbing solutes in physically heterogeneous pore networks. Water Resour Res 41(2) Acharya R, Van der Zee S, Leijnse A (2005) Transport modeling of nonlinearly adsorbing solutes in physically heterogeneous pore networks. Water Resour Res 41(2)
Zurück zum Zitat Adler PM, Jacquin CG, Thovert JF (1992) The formation factor of reconstructed porous media. Water Resour Res 28(6):1571–1576CrossRef Adler PM, Jacquin CG, Thovert JF (1992) The formation factor of reconstructed porous media. Water Resour Res 28(6):1571–1576CrossRef
Zurück zum Zitat Aghaei A, Piri M (2015) Direct pore-to-core up-scaling of displacement processes: Dynamic pore network modeling and experimentation. J Hydrol 522:488–509CrossRef Aghaei A, Piri M (2015) Direct pore-to-core up-scaling of displacement processes: Dynamic pore network modeling and experimentation. J Hydrol 522:488–509CrossRef
Zurück zum Zitat Akbar N, Mavko G, Nur A, Dvorkin J (1994) Seismic signatures of reservoir properties and pore fluid distribution. Geophysics 59(8):1222–1236CrossRef Akbar N, Mavko G, Nur A, Dvorkin J (1994) Seismic signatures of reservoir properties and pore fluid distribution. Geophysics 59(8):1222–1236CrossRef
Zurück zum Zitat Albert R, Jeong H, Barabasi A (2000) Error and attack tolerance of complex networks. Nature 406:378–382CrossRef Albert R, Jeong H, Barabasi A (2000) Error and attack tolerance of complex networks. Nature 406:378–382CrossRef
Zurück zum Zitat Al-Futaisi A, Patzek TW (2003) Extension of Hoshen-Kopelman algorithm to non-lattice environments. Physica A 321:665–678CrossRef Al-Futaisi A, Patzek TW (2003) Extension of Hoshen-Kopelman algorithm to non-lattice environments. Physica A 321:665–678CrossRef
Zurück zum Zitat Al-Futaisi A, Patzek T (2003b) Impact of wettability alteration on two-phase flow characteristics of sandstones: a quasi-static description. Water Resour Res 39:1042 Al-Futaisi A, Patzek T (2003b) Impact of wettability alteration on two-phase flow characteristics of sandstones: a quasi-static description. Water Resour Res 39:1042
Zurück zum Zitat Al-Gharbi MS, Blunt MJ (2005) Dynamic network modeling of two-phase drainage in porous media. Phys Rev E 71:016308–016308CrossRef Al-Gharbi MS, Blunt MJ (2005) Dynamic network modeling of two-phase drainage in porous media. Phys Rev E 71:016308–016308CrossRef
Zurück zum Zitat Al-Kharusi AS, Blunt MJ (2007) Network extraction from sandstone and carbonate pore space images. J Petrol Sci Eng 56:219–231CrossRef Al-Kharusi AS, Blunt MJ (2007) Network extraction from sandstone and carbonate pore space images. J Petrol Sci Eng 56:219–231CrossRef
Zurück zum Zitat Al-Kharusi AS, Blunt MJ (2008) Multiphase flow predictions from carbonate pore space images using extracted network models. Water Resour Res 44:W06S01 Al-Kharusi AS, Blunt MJ (2008) Multiphase flow predictions from carbonate pore space images using extracted network models. Water Resour Res 44:W06S01
Zurück zum Zitat Al-Raoush RI, Willson CS (2005) Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems. J Hydrol 300:44–64CrossRef Al-Raoush RI, Willson CS (2005) Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems. J Hydrol 300:44–64CrossRef
Zurück zum Zitat Al-Raoush R, Thompson K, Willson CS (2003) Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Amer. J. 67:1687–1700CrossRef Al-Raoush R, Thompson K, Willson CS (2003) Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Amer. J. 67:1687–1700CrossRef
Zurück zum Zitat Arévalo R, Pugnaloni LA, Maza D, Zuriguel I (2013) Tapped granular packings described as complex networks. Phil Mag 93(31–33):4078–4089CrossRef Arévalo R, Pugnaloni LA, Maza D, Zuriguel I (2013) Tapped granular packings described as complex networks. Phil Mag 93(31–33):4078–4089CrossRef
Zurück zum Zitat Arns J-Y, Robins V, Sheppard AP, Sok RM, Pinczewski WV, Knackstedt MA (2004) Effect of network topology on relative permeability. Transp Porous Media 55:21–46 Arns J-Y, Robins V, Sheppard AP, Sok RM, Pinczewski WV, Knackstedt MA (2004) Effect of network topology on relative permeability. Transp Porous Media 55:21–46
Zurück zum Zitat Bakke S, Øren P-E(1997) 3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks. SPE J 2:136–149 Bakke S, Øren P-E(1997) 3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks. SPE J 2:136–149
Zurück zum Zitat Baldwin CA, Sederman AJ, Mantle MD, Alexander P, Gladden LF (1996) Determination and characterization of the structure of a pore space from 3D volume images. J Colloid Interface Sci 181(1):79–92CrossRef Baldwin CA, Sederman AJ, Mantle MD, Alexander P, Gladden LF (1996) Determination and characterization of the structure of a pore space from 3D volume images. J Colloid Interface Sci 181(1):79–92CrossRef
Zurück zum Zitat Barabási A-L (2018) Network science. Cambridge University Press, Cambridge Barabási A-L (2018) Network science. Cambridge University Press, Cambridge
Zurück zum Zitat Barabasi A-L, Albert R (1999) Emergence of Scaling in Random Networks. Science 286:509–512CrossRef Barabasi A-L, Albert R (1999) Emergence of Scaling in Random Networks. Science 286:509–512CrossRef
Zurück zum Zitat Békri S, Vizika O (2006) Pore network modeling of rock transport properties: application to a carbonate. SCA 22:2006 Békri S, Vizika O (2006) Pore network modeling of rock transport properties: application to a carbonate. SCA 22:2006
Zurück zum Zitat Bernabé Y, Li M, Maineult A (2010) Permeability and pore connectivity: a new model based on network simulations. J Geophys Res 115:B10203 Bernabé Y, Li M, Maineult A (2010) Permeability and pore connectivity: a new model based on network simulations. J Geophys Res 115:B10203
Zurück zum Zitat Bernabé Y, Zamora M, Li M, Maineult A, Tang Y (2011) Pore connectivity, permeability, and electrical formation factor: a new model and comparison to experimental data. J Geophys Res 116:B11204 Bernabé Y, Zamora M, Li M, Maineult A, Tang Y (2011) Pore connectivity, permeability, and electrical formation factor: a new model and comparison to experimental data. J Geophys Res 116:B11204
Zurück zum Zitat Bjorkum, Per Arne (1996) How important is pressure in causing dissolution of quartz in sandstones? J Sediment Res 66(1):147–154 Bjorkum, Per Arne (1996) How important is pressure in causing dissolution of quartz in sandstones? J Sediment Res 66(1):147–154
Zurück zum Zitat Blunt MJ (2001) Flow in porous media—pore-network models and multiphase flow. Curr Opin Colloid Interface Sci 6:197–207CrossRef Blunt MJ (2001) Flow in porous media—pore-network models and multiphase flow. Curr Opin Colloid Interface Sci 6:197–207CrossRef
Zurück zum Zitat Blunt MJ, Jackson M, Piri M, Valvatne PH (2002) Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv Water Resour 25:1069–1089CrossRef Blunt MJ, Jackson M, Piri M, Valvatne PH (2002) Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv Water Resour 25:1069–1089CrossRef
Zurück zum Zitat Blunt MJ, Bijeljic B, Dong H, Gharbi O, Iglauer S, Mostaghimi P, Paluszny A, Pentland C (2013) Pore-scale imaging and modelling. Adv Water Resour 51:197–216CrossRef Blunt MJ, Bijeljic B, Dong H, Gharbi O, Iglauer S, Mostaghimi P, Paluszny A, Pentland C (2013) Pore-scale imaging and modelling. Adv Water Resour 51:197–216CrossRef
Zurück zum Zitat Bollobás B (2001) Random graphs, 2nd edn. New York Academic Press, Washington, DC, USACrossRef Bollobás B (2001) Random graphs, 2nd edn. New York Academic Press, Washington, DC, USACrossRef
Zurück zum Zitat Béla B, Riordan O (2004) The diameter of a scale-free random graph. Combinatorica 24(1):5–34CrossRef Béla B, Riordan O (2004) The diameter of a scale-free random graph. Combinatorica 24(1):5–34CrossRef
Zurück zum Zitat Bryant SP, King R, Mellor DW (1993) Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp Porous Media 11:53–70CrossRef Bryant SP, King R, Mellor DW (1993) Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp Porous Media 11:53–70CrossRef
Zurück zum Zitat Bryntesson LM (2002) Pore network modelling of the behaviour of a solute in chromatography media: transient and steady-state diffusion properties. J Chromatogr A 945(1):103–115CrossRef Bryntesson LM (2002) Pore network modelling of the behaviour of a solute in chromatography media: transient and steady-state diffusion properties. J Chromatogr A 945(1):103–115CrossRef
Zurück zum Zitat Bulau JR, Waff HS, Tyburczy JA (1979) Mechanical and thermodynamic constraints on fluid distribution in partial melts. J Geophys Res 84:6102–6108CrossRef Bulau JR, Waff HS, Tyburczy JA (1979) Mechanical and thermodynamic constraints on fluid distribution in partial melts. J Geophys Res 84:6102–6108CrossRef
Zurück zum Zitat Celia MA, Reeves PC, Ferrand LA (1995) Recent advances in pore scale models for multiphase flow in porous media. Rev Geophys 33:1049–1058CrossRef Celia MA, Reeves PC, Ferrand LA (1995) Recent advances in pore scale models for multiphase flow in porous media. Rev Geophys 33:1049–1058CrossRef
Zurück zum Zitat Steven C, Janssen H (2019) Towards stochastic generation of 3D pore network models of building materials. In: MATEC web of conferences, vol 282, p 0222 Steven C, Janssen H (2019) Towards stochastic generation of 3D pore network models of building materials. In: MATEC web of conferences, vol 282, p 0222
Zurück zum Zitat Coelho D, Thovert J-F, Adler P (1997) Geometrical and transport properties of random packings of spheres and aspherical particles. Phys Rev E 55:1959–1978CrossRef Coelho D, Thovert J-F, Adler P (1997) Geometrical and transport properties of random packings of spheres and aspherical particles. Phys Rev E 55:1959–1978CrossRef
Zurück zum Zitat De Josselin de Jong G (1958) Longitudinal and transverse diffusion in granular deposits. Trans Am Geophys Union 39:67–74 De Josselin de Jong G (1958) Longitudinal and transverse diffusion in granular deposits. Trans Am Geophys Union 39:67–74
Zurück zum Zitat Delerue J, Perrier E (2002) DXSoil, a library for 3D image analysis in soil science. Comput Geosci 28:1041–1050CrossRef Delerue J, Perrier E (2002) DXSoil, a library for 3D image analysis in soil science. Comput Geosci 28:1041–1050CrossRef
Zurück zum Zitat de Vries ET, Raoof A, van Genuchten MT (2017) Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport. Adv Water Resour 105:82–95CrossRef de Vries ET, Raoof A, van Genuchten MT (2017) Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport. Adv Water Resour 105:82–95CrossRef
Zurück zum Zitat Dias MM, Payatakes AC (1986) Network models for two-phase flow in porous media part 1. immiscible microdisplacement of non-wetting fluids. J Fluid Mech 164:305–336CrossRef Dias MM, Payatakes AC (1986) Network models for two-phase flow in porous media part 1. immiscible microdisplacement of non-wetting fluids. J Fluid Mech 164:305–336CrossRef
Zurück zum Zitat Dias MM, Payatakes AC (1986) Network models for two-phase flow in porous media part 2. motion of oil ganglia. J Fluid Mech 164:337–358CrossRef Dias MM, Payatakes AC (1986) Network models for two-phase flow in porous media part 2. motion of oil ganglia. J Fluid Mech 164:337–358CrossRef
Zurück zum Zitat Dillard LA, Blunt M (2000) Development of a pore network simulation model to study nonaqueous phase liquid dissolution. Water Resour Res 36(2):439–454CrossRef Dillard LA, Blunt M (2000) Development of a pore network simulation model to study nonaqueous phase liquid dissolution. Water Resour Res 36(2):439–454CrossRef
Zurück zum Zitat Dong H, Blunt M (2009) Pore-network extraction from micro-computerized-tomography images. Phys Rev E 80:036307CrossRef Dong H, Blunt M (2009) Pore-network extraction from micro-computerized-tomography images. Phys Rev E 80:036307CrossRef
Zurück zum Zitat Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Exact solution of the Barabasi-Albert model. Phys Rev Lett 85:4633CrossRef Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Exact solution of the Barabasi-Albert model. Phys Rev Lett 85:4633CrossRef
Zurück zum Zitat Dorogovtsev SN, Goltsev AV, Mendes JF (2008) Critical phenomena in complex networks. Rev Mod Phys 80(4):1275CrossRef Dorogovtsev SN, Goltsev AV, Mendes JF (2008) Critical phenomena in complex networks. Rev Mod Phys 80(4):1275CrossRef
Zurück zum Zitat Doyen PE (1987) Crack geometry of igneous rocks: a maximum entropy inversion of elastic and transport properties. J Geophys Res 92(B8):8169–8181CrossRef Doyen PE (1987) Crack geometry of igneous rocks: a maximum entropy inversion of elastic and transport properties. J Geophys Res 92(B8):8169–8181CrossRef
Zurück zum Zitat Dupin HJ, Kitanidis PK, McCarty PL (2001) Pore-scale modeling of biological clogging due to aggregate expansion: a material mechanics approach. Water Resour Res 37(12):2965–2979CrossRef Dupin HJ, Kitanidis PK, McCarty PL (2001) Pore-scale modeling of biological clogging due to aggregate expansion: a material mechanics approach. Water Resour Res 37(12):2965–2979CrossRef
Zurück zum Zitat Dupin HJ, Kitanidis PK, McCarty PL (2001) Simulations of two-dimensional modeling of biomass aggregate growth in network models. Water Resour Res 37(12):2981–2994CrossRef Dupin HJ, Kitanidis PK, McCarty PL (2001) Simulations of two-dimensional modeling of biomass aggregate growth in network models. Water Resour Res 37(12):2981–2994CrossRef
Zurück zum Zitat Edwards J, Berg P (2021) Pore-network models and effective medium theory: a convergence analysis. arXiv: 2109.07599 Edwards J, Berg P (2021) Pore-network models and effective medium theory: a convergence analysis. arXiv: 2109.07599
Zurück zum Zitat Erdős P, Rényi A (1959) On random graphs, I. Publ Math (debrecen) 6:290–297CrossRef Erdős P, Rényi A (1959) On random graphs, I. Publ Math (debrecen) 6:290–297CrossRef
Zurück zum Zitat Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61 Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61
Zurück zum Zitat Erickson JM, Rahman A, Spear AD (2020) A void descriptor function to uniquely characterize pore networks and predict ductile-metal failure properties. Int J Fract 225:47–67CrossRef Erickson JM, Rahman A, Spear AD (2020) A void descriptor function to uniquely characterize pore networks and predict ductile-metal failure properties. Int J Fract 225:47–67CrossRef
Zurück zum Zitat Fatt I (1956) The network model of porous media I. Capillary pressure characteristics. Trans AIME 207(7):144–159CrossRef Fatt I (1956) The network model of porous media I. Capillary pressure characteristics. Trans AIME 207(7):144–159CrossRef
Zurück zum Zitat Fatt I (1956) The network model of porous media II. Dynamic properties of a single size tube network. Trans AIME 207:160–163 Fatt I (1956) The network model of porous media II. Dynamic properties of a single size tube network. Trans AIME 207:160–163
Zurück zum Zitat Fatt I (1956) The network model of porous media III. Dynamic properties of networks with tube radius distribution. Trans AIME 207:164–181 Fatt I (1956) The network model of porous media III. Dynamic properties of networks with tube radius distribution. Trans AIME 207:164–181
Zurück zum Zitat Feng G, Guannan L, Dayu Y, Xin L, Xiaoqian Z (2020) Study on microstructure mechanism of sandstone based on complex network theory. J. Meas. Eng. 8:27–33CrossRef Feng G, Guannan L, Dayu Y, Xin L, Xiaoqian Z (2020) Study on microstructure mechanism of sandstone based on complex network theory. J. Meas. Eng. 8:27–33CrossRef
Zurück zum Zitat Fenwick DH, Blunt MJ (1998) Three-dimensional modeling of three-phase imbibition and drainage. Adv Water Resour 21(2):121–143CrossRef Fenwick DH, Blunt MJ (1998) Three-dimensional modeling of three-phase imbibition and drainage. Adv Water Resour 21(2):121–143CrossRef
Zurück zum Zitat Fernholz D, Ramachandran V (2007) The diameter of sparse random graphs. Random Struct Algorithms 31:482–516CrossRef Fernholz D, Ramachandran V (2007) The diameter of sparse random graphs. Random Struct Algorithms 31:482–516CrossRef
Zurück zum Zitat Fischer U, Celia M (1999) Prediction of relative and absolute permeabilites for gas and water retention curves using a pore-scale network model. Water Resour Res 35(4):1089–1100CrossRef Fischer U, Celia M (1999) Prediction of relative and absolute permeabilites for gas and water retention curves using a pore-scale network model. Water Resour Res 35(4):1089–1100CrossRef
Zurück zum Zitat Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRef Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRef
Zurück zum Zitat Gackiewicz B, Lamorski K, Sławiński C, Hsu S-Y, Chang L-C (2021) An intercomparison of the pore network to the Navier-Stokes modeling approach applied for saturated conductivity estimation from X-ray CT images. Sci Rep 11:5859CrossRef Gackiewicz B, Lamorski K, Sławiński C, Hsu S-Y, Chang L-C (2021) An intercomparison of the pore network to the Navier-Stokes modeling approach applied for saturated conductivity estimation from X-ray CT images. Sci Rep 11:5859CrossRef
Zurück zum Zitat Gao S, Meegoda JN, Hu L (2012) Two methods for pore network of porous media. Int J Numer Anal Meth Geomech 36(18):1954–1970CrossRef Gao S, Meegoda JN, Hu L (2012) Two methods for pore network of porous media. Int J Numer Anal Meth Geomech 36(18):1954–1970CrossRef
Zurück zum Zitat Gong L, Nie L, Xu Y (2020) Geometrical and topological analysis of pore space in sandstones based on X-ray computed tomography. Energies 13:3774 Gong L, Nie L, Xu Y (2020) Geometrical and topological analysis of pore space in sandstones based on X-ray computed tomography. Energies 13:3774
Zurück zum Zitat Guannan L, Dayu Y, Xin L, Xiaoqian Z, Feng G (2020) Study on microstructure mechanism of sandstone based on complex network theory. J Meas Eng 8(1):27–33 Guannan L, Dayu Y, Xin L, Xiaoqian Z, Feng G (2020) Study on microstructure mechanism of sandstone based on complex network theory. J Meas Eng 8(1):27–33
Zurück zum Zitat Harrigan T, Mann R (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767CrossRef Harrigan T, Mann R (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767CrossRef
Zurück zum Zitat Heath JE, Dewers TA, McPherson BJ, Petrusak R, Chidsey TC Jr, Rinehart AJ, Mozley PS (2011) Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior. Geosphere 7(2):429–454CrossRef Heath JE, Dewers TA, McPherson BJ, Petrusak R, Chidsey TC Jr, Rinehart AJ, Mozley PS (2011) Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior. Geosphere 7(2):429–454CrossRef
Zurück zum Zitat Heiba AA, Sahimi M, Scriven LE, Davis HT (1992) Percolation theory of two-phase relative permeability. SPE Reserv Eng 7:123–130CrossRef Heiba AA, Sahimi M, Scriven LE, Davis HT (1992) Percolation theory of two-phase relative permeability. SPE Reserv Eng 7:123–130CrossRef
Zurück zum Zitat Hilpert M, Miller CT (2001) Pore-morphology-based simulation of drainage in totally wetting porous media. Adv Water Resour 24:243–255CrossRef Hilpert M, Miller CT (2001) Pore-morphology-based simulation of drainage in totally wetting porous media. Adv Water Resour 24:243–255CrossRef
Zurück zum Zitat Hu MC, Shen CH, Hsu SY, Yu HL, Lamorski K, Sławiński C (2019) Development of Kriging-approximation simulated annealing optimization algorithm for parameters calibration of porous media flow model. Stoch Env Res Risk Assess 33(2):395–406CrossRef Hu MC, Shen CH, Hsu SY, Yu HL, Lamorski K, Sławiński C (2019) Development of Kriging-approximation simulated annealing optimization algorithm for parameters calibration of porous media flow model. Stoch Env Res Risk Assess 33(2):395–406CrossRef
Zurück zum Zitat Hughes RG, Blunt MJ (2000) Pore scale modeling of rate effect in imbibition. Transp Porous Media 40:295–322CrossRef Hughes RG, Blunt MJ (2000) Pore scale modeling of rate effect in imbibition. Transp Porous Media 40:295–322CrossRef
Zurück zum Zitat Ioannidis M, Chatzis I (2000) On the geometry and topology of 3D stochastic porous media. J Colloid Interface Sci 229(2):323–334CrossRef Ioannidis M, Chatzis I (2000) On the geometry and topology of 3D stochastic porous media. J Colloid Interface Sci 229(2):323–334CrossRef
Zurück zum Zitat Janson S (2009) Susceptibility of random graphs with given vertex degrees. J Comb 1:357–387 Janson S (2009) Susceptibility of random graphs with given vertex degrees. J Comb 1:357–387
Zurück zum Zitat Jensen JL, Lake LW, Corbett PWM, Goggin DJ (2000) Statistics for Petroleum Engineers and Geoscientists, 2nd edn. Elsevier, Amsterdam Jensen JL, Lake LW, Corbett PWM, Goggin DJ (2000) Statistics for Petroleum Engineers and Geoscientists, 2nd edn. Elsevier, Amsterdam
Zurück zum Zitat Jiang Z, van Dijke MIJ, Wu K, Couples GD, Sorbie KS, Ma J (2012) Stochastic pore network generation from 3D rock images. Transp Porous Med 94:571–593CrossRef Jiang Z, van Dijke MIJ, Wu K, Couples GD, Sorbie KS, Ma J (2012) Stochastic pore network generation from 3D rock images. Transp Porous Med 94:571–593CrossRef
Zurück zum Zitat Jiang Z, Van Dijke MIJ, Geiger S, Ma J, Couples GD, Li X (2017) Pore network extraction for fractured porous media. Adv Water Resour 107:280–289CrossRef Jiang Z, Van Dijke MIJ, Geiger S, Ma J, Couples GD, Li X (2017) Pore network extraction for fractured porous media. Adv Water Resour 107:280–289CrossRef
Zurück zum Zitat Jivkov AP, Olele JE (2012) Novel lattice models for porous media. MRS Online Proceedings Library (OPL):1475 Jivkov AP, Olele JE (2012) Novel lattice models for porous media. MRS Online Proceedings Library (OPL):1475
Zurück zum Zitat Jivkov AP, Xiong Q (2014) A network model for diffusion in media with partially resolvable pore space characteristics. Transp Porous Media 105(1):83–104CrossRef Jivkov AP, Xiong Q (2014) A network model for diffusion in media with partially resolvable pore space characteristics. Transp Porous Media 105(1):83–104CrossRef
Zurück zum Zitat Jivkov AP, Hollis C, Etiese F, McDonald SA, Withers PJ (2013) A novel architecture for pore network modelling with applications to permeability of porous media. J Hydrol 486:246–258CrossRef Jivkov AP, Hollis C, Etiese F, McDonald SA, Withers PJ (2013) A novel architecture for pore network modelling with applications to permeability of porous media. J Hydrol 486:246–258CrossRef
Zurück zum Zitat Joekar-Niasar V, Hassanizadeh SM (2011) Effect of fluids properties on non-equilibrium capillarity effects; dynamic pore-network modeling. Int J Multiph Flow 37:198–214CrossRef Joekar-Niasar V, Hassanizadeh SM (2011) Effect of fluids properties on non-equilibrium capillarity effects; dynamic pore-network modeling. Int J Multiph Flow 37:198–214CrossRef
Zurück zum Zitat Joekar-Niasar V, Hassanizadeh SM (2012) Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review. Crit Rev Environ Sci Technol 42(18):1895–1976CrossRef Joekar-Niasar V, Hassanizadeh SM (2012) Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review. Crit Rev Environ Sci Technol 42(18):1895–1976CrossRef
Zurück zum Zitat Joekar-Niasar V, Hassanizadeh SM, Pyrak-Nolte LJ, Berentsen C (2009) Simulating drainage and imbibition experiments in a high-porosity micromodel using an unstructured pore network model. Water Resour Res 45:W02430CrossRef Joekar-Niasar V, Hassanizadeh SM, Pyrak-Nolte LJ, Berentsen C (2009) Simulating drainage and imbibition experiments in a high-porosity micromodel using an unstructured pore network model. Water Resour Res 45:W02430CrossRef
Zurück zum Zitat Joekar-Niasar V, Hassanizadeh SM, Dahle HK (2010) Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modeling. J Fluid Mech 655:38–71CrossRef Joekar-Niasar V, Hassanizadeh SM, Dahle HK (2010) Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modeling. J Fluid Mech 655:38–71CrossRef
Zurück zum Zitat Joekar-Niasar V, Prodanović M, Wildenschild D, Hassanizadeh SM (2010) Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media. Water Resour Res 46:W06526CrossRef Joekar-Niasar V, Prodanović M, Wildenschild D, Hassanizadeh SM (2010) Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media. Water Resour Res 46:W06526CrossRef
Zurück zum Zitat Kang Q, Lichtner PC, Viswanathan HS, Abdel-Fattah AI (2010) Pore scale modeling of reactive transport involved in geologic CO2 sequestration. Transp Porous Media 82(1):197–213CrossRef Kang Q, Lichtner PC, Viswanathan HS, Abdel-Fattah AI (2010) Pore scale modeling of reactive transport involved in geologic CO2 sequestration. Transp Porous Media 82(1):197–213CrossRef
Zurück zum Zitat Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45(4):574–588CrossRef Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45(4):574–588CrossRef
Zurück zum Zitat Knutson CE, Werth CJ, Valocchi AJ (2001) Pore-scale modeling of dissolution from variably distributed nonaqueous phase liquid blobs. Water Resour Res 37(12):2951–2963CrossRef Knutson CE, Werth CJ, Valocchi AJ (2001) Pore-scale modeling of dissolution from variably distributed nonaqueous phase liquid blobs. Water Resour Res 37(12):2951–2963CrossRef
Zurück zum Zitat Köhne JM, Schlüter S, Vogel H-J (2011) Predicting solute transport in structured soil using pore network models. Vadose Zo J 10:1082CrossRef Köhne JM, Schlüter S, Vogel H-J (2011) Predicting solute transport in structured soil using pore network models. Vadose Zo J 10:1082CrossRef
Zurück zum Zitat Koplik J, Lasseter TJ (1985) Two-phase flow in random network models of porous media. Soc Petrol Eng J 25:89–110CrossRef Koplik J, Lasseter TJ (1985) Two-phase flow in random network models of porous media. Soc Petrol Eng J 25:89–110CrossRef
Zurück zum Zitat Korvin G (1992) A percolation model for the permeability of kaolinite-bearing sandstones. Geophys Trans 37(2–3):177–209 Korvin G (1992) A percolation model for the permeability of kaolinite-bearing sandstones. Geophys Trans 37(2–3):177–209
Zurück zum Zitat Korvin G (1992) Fractal models in the earth sciences. Elsevier, Amsterdam Korvin G (1992) Fractal models in the earth sciences. Elsevier, Amsterdam
Zurück zum Zitat Korvin G (2016) Permeability from microscopy: review of a dream. Arabian J Sci Eng 41(6):2045–2065CrossRef Korvin G (2016) Permeability from microscopy: review of a dream. Arabian J Sci Eng 41(6):2045–2065CrossRef
Zurück zum Zitat Korvin G, Oleschko K, Abdulraheem A (2014) A simple geometric model of sedimentary rock to connect transfer and acoustic properties. Arab J Geosci 7(3):1127–1138CrossRef Korvin G, Oleschko K, Abdulraheem A (2014) A simple geometric model of sedimentary rock to connect transfer and acoustic properties. Arab J Geosci 7(3):1127–1138CrossRef
Zurück zum Zitat Kramar M, Goullet A, Kondic L, Mischaikow K (2013) Persistence of force networks in compressed granular media. Phys Rev E 87:042207CrossRef Kramar M, Goullet A, Kondic L, Mischaikow K (2013) Persistence of force networks in compressed granular media. Phys Rev E 87:042207CrossRef
Zurück zum Zitat Kramer B, MacKinnon A (1993) Localization: theory and experiment. Rep Prog Phys 56:1469CrossRef Kramer B, MacKinnon A (1993) Localization: theory and experiment. Rep Prog Phys 56:1469CrossRef
Zurück zum Zitat Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629CrossRef Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629CrossRef
Zurück zum Zitat Laroche C, Vizika O (2005) Two-phase flow properties prediction from small-scale data using pore-network modeling. Transp Porous Media 61(1):77–91CrossRef Laroche C, Vizika O (2005) Two-phase flow properties prediction from small-scale data using pore-network modeling. Transp Porous Media 61(1):77–91CrossRef
Zurück zum Zitat Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(1987011–1987014):440–442 Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(1987011–1987014):440–442
Zurück zum Zitat Laubie H, Radjai F, Pellenq R, Ulm FJ (2017) Stress transmission and failure in disordered porous media. Phys Rev Lett 119:075501CrossRef Laubie H, Radjai F, Pellenq R, Ulm FJ (2017) Stress transmission and failure in disordered porous media. Phys Rev Lett 119:075501CrossRef
Zurück zum Zitat Laudone GM, Matthews GP, Gane PAC (2008) Modelling diffusion from simulated porous structures. Chem Eng Sci 63(7):1987–1996CrossRef Laudone GM, Matthews GP, Gane PAC (2008) Modelling diffusion from simulated porous structures. Chem Eng Sci 63(7):1987–1996CrossRef
Zurück zum Zitat Lerdahl TR, Øren PE, Bakke S (2000) A predictive network model for three-phase flow in porous media. SPE59311. In: Proceedings of the SPE/DOE symposium on improved oil recovery, Tulsa, OK (April 2nd–5th) Lerdahl TR, Øren PE, Bakke S (2000) A predictive network model for three-phase flow in porous media. SPE59311. In: Proceedings of the SPE/DOE symposium on improved oil recovery, Tulsa, OK (April 2nd–5th)
Zurück zum Zitat Levitz P, Tariel V, Stampanoni M, Gallucci E (2012) Topology of evolving pore networks. Eur Phys J Appl Phys 60:24202CrossRef Levitz P, Tariel V, Stampanoni M, Gallucci E (2012) Topology of evolving pore networks. Eur Phys J Appl Phys 60:24202CrossRef
Zurück zum Zitat Li Y, Wardlaw NC (1986) Mechanisms of nonwetting phase trapping during imbibition at slow rates. J Colloid Interface Sci 109:461–472 Li Y, Wardlaw NC (1986) Mechanisms of nonwetting phase trapping during imbibition at slow rates. J Colloid Interface Sci 109:461–472
Zurück zum Zitat Li Y, Wardlaw NC (1986) The influence of wettability and critical pore-throat size ratio on snap-off. J Colloid Interface Sci 109:473–486 Li Y, Wardlaw NC (1986) The influence of wettability and critical pore-throat size ratio on snap-off. J Colloid Interface Sci 109:473–486
Zurück zum Zitat Lin D, Fairhurst C (1991) The topological structure of fracture systems in rock, rock mechanics as a multidisciplinary science. In: Roegiers J-C (ed) Proceedings of 32nd US symposium on rock mechanics. Norman, Oklahoma, pp 1155–1163 Lin D, Fairhurst C (1991) The topological structure of fracture systems in rock, rock mechanics as a multidisciplinary science. In: Roegiers J-C (ed) Proceedings of 32nd US symposium on rock mechanics. Norman, Oklahoma, pp 1155–1163
Zurück zum Zitat Lindquist WB, Lee SM, Coker DA, Jones KW, Spanne P (1996) Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J Geophys Res 101(B4):8297–8310CrossRef Lindquist WB, Lee SM, Coker DA, Jones KW, Spanne P (1996) Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J Geophys Res 101(B4):8297–8310CrossRef
Zurück zum Zitat Mohamed MW, Arns JY, Sheppard A, Knackstedt MA, Val Pinczewski W (2007) Effect of network topology on two-phase imbibition relative permeability. Transp Porous Med 66:481–493CrossRef Mohamed MW, Arns JY, Sheppard A, Knackstedt MA, Val Pinczewski W (2007) Effect of network topology on two-phase imbibition relative permeability. Transp Porous Med 66:481–493CrossRef
Zurück zum Zitat Manik D, Rohden M, Ronellenfitsch H, Zhang X, Hallerberg S, Witthaut D, Timme M (2017) Network susceptibilities: theory and applications. Phys Rev E 95:012319 Manik D, Rohden M, Ronellenfitsch H, Zhang X, Hallerberg S, Witthaut D, Timme M (2017) Network susceptibilities: theory and applications. Phys Rev E 95:012319
Zurück zum Zitat Mason G, Morrow NR (1991) Capillary behaviour of a perfectly wetting liquid in irregular triangular tubes. J. of Colloid and Interface Science 141:262–274CrossRef Mason G, Morrow NR (1991) Capillary behaviour of a perfectly wetting liquid in irregular triangular tubes. J. of Colloid and Interface Science 141:262–274CrossRef
Zurück zum Zitat Mehmani Y, Sun T, Balhoff M, Eichhubl P, Bryant S (2012) Multiblock pore-scale modeling and upscaling of reactive transport: application to carbon sequestration. Transp Porous Media 95(2):305–326CrossRef Mehmani Y, Sun T, Balhoff M, Eichhubl P, Bryant S (2012) Multiblock pore-scale modeling and upscaling of reactive transport: application to carbon sequestration. Transp Porous Media 95(2):305–326CrossRef
Zurück zum Zitat Mehmani A, Mehmani Y, Prodanović M, Balhoff M (2015) A forward analysis on the applicability of tracer breakthrough profiles in revealing the pore structure of tight gas sandstone and carbonate rocks. Water Resour Res 51:4751–4767CrossRef Mehmani A, Mehmani Y, Prodanović M, Balhoff M (2015) A forward analysis on the applicability of tracer breakthrough profiles in revealing the pore structure of tight gas sandstone and carbonate rocks. Water Resour Res 51:4751–4767CrossRef
Zurück zum Zitat Meyer DW (2021) Random generation of irregular natural flow or pore networks. Adv Water Resour 152:103936CrossRef Meyer DW (2021) Random generation of irregular natural flow or pore networks. Adv Water Resour 152:103936CrossRef
Zurück zum Zitat Meyers J, Liapis A (1999) Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column. J Chromatogr A 852(1):3–23CrossRef Meyers J, Liapis A (1999) Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column. J Chromatogr A 852(1):3–23CrossRef
Zurück zum Zitat Meyers J, Nahar S, Ludlow D, Liapis AI (2001) Determination of the pore connectivity and pore size distribution and pore spatial distribution of porous chromatographic particles from nitrogen sorption measurements and pore network modelling theory. J Chromatogr A 907(1):57–71CrossRef Meyers J, Nahar S, Ludlow D, Liapis AI (2001) Determination of the pore connectivity and pore size distribution and pore spatial distribution of porous chromatographic particles from nitrogen sorption measurements and pore network modelling theory. J Chromatogr A 907(1):57–71CrossRef
Zurück zum Zitat Mo H, Bai M, Lin D, Roegiers J-C (1998) Study of flow and transport in fracture network using percolation theory. Appl Math Model 22:277–291 Mo H, Bai M, Lin D, Roegiers J-C (1998) Study of flow and transport in fracture network using percolation theory. Appl Math Model 22:277–291
Zurück zum Zitat Mogensen K, Stenby EH (1998) A dynamic two-phase pore-scale model for imbibition. Transp Porous Media 32:299–327CrossRef Mogensen K, Stenby EH (1998) A dynamic two-phase pore-scale model for imbibition. Transp Porous Media 32:299–327CrossRef
Zurück zum Zitat Nejad Ebrahimi A, Jamshidi S, Iglauer S, Boozarjomehry RB (2013) Genetic algorithm-based pore network extraction from microcomputed tomography images. Chem Eng Sci 92:157–166CrossRef Nejad Ebrahimi A, Jamshidi S, Iglauer S, Boozarjomehry RB (2013) Genetic algorithm-based pore network extraction from microcomputed tomography images. Chem Eng Sci 92:157–166CrossRef
Zurück zum Zitat Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256CrossRef Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256CrossRef
Zurück zum Zitat Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford, UKCrossRef Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford, UKCrossRef
Zurück zum Zitat Nowicki SC, Davis HT, Scriven LE (1992) Microscopic determination of transport parameters in drying porous media. Drying Technol 10(4):925–946CrossRef Nowicki SC, Davis HT, Scriven LE (1992) Microscopic determination of transport parameters in drying porous media. Drying Technol 10(4):925–946CrossRef
Zurück zum Zitat Okabe H, Blunt MJ (2004) Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys Rev E 70(6):066135CrossRef Okabe H, Blunt MJ (2004) Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys Rev E 70(6):066135CrossRef
Zurück zum Zitat Omar YM, Plapper P (2020) A survey of information entropy metrics for complex networks. Entropy 22(12):1417CrossRef Omar YM, Plapper P (2020) A survey of information entropy metrics for complex networks. Entropy 22(12):1417CrossRef
Zurück zum Zitat Øren P-E, Bakke S (2002) Process based reconstruction of sandstones and prediction of transport properties. Transp Porous Media 46(2–3):311–343CrossRef Øren P-E, Bakke S (2002) Process based reconstruction of sandstones and prediction of transport properties. Transp Porous Media 46(2–3):311–343CrossRef
Zurück zum Zitat Øren P, Bakke S (2003) Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J Pet Sci Eng 39:177–199CrossRef Øren P, Bakke S (2003) Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J Pet Sci Eng 39:177–199CrossRef
Zurück zum Zitat Øren PE, Bakke S, Nilsen LS, Henriquez A (1996). Prediction of relative permeability and capillary pressure from pore-scale modelling. In: Proceedings of the 5th European conference on the mathematics of oil recovery, Leoben, Austria Øren PE, Bakke S, Nilsen LS, Henriquez A (1996). Prediction of relative permeability and capillary pressure from pore-scale modelling. In: Proceedings of the 5th European conference on the mathematics of oil recovery, Leoben, Austria
Zurück zum Zitat Øren P, Bakke S, Artzen O (1997) Extending predictive capabilities to network models. SPE. 38880 Øren P, Bakke S, Artzen O (1997) Extending predictive capabilities to network models. SPE. 38880
Zurück zum Zitat Øren P-E, Bakke S, Arntzen OJ (1998) Extending predictive capabilities to network models. SPE J 3(04):324–336CrossRef Øren P-E, Bakke S, Arntzen OJ (1998) Extending predictive capabilities to network models. SPE J 3(04):324–336CrossRef
Zurück zum Zitat Papadopoulos L, Porter MA, Daniels KE, Bassett DS (2018) Network analysis of particles and grains. J Complex Netw 6:485–565 Papadopoulos L, Porter MA, Daniels KE, Bassett DS (2018) Network analysis of particles and grains. J Complex Netw 6:485–565
Zurück zum Zitat Peng N, Zhu X, Liu Y, Nie B, Cui Y, Geng Q, Yu C (2020) Complex network dynamics of the topological structure in a geochemical field from the Nanling area in South China. Sci Rep 10:19826 Peng N, Zhu X, Liu Y, Nie B, Cui Y, Geng Q, Yu C (2020) Complex network dynamics of the topological structure in a geochemical field from the Nanling area in South China. Sci Rep 10:19826
Zurück zum Zitat Pilotti M (2000) Reconstruction of clastic porous media. Transp Porous Media 41(3):359–364CrossRef Pilotti M (2000) Reconstruction of clastic porous media. Transp Porous Media 41(3):359–364CrossRef
Zurück zum Zitat Piri M, Blunt MJ (2005a) Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 71:026301 Piri M, Blunt MJ (2005a) Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 71:026301
Zurück zum Zitat Piri M, Blunt MJ (2005b) Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results. Phys Rev, E Stat Phys Plasmas Fluids Relat Interdiscip Topics 71:026331 Piri M, Blunt MJ (2005b) Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results. Phys Rev, E Stat Phys Plasmas Fluids Relat Interdiscip Topics 71:026331
Zurück zum Zitat Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge
Zurück zum Zitat Rabbel O, Mair K, Galland O, Grühser C, Meier T (2020) Numerical modeling of fracture network evolution in organic‐rich shale with rapid internal fluid generation. JGR Solid Earth 125(7):e2020JB019445 Rabbel O, Mair K, Galland O, Grühser C, Meier T (2020) Numerical modeling of fracture network evolution in organic‐rich shale with rapid internal fluid generation. JGR Solid Earth 125(7):e2020JB019445
Zurück zum Zitat Raoof A, Nick HM, Wolterbeek TKT, Spiers CJ (2012) Pore-scale modeling of reactive transport in wellbore cement under CO2 storage conditions. Int J Greenh Gas Control 11:S67–S77CrossRef Raoof A, Nick HM, Wolterbeek TKT, Spiers CJ (2012) Pore-scale modeling of reactive transport in wellbore cement under CO2 storage conditions. Int J Greenh Gas Control 11:S67–S77CrossRef
Zurück zum Zitat Raoof A, Nick H, Hassanizadeh S, Spiers C (2013) PoreFlow: a complex pore-network model for simulation of reactive transport in variably saturated porous media. Comput Geosci 61:160–174CrossRef Raoof A, Nick H, Hassanizadeh S, Spiers C (2013) PoreFlow: a complex pore-network model for simulation of reactive transport in variably saturated porous media. Comput Geosci 61:160–174CrossRef
Zurück zum Zitat Reeves PC, Celia MA (1996) A functional relationship between capillary pressure, saturation, and interfacial areas as revealed by a pore-scale network model. Water Resour Res 32(8):2345–2358CrossRef Reeves PC, Celia MA (1996) A functional relationship between capillary pressure, saturation, and interfacial areas as revealed by a pore-scale network model. Water Resour Res 32(8):2345–2358CrossRef
Zurück zum Zitat Rosenzweig R, Furman A, Shavit U (2013) A channel network model as a framework for characterizing variably saturated flow in biofilm-affected soils. Vadose Zone J 12(2):1–15CrossRef Rosenzweig R, Furman A, Shavit U (2013) A channel network model as a framework for characterizing variably saturated flow in biofilm-affected soils. Vadose Zone J 12(2):1–15CrossRef
Zurück zum Zitat Rostami A, Habibagahi G, Ajdari M, Nikooee E (2015) Pore network investigation on hysteresis phenomena and influence of stress state on the SWRC. Int J Geomech 15:04014072CrossRef Rostami A, Habibagahi G, Ajdari M, Nikooee E (2015) Pore network investigation on hysteresis phenomena and influence of stress state on the SWRC. Int J Geomech 15:04014072CrossRef
Zurück zum Zitat Roy R, Olver FWJ (2010) Lambert W function. In: Olver FWJ, Lozier DM, Boisvert RF, Clark CW (eds) NIST handbook of mathematical functions. Cambridge University Press, Cambridge, Cambridge, Sec. 4.13 Roy R, Olver FWJ (2010) Lambert W function. In: Olver FWJ, Lozier DM, Boisvert RF, Clark CW (eds) NIST handbook of mathematical functions. Cambridge University Press, Cambridge, Cambridge, Sec. 4.13
Zurück zum Zitat Ryazanov AV, van Dijke MIJ, Sorbie KS (2009) Two-phase pore-network modelling: existence of oil layers during water invasion. Transp Porous Med 80:79–99 Ryazanov AV, van Dijke MIJ, Sorbie KS (2009) Two-phase pore-network modelling: existence of oil layers during water invasion. Transp Porous Med 80:79–99
Zurück zum Zitat Serra J (1982) Image analysis and mathematical morphology. Academic Press, New York Serra J (1982) Image analysis and mathematical morphology. Academic Press, New York
Zurück zum Zitat Shanti NO, Chan VW, Stock SR, de Carlo F, Thornton K, Faber KT (2014) X-ray micro-computed tomography and tortuosity calculations of percolating pore networks. Acta Mater 71:126–135CrossRef Shanti NO, Chan VW, Stock SR, de Carlo F, Thornton K, Faber KT (2014) X-ray micro-computed tomography and tortuosity calculations of percolating pore networks. Acta Mater 71:126–135CrossRef
Zurück zum Zitat Singh M, Mohanty KK (2003) Dynamic modeling of drainage through three-dimensional porous materials. Chem Eng Sci 58:1–18CrossRef Singh M, Mohanty KK (2003) Dynamic modeling of drainage through three-dimensional porous materials. Chem Eng Sci 58:1–18CrossRef
Zurück zum Zitat Philip S, Chaney MM, Emmerich AL, Miller KJ, Zhu W-l (2017) Network topology of olivine–basalt partial melts. Geophys J Int 210:284–290CrossRef Philip S, Chaney MM, Emmerich AL, Miller KJ, Zhu W-l (2017) Network topology of olivine–basalt partial melts. Geophys J Int 210:284–290CrossRef
Zurück zum Zitat Solomonoff R, Rapoport A (1951) Connectivity of random nets. Bull Math Biol 13:107–117 Solomonoff R, Rapoport A (1951) Connectivity of random nets. Bull Math Biol 13:107–117
Zurück zum Zitat Song R, Liu J, Cui M (2016) Single- and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core. Springerplus 5:817CrossRef Song R, Liu J, Cui M (2016) Single- and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core. Springerplus 5:817CrossRef
Zurück zum Zitat Stauffer D, Aharony A (1994) Introduction to percolation theory. CRC Press, Boca Raton, FL, USA Stauffer D, Aharony A (1994) Introduction to percolation theory. CRC Press, Boca Raton, FL, USA
Zurück zum Zitat Steven B, Blunt MJ (1992) Prediction of relative permeability in simple porous media. Phys Rev A 46(4):2004–2011CrossRef Steven B, Blunt MJ (1992) Prediction of relative permeability in simple porous media. Phys Rev A 46(4):2004–2011CrossRef
Zurück zum Zitat Claes S, Janssen H (2019) Towards stochastic generation of 3D pore network models of building materials. MATEC Web of Conferences 282(02):222 Claes S, Janssen H (2019) Towards stochastic generation of 3D pore network models of building materials. MATEC Web of Conferences 282(02):222
Zurück zum Zitat Steven LB, King PR, Mellor DW (1993) Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp Porous Media 11:53–70CrossRef Steven LB, King PR, Mellor DW (1993) Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp Porous Media 11:53–70CrossRef
Zurück zum Zitat Svirsky D, van Dijke MIJ, Sorbie KS (2004) Prediction of three phase relative permeabilities using a pore scale network model anchored to two phase data. SPE 89992 Svirsky D, van Dijke MIJ, Sorbie KS (2004) Prediction of three phase relative permeabilities using a pore scale network model anchored to two phase data. SPE 89992
Zurück zum Zitat Thauvin F, Mohanty KK (1998) Network modeling of non-Darcy flow through porous media. Transp Porous Media 31:19–37CrossRef Thauvin F, Mohanty KK (1998) Network modeling of non-Darcy flow through porous media. Transp Porous Media 31:19–37CrossRef
Zurück zum Zitat Thompson KE, Fogler HS (1997) Modeling flow in disordered packed beds from pore-scale fluid mechanics. AIChE J 43:1377–1389CrossRef Thompson KE, Fogler HS (1997) Modeling flow in disordered packed beds from pore-scale fluid mechanics. AIChE J 43:1377–1389CrossRef
Zurück zum Zitat Thomson P-R, Aituar-Zhakupova A, Hier-Majumder S (2018) Image segmentation and analysis of pore network geometry in two natural sandstones. Front Earth Sci 6:Article 58 Thomson P-R, Aituar-Zhakupova A, Hier-Majumder S (2018) Image segmentation and analysis of pore network geometry in two natural sandstones. Front Earth Sci 6:Article 58
Zurück zum Zitat Thomson P-R, Jefferd M, Clark BL, Chiarella D, Mitchell TM, Hier-Majumder S (2020) Pore network analysis of Brae Formation sandstone, North Sea. Mar Pet Geol 122:104614 Thomson P-R, Jefferd M, Clark BL, Chiarella D, Mitchell TM, Hier-Majumder S (2020) Pore network analysis of Brae Formation sandstone, North Sea. Mar Pet Geol 122:104614
Zurück zum Zitat Valentini L, Perugini D, Poli G (2007) The ‘“small-world”’ topology of rock fracture networks. Physica A 377:323–328 Valentini L, Perugini D, Poli G (2007) The ‘“small-world”’ topology of rock fracture networks. Physica A 377:323–328
Zurück zum Zitat Valvatne PH, Blunt MJ (2004) Predictive pore-scale modelling of two-phase flow in mixed wet media. Water Resour Res 40:W07406CrossRef Valvatne PH, Blunt MJ (2004) Predictive pore-scale modelling of two-phase flow in mixed wet media. Water Resour Res 40:W07406CrossRef
Zurück zum Zitat van der Linden JH, Narsilio GA, Tordesillas A (2016) Machine learning framework for analysis of transport through complex networks in porous, granular media: a focus on permeability. Phys Rev E 94:022904CrossRef van der Linden JH, Narsilio GA, Tordesillas A (2016) Machine learning framework for analysis of transport through complex networks in porous, granular media: a focus on permeability. Phys Rev E 94:022904CrossRef
Zurück zum Zitat Van der Marck SC, Matsuura T, Glas J (1997) Viscous and capillary pressures during drainage: Network simulations and experiments. Phys Rev E 56:5675–5687CrossRef Van der Marck SC, Matsuura T, Glas J (1997) Viscous and capillary pressures during drainage: Network simulations and experiments. Phys Rev E 56:5675–5687CrossRef
Zurück zum Zitat Varloteaux C, Békri S, Adler PM (2013) Pore network modelling to determine the transport properties in presence of a reactive fluid: From pore to reservoir scale. Adv Water Resour 53:87–100CrossRef Varloteaux C, Békri S, Adler PM (2013) Pore network modelling to determine the transport properties in presence of a reactive fluid: From pore to reservoir scale. Adv Water Resour 53:87–100CrossRef
Zurück zum Zitat Vo K, Walker DM, Tordesillas A (2013) Transport pathways within percolating pore space networks of granular materials. AIP Conf Proc 1542:551–554CrossRef Vo K, Walker DM, Tordesillas A (2013) Transport pathways within percolating pore space networks of granular materials. AIP Conf Proc 1542:551–554CrossRef
Zurück zum Zitat Vogel HJ, Roth K (1997) A new approach for determining effective soil hydraulic functions. Eur J Soil Sci 49(4):547–556CrossRef Vogel HJ, Roth K (1997) A new approach for determining effective soil hydraulic functions. Eur J Soil Sci 49(4):547–556CrossRef
Zurück zum Zitat Vogel H-J, Roth K (2001) Quantitative morphology and network representation of soil pore structure. Adv Water Resour 24:233–242CrossRef Vogel H-J, Roth K (2001) Quantitative morphology and network representation of soil pore structure. Adv Water Resour 24:233–242CrossRef
Zurück zum Zitat Wang W, Tang M, Zhang HF, Gao H, Do Y, Liu ZH (2014) Epidemic spreading on complex networks with general degree and weight distributions. Phys Rev E 90:042803CrossRef Wang W, Tang M, Zhang HF, Gao H, Do Y, Liu ZH (2014) Epidemic spreading on complex networks with general degree and weight distributions. Phys Rev E 90:042803CrossRef
Zurück zum Zitat Wang YD, Chung T, Armstrong RT, McClure JE, Mostaghimi P (2019) Computations of permeability of large rock images by dual grid domain decomposition. Adv Water Resour 126:1–14CrossRef Wang YD, Chung T, Armstrong RT, McClure JE, Mostaghimi P (2019) Computations of permeability of large rock images by dual grid domain decomposition. Adv Water Resour 126:1–14CrossRef
Zurück zum Zitat Watts DJ (1999) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, Princeton, NJCrossRef Watts DJ (1999) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, Princeton, NJCrossRef
Zurück zum Zitat Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRef
Zurück zum Zitat Xiong Q, Jivkov AP, Yates JR (2014) Discrete modelling of contaminant diffusion in porous media with sorption. Microporous Mesoporous Mater 185:51–60CrossRef Xiong Q, Jivkov AP, Yates JR (2014) Discrete modelling of contaminant diffusion in porous media with sorption. Microporous Mesoporous Mater 185:51–60CrossRef
Zurück zum Zitat Xiong Q, Baychev TG, Jivkov AP (2016) Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J Contam Hydrol 192:101–117 Xiong Q, Baychev TG, Jivkov AP (2016) Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J Contam Hydrol 192:101–117
Zurück zum Zitat Yanuka M, Dullien FA, Elrick DE (1986) Percolation processes and porous media. I. Geometrical and topological model of porous media using a three-dimensional joint pore size distribution. J Colloid Interface Sci 1986(112):24–41 Yanuka M, Dullien FA, Elrick DE (1986) Percolation processes and porous media. I. Geometrical and topological model of porous media using a three-dimensional joint pore size distribution. J Colloid Interface Sci 1986(112):24–41
Zurück zum Zitat Ye D, Liu G, Gao F, Zhu X, Hu Y (2020) A study on the structure of rock engineering coatings based on complex network theory. Coatings 10(12):1152 Ye D, Liu G, Gao F, Zhu X, Hu Y (2020) A study on the structure of rock engineering coatings based on complex network theory. Coatings 10(12):1152
Zurück zum Zitat Yi Z, Lin M, Jiang W, Zhang Z, Li H, Gao J (2017) Pore network extraction from pore space images of various porous media systems. Water Resour Res 53:3424–3445CrossRef Yi Z, Lin M, Jiang W, Zhang Z, Li H, Gao J (2017) Pore network extraction from pore space images of various porous media systems. Water Resour Res 53:3424–3445CrossRef
Zurück zum Zitat Youssef S, Rosenberg E, Gland N, Kenter J, Skalinski M, Vizika O (2007) High resolution CT and pore-network models to assess petrophysical properties of homogeneous and heterogeneous carbonates. In: LPE/EAGE reservoir characterization and simulation conference (society of petroleum engineers) Youssef S, Rosenberg E, Gland N, Kenter J, Skalinski M, Vizika O (2007) High resolution CT and pore-network models to assess petrophysical properties of homogeneous and heterogeneous carbonates. In: LPE/EAGE reservoir characterization and simulation conference (society of petroleum engineers)
Zurück zum Zitat Zareei A, Pan D, Amir A (2021) Temporal evolution of flow in pore-networks: from homogenization to instability. arXiv: 2106.09745 Zareei A, Pan D, Amir A (2021) Temporal evolution of flow in pore-networks: from homogenization to instability. arXiv: 2106.09745
Zurück zum Zitat Zhou D, Dillard LA, Blunt MJ (2000) A physically based model of dissolution of nonaqueous phase liquids in the saturated zone. Transp Porous Media 39(2):227–255CrossRef Zhou D, Dillard LA, Blunt MJ (2000) A physically based model of dissolution of nonaqueous phase liquids in the saturated zone. Transp Porous Media 39(2):227–255CrossRef
Zurück zum Zitat Zhu W, Gaetani GA, Fusseis F, Montesi LGJ, De Carlo F (2011) Microtomography of partially molten rocks: three-dimensional melt distribution in mantle peridotite. Science 332:88–91CrossRef Zhu W, Gaetani GA, Fusseis F, Montesi LGJ, De Carlo F (2011) Microtomography of partially molten rocks: three-dimensional melt distribution in mantle peridotite. Science 332:88–91CrossRef
Zurück zum Zitat Zhu W, Khirevich S, Patzek TW (2021) Impact of fracture geometry and topology on the connectivity and flow properties of stochastic fracture networks. Water Resour Res 57:e2020WR028652 Zhu W, Khirevich S, Patzek TW (2021) Impact of fracture geometry and topology on the connectivity and flow properties of stochastic fracture networks. Water Resour Res 57:e2020WR028652
Metadaten
Titel
Random Network Models
verfasst von
Gabor Korvin
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-46700-4_4