Skip to main content
Erschienen in: Journal of Computational Electronics 1/2019

19.10.2018

Meshfree analysis of high-frequency field-effect transistors: distributed modeling approach

verfasst von: Babak Honarbakhsh

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time-domain analysis of high-frequency field-effect transistors is presented using the meshfree radial point interpolation method. The distributed modeling approach is followed in the linear and nonlinear regimes. The corresponding matrix Telegrapher’s equation and terminal conditions are discretized using the weighted average method. Conditionally and unconditionally stable schemes are studied. For linear and conditionally stable nonlinear analysis, the leap-frog and Crank–Nicolson methods are used. To provide unconditional stability in the nonlinear regime, a hybrid backward/forward scheme is exploited.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Divekar, D.: FET modeling for circuit simulation. Kluwer, Dordrecht (1988)CrossRef Divekar, D.: FET modeling for circuit simulation. Kluwer, Dordrecht (1988)CrossRef
2.
Zurück zum Zitat Abdipour, A., Pacaud, A.: Complete sliced model of microwave FETs and Comparison with lumped model and experimental results. IEEE Trans. Microw. Theory Tech. 44(1), 4–9 (1996)CrossRef Abdipour, A., Pacaud, A.: Complete sliced model of microwave FETs and Comparison with lumped model and experimental results. IEEE Trans. Microw. Theory Tech. 44(1), 4–9 (1996)CrossRef
3.
Zurück zum Zitat Afrooz, K., Abdipour, A., Tavakoli, A., Moradi, M.: Time domain analysis of active transmission line using FDTD techniques (application to microwave/mm-wave transistors. Prog. Electromag. Res. 77, 309–328 (2007)CrossRef Afrooz, K., Abdipour, A., Tavakoli, A., Moradi, M.: Time domain analysis of active transmission line using FDTD techniques (application to microwave/mm-wave transistors. Prog. Electromag. Res. 77, 309–328 (2007)CrossRef
4.
Zurück zum Zitat Afrooz, A., Abdipour, A., Tavakoli, A., Movahhedi, M.: Nonlinear and fully distributed field effect transistor modelling procedure using time-domain method. IET Microw. Antennas Propag. 2(8), 886–897 (2008)CrossRef Afrooz, A., Abdipour, A., Tavakoli, A., Movahhedi, M.: Nonlinear and fully distributed field effect transistor modelling procedure using time-domain method. IET Microw. Antennas Propag. 2(8), 886–897 (2008)CrossRef
5.
Zurück zum Zitat Alsunaidi, M.A., Imtiaz, S.M.S., Ghazaly, S.M.: Electromagnetic wave effects on microwave transistors using a full-wave time-domain model. IEEE Trans. Microw. Theory Tech. 44, 799–808 (1996)CrossRef Alsunaidi, M.A., Imtiaz, S.M.S., Ghazaly, S.M.: Electromagnetic wave effects on microwave transistors using a full-wave time-domain model. IEEE Trans. Microw. Theory Tech. 44, 799–808 (1996)CrossRef
6.
Zurück zum Zitat Heinrich, W.: Limits of FET modeling by lumped elements. Electron. Lett. 22, 630–632 (1986)CrossRef Heinrich, W.: Limits of FET modeling by lumped elements. Electron. Lett. 22, 630–632 (1986)CrossRef
7.
Zurück zum Zitat Pozar, D.: Microwave Engineering, 4th edn. Wiley, Hoboken (2012) Pozar, D.: Microwave Engineering, 4th edn. Wiley, Hoboken (2012)
8.
Zurück zum Zitat Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Norwood (2005)MATH Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Norwood (2005)MATH
9.
Zurück zum Zitat Asadi, S., Honarbakhsh, B.: Linear analysis of high-frequency field-effect transistors using the CN-FDTD method. IEEE Trans. Microw. Theory Tech. 65(6), 1946–1954 (2017)CrossRef Asadi, S., Honarbakhsh, B.: Linear analysis of high-frequency field-effect transistors using the CN-FDTD method. IEEE Trans. Microw. Theory Tech. 65(6), 1946–1954 (2017)CrossRef
10.
Zurück zum Zitat Liu, G.R.: Mesh Free Methods. CRC Press, Boca Raton (2003) Liu, G.R.: Mesh Free Methods. CRC Press, Boca Raton (2003)
11.
Zurück zum Zitat Paul, C.R.: Analysis of Multiconductor Transmission Lines. IEEE Press, Washington (2008) Paul, C.R.: Analysis of Multiconductor Transmission Lines. IEEE Press, Washington (2008)
12.
Zurück zum Zitat Sun, G., Trueman, C.W.: Unconditionally stable Crank–Nicolson scheme for solving two-dimensional Maxwell’s equations. Electron. Lett. 39(7), 595–597 (2003)CrossRef Sun, G., Trueman, C.W.: Unconditionally stable Crank–Nicolson scheme for solving two-dimensional Maxwell’s equations. Electron. Lett. 39(7), 595–597 (2003)CrossRef
13.
Zurück zum Zitat Guimarães, F.G., Saldanha, R.R., Mesquita, R.C., Lowther, D.A., Ramírez, J.A.: A meshless method for electromagnetic field computation based on the multiquadric technique. IEEE Trans. Magn. 43(4), 1281–1284 (2007)CrossRef Guimarães, F.G., Saldanha, R.R., Mesquita, R.C., Lowther, D.A., Ramírez, J.A.: A meshless method for electromagnetic field computation based on the multiquadric technique. IEEE Trans. Magn. 43(4), 1281–1284 (2007)CrossRef
14.
Zurück zum Zitat Zhang, Y., Shao, K.R., Guo, Y., Xie, D.X., Lavers, J.D.: An improved multiquadric collocation method for 3-dimensional electromagnetic problems. IEEE Trans. Magn. 43(4), 1509–1521 (2007)CrossRef Zhang, Y., Shao, K.R., Guo, Y., Xie, D.X., Lavers, J.D.: An improved multiquadric collocation method for 3-dimensional electromagnetic problems. IEEE Trans. Magn. 43(4), 1509–1521 (2007)CrossRef
15.
Zurück zum Zitat Lai, S.J., Wang, B.Z., Duan, Y.: Meshless radial basis function method for transient electromagnetic computations. IEEE Trans. Magn. 44(10), 2288–2295 (2008)CrossRef Lai, S.J., Wang, B.Z., Duan, Y.: Meshless radial basis function method for transient electromagnetic computations. IEEE Trans. Magn. 44(10), 2288–2295 (2008)CrossRef
16.
Zurück zum Zitat Francomano, E., Tortorici, A., Toscano, E., Ala, G., Viola, F.: On the use of a meshless solver for PDEs governing electromagnetic transients. Appl. Math. Comput. 209, 42–51 (2009)MathSciNetMATH Francomano, E., Tortorici, A., Toscano, E., Ala, G., Viola, F.: On the use of a meshless solver for PDEs governing electromagnetic transients. Appl. Math. Comput. 209, 42–51 (2009)MathSciNetMATH
17.
Zurück zum Zitat Kaufmann, T., Engström, C., Fumeaux, C., Vahldieck, R.: Eigenvalue analysis and longtime stability of resonant structures for the meshless radial point interpolation method in time domain. IEEE Trans. Microw. Theory Tech. 58(12), 3399–3408 (2010)CrossRef Kaufmann, T., Engström, C., Fumeaux, C., Vahldieck, R.: Eigenvalue analysis and longtime stability of resonant structures for the meshless radial point interpolation method in time domain. IEEE Trans. Microw. Theory Tech. 58(12), 3399–3408 (2010)CrossRef
18.
Zurück zum Zitat Yu, Y., Chen, Z.: Towards the development of an unconditionally stable time-domain meshless method. IEEE Trans. Microw. Theory Tech. 58(3), 578–586 (2010)CrossRef Yu, Y., Chen, Z.: Towards the development of an unconditionally stable time-domain meshless method. IEEE Trans. Microw. Theory Tech. 58(3), 578–586 (2010)CrossRef
19.
Zurück zum Zitat Chen, X., Chen, Z., Yu, Y., Su, D.: An unconditionally stable radial point interpolation meshless method with Laguerre polynomials. IEEE Trans. Antennas Propag. 59(10), 3756–3763 (2011)MathSciNetCrossRefMATH Chen, X., Chen, Z., Yu, Y., Su, D.: An unconditionally stable radial point interpolation meshless method with Laguerre polynomials. IEEE Trans. Antennas Propag. 59(10), 3756–3763 (2011)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Mirzavand, R., Abdipour, A., Moradi, G., Movahhedi, M.: Full-wave semiconductor devices simulation using meshless and finite-difference time-domain approaches. IET Microw. Antennas Propag. 5(6), 685–691 (2011)CrossRef Mirzavand, R., Abdipour, A., Moradi, G., Movahhedi, M.: Full-wave semiconductor devices simulation using meshless and finite-difference time-domain approaches. IET Microw. Antennas Propag. 5(6), 685–691 (2011)CrossRef
21.
Zurück zum Zitat Yang, S., Yu, Y., Chen, Z., Ponomarenko, S.: A time-domain collocation meshless method with local radial basis functions for electromagnetic transient analysis. IEEE Trans. Antennas Propag. 62(10), 5334–5338 (2014)CrossRefMATH Yang, S., Yu, Y., Chen, Z., Ponomarenko, S.: A time-domain collocation meshless method with local radial basis functions for electromagnetic transient analysis. IEEE Trans. Antennas Propag. 62(10), 5334–5338 (2014)CrossRefMATH
22.
Zurück zum Zitat Yang, S., Chen, Z., Yu, Y., Ponomarenko, S.: A divergence-free meshless method based on the vector basis function for transient electromagnetic analysis. IEEE Trans. Microw. Theory Tech. 62(7), 1409–1416 (2014)CrossRef Yang, S., Chen, Z., Yu, Y., Ponomarenko, S.: A divergence-free meshless method based on the vector basis function for transient electromagnetic analysis. IEEE Trans. Microw. Theory Tech. 62(7), 1409–1416 (2014)CrossRef
23.
Zurück zum Zitat Yu, Y., Chen, Z.: A 3-D radial point interpolation method for meshless time-domain modeling. IEEE Trans. Microw. Theory Tech. 57(8), 2015–2020 (2009)CrossRef Yu, Y., Chen, Z.: A 3-D radial point interpolation method for meshless time-domain modeling. IEEE Trans. Microw. Theory Tech. 57(8), 2015–2020 (2009)CrossRef
24.
Zurück zum Zitat Zhu, H., Gao, C., Chen, H., Chen, B., Wang, J., Cai, Z.: Study of periodic structures at oblique incidence by radial point interpolation meshless method. IEEE Antennas Wirel. Propag. Lett. 14, 982–985 (2015)CrossRef Zhu, H., Gao, C., Chen, H., Chen, B., Wang, J., Cai, Z.: Study of periodic structures at oblique incidence by radial point interpolation meshless method. IEEE Antennas Wirel. Propag. Lett. 14, 982–985 (2015)CrossRef
25.
Zurück zum Zitat Itoh, T., Ikuno, S.: Interpolating moving least-squares-based meshless time-domain method for stable simulation of electromagnetic wave propagation in complex-shaped domain. IEEE Trans. Magn. 52(3), 1–4 (2016)CrossRef Itoh, T., Ikuno, S.: Interpolating moving least-squares-based meshless time-domain method for stable simulation of electromagnetic wave propagation in complex-shaped domain. IEEE Trans. Magn. 52(3), 1–4 (2016)CrossRef
26.
Zurück zum Zitat Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The meshless method of radial basis functions for the numerical solution of time fractional telegraph equation. Int. J. Numer. Meth. Heat Fluid Flow 24(8), 1636–1659 (2014)MathSciNetCrossRefMATH Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The meshless method of radial basis functions for the numerical solution of time fractional telegraph equation. Int. J. Numer. Meth. Heat Fluid Flow 24(8), 1636–1659 (2014)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Yang, Y., Ma, M., Liu, B.: Numerical solution for a kind of nonlinear telegraph equations using radial basis functions. ICICA 2013 Part I CCIS 391, 140–149 (2013) Yang, Y., Ma, M., Liu, B.: Numerical solution for a kind of nonlinear telegraph equations using radial basis functions. ICICA 2013 Part I CCIS 391, 140–149 (2013)
28.
Zurück zum Zitat Dehghan, M., Salehi, R.: A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation. Math. Methods Appl. Sci. 35(10), 1220–1233 (2012)MathSciNetCrossRefMATH Dehghan, M., Salehi, R.: A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation. Math. Methods Appl. Sci. 35(10), 1220–1233 (2012)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Abbasbandy, S., Roohani Ghehsareh, H., Hashim, I., Alsaedi, A.: Comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation. Eng. Anal. Bound. Elem. 47, 10–20 (2014)MathSciNetCrossRefMATH Abbasbandy, S., Roohani Ghehsareh, H., Hashim, I., Alsaedi, A.: Comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation. Eng. Anal. Bound. Elem. 47, 10–20 (2014)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Dehghan, M., Shokri, A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Part. Differ. Equ. 24(4), 1080–1093 (2008)MathSciNetCrossRefMATH Dehghan, M., Shokri, A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Part. Differ. Equ. 24(4), 1080–1093 (2008)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Dehghan, M., Ghesmati, A.: Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng. Anal. Boundary Elem. 34(4), 324–336 (2010)MathSciNetCrossRefMATH Dehghan, M., Ghesmati, A.: Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng. Anal. Boundary Elem. 34(4), 324–336 (2010)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Golio, M.: RF and microwave semiconductor device handbook, 3rd edn. CRC Press, Boca Raton (2001) Golio, M.: RF and microwave semiconductor device handbook, 3rd edn. CRC Press, Boca Raton (2001)
33.
Zurück zum Zitat Duan, Y., Tan, Y.J.: Meshless collocation method based on Dirichlet-Neumann substructure iteration. Appl. Math. Comput. 166, 373–384 (2005)MathSciNetMATH Duan, Y., Tan, Y.J.: Meshless collocation method based on Dirichlet-Neumann substructure iteration. Appl. Math. Comput. 166, 373–384 (2005)MathSciNetMATH
35.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M.: A reduced proper orthogonal decomposition (POD) element free Galerkin (POD-EFG) method to simulate two-dimensional solute transport problems and error estimate. Appl. Numer. Math. 126, 92–112 (2018)MathSciNetCrossRefMATH Dehghan, M., Abbaszadeh, M.: A reduced proper orthogonal decomposition (POD) element free Galerkin (POD-EFG) method to simulate two-dimensional solute transport problems and error estimate. Appl. Numer. Math. 126, 92–112 (2018)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Dehghan, M., Ghesmati, A.: Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 181(4), 772–786 (2010)MathSciNetCrossRefMATH Dehghan, M., Ghesmati, A.: Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 181(4), 772–786 (2010)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge (2005)CrossRefMATH Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge (2005)CrossRefMATH
38.
Zurück zum Zitat Honarbakhsh, B., Asadi, S.: Analysis of multi-conductor transmission lines using the CN-FDTD method. IEEE Trans. Electromagn. Compat. 59(1), 184–192 (2017)CrossRef Honarbakhsh, B., Asadi, S.: Analysis of multi-conductor transmission lines using the CN-FDTD method. IEEE Trans. Electromagn. Compat. 59(1), 184–192 (2017)CrossRef
39.
Zurück zum Zitat Steeb, W., Shi, T.K.: Matrix Calculus and Kronecker Product with Applications and C++ Programs. World Scientific Pub, Singapore (1997)CrossRef Steeb, W., Shi, T.K.: Matrix Calculus and Kronecker Product with Applications and C++ Programs. World Scientific Pub, Singapore (1997)CrossRef
40.
Zurück zum Zitat Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Math. Proc. Cambridge Philos. Soc. 43(1), 50–67 (1947)MathSciNetCrossRefMATH Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Math. Proc. Cambridge Philos. Soc. 43(1), 50–67 (1947)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Sun, G., Trueman, C.W.: Unconditionally stable Crank–Nicolson scheme for solving two-dimensional Maxwell’s equations. Electron. Lett. 39(7), 595–597 (2003)CrossRef Sun, G., Trueman, C.W.: Unconditionally stable Crank–Nicolson scheme for solving two-dimensional Maxwell’s equations. Electron. Lett. 39(7), 595–597 (2003)CrossRef
42.
Zurück zum Zitat Hardy, R.L.: Theory and applications of the multiquadrics—Biharmonic method (20 years of discovery 1968–1988). Comput. Math Appl. 19, 163–208 (1990)MathSciNetCrossRefMATH Hardy, R.L.: Theory and applications of the multiquadrics—Biharmonic method (20 years of discovery 1968–1988). Comput. Math Appl. 19, 163–208 (1990)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Liu, G.R., Gu, Y.T.: An Introduction to Mesh-Free Methods and Their Programming. Springer, Berlin (2005) Liu, G.R., Gu, Y.T.: An Introduction to Mesh-Free Methods and Their Programming. Springer, Berlin (2005)
45.
Zurück zum Zitat Rautio, J.C.: The microwave point of view on software validation. IEEE Antennas Propag. Mag. 38(2), 68–71 (1996)CrossRef Rautio, J.C.: The microwave point of view on software validation. IEEE Antennas Propag. Mag. 38(2), 68–71 (1996)CrossRef
46.
Zurück zum Zitat Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11, 193–210 (1999)MathSciNetCrossRefMATH Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11, 193–210 (1999)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math Appl. 48, 853–867 (2004)MathSciNetCrossRefMATH Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math Appl. 48, 853–867 (2004)MathSciNetCrossRefMATH
Metadaten
Titel
Meshfree analysis of high-frequency field-effect transistors: distributed modeling approach
verfasst von
Babak Honarbakhsh
Publikationsdatum
19.10.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2019
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1262-1

Weitere Artikel der Ausgabe 1/2019

Journal of Computational Electronics 1/2019 Zur Ausgabe

Neuer Inhalt