Skip to main content
Erschienen in: Progress in Additive Manufacturing 4/2022

22.01.2022 | Review Article

Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review

verfasst von: Haidar Ramazani, Abdolvahed Kami

Erschienen in: Progress in Additive Manufacturing | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, various additive manufacturing (AM) methods with a wide range of capabilities have been employed to produce metallic objects. Metals are a popular choice among AM materials due to their superior properties, despite being more challenging to print. Reduced product cost, the possibility for quick production and prototyping, and the capability of a produced component by high accuracy in a broad variety of shapes, geometrical complexity, size, and material are all advantages of metal AM technology. Metal fused deposition modeling (metal FDM) is a relatively new technique based on the widely used FDM process. It is a relatively low-cost competitor to other metal AM techniques such as selective laser melting (SLM). This review paper has explored the most recently issued publications in this extrusion-based metal additive manufacturing (EAM) technique. The main parameters in feedstock preparation, deposition and 3D printing, debinding, and sintering phases of the metal FDM process will be discussed and their influence on the mechanical and microstructural characteristics of the 3D-printed parts. Furthermore, the application of finite element modeling for metal FDM process analysis is explored. Finally, the challenges and gaps in the manufacturing of components and obtaining desired characteristics have been presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ISO/ASTM52900-15 (2015) Standard terminology for additive manufacturing—general principles—terminology, ASTM International, West Conshohocken, PA. www.astm.org ISO/ASTM52900-15 (2015) Standard terminology for additive manufacturing—general principles—terminology, ASTM International, West Conshohocken, PA. www.​astm.​org
2.
Zurück zum Zitat Shirazi SFS et al (2015) A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater 16:033502CrossRef Shirazi SFS et al (2015) A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater 16:033502CrossRef
3.
Zurück zum Zitat Zadpoor AA (2018) Frontiers of additively manufactured metallic materials. Materials 11:1–10CrossRef Zadpoor AA (2018) Frontiers of additively manufactured metallic materials. Materials 11:1–10CrossRef
4.
Zurück zum Zitat Jabbari A, Abrinia K (2018) A metal additive manufacturing method: semi-solid metal extrusion and deposition. Int J Adv Manuf Technol 94:3819–3828CrossRef Jabbari A, Abrinia K (2018) A metal additive manufacturing method: semi-solid metal extrusion and deposition. Int J Adv Manuf Technol 94:3819–3828CrossRef
5.
Zurück zum Zitat Pack RC, Compton BG (2021) Material extrusion additive manufacturing of metal powder-based inks enabled by Carrageenan rheology modifier. Adv Eng Mater 23:2000880CrossRef Pack RC, Compton BG (2021) Material extrusion additive manufacturing of metal powder-based inks enabled by Carrageenan rheology modifier. Adv Eng Mater 23:2000880CrossRef
6.
Zurück zum Zitat Roshchupkin SI, Golovin VI, Kolesov AG, Tarakhovskiy AY (2020) Extruder for the production of metal-polymer filament for additive technologies. IOP Conf Ser Mater Sci Eng 971:022009CrossRef Roshchupkin SI, Golovin VI, Kolesov AG, Tarakhovskiy AY (2020) Extruder for the production of metal-polymer filament for additive technologies. IOP Conf Ser Mater Sci Eng 971:022009CrossRef
7.
Zurück zum Zitat Rane K, Strano M (2019) A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts. Adv Manuf 7:155–173CrossRef Rane K, Strano M (2019) A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts. Adv Manuf 7:155–173CrossRef
8.
Zurück zum Zitat Rosnitschek T, Hueter F, Alber-Laukant B (2020) FEM-based modelling of elastic properties and anisotropic sinter Shrinkage of metal EAM. Int J Simul Model 19:197–208CrossRef Rosnitschek T, Hueter F, Alber-Laukant B (2020) FEM-based modelling of elastic properties and anisotropic sinter Shrinkage of metal EAM. Int J Simul Model 19:197–208CrossRef
9.
Zurück zum Zitat Strano M, Rane K, Briatico Vangosa F, Di Landro L (2019) Extrusion of metal powder-polymer mixtures: Melt rheology and process stability. J Mater Process Technol 273:116250CrossRef Strano M, Rane K, Briatico Vangosa F, Di Landro L (2019) Extrusion of metal powder-polymer mixtures: Melt rheology and process stability. J Mater Process Technol 273:116250CrossRef
13.
Zurück zum Zitat Boparai KS, Singh R, Singh H (2016) Experimental investigations for development of Nylon6-Al-Al2O3 alternative FDM filament. Rapid Prototyp J 22:217–224CrossRef Boparai KS, Singh R, Singh H (2016) Experimental investigations for development of Nylon6-Al-Al2O3 alternative FDM filament. Rapid Prototyp J 22:217–224CrossRef
14.
Zurück zum Zitat Fu X, Zhang X, Huang Z (2021) Axial crushing of Nylon and Al/Nylon hybrid tubes by FDM 3D printing. Compos Struct 256:113055CrossRef Fu X, Zhang X, Huang Z (2021) Axial crushing of Nylon and Al/Nylon hybrid tubes by FDM 3D printing. Compos Struct 256:113055CrossRef
15.
Zurück zum Zitat Scheithauer U, Slawik T, Schwarzer E, Richter HJ, Moritz T, Michaelis A (2015) Additive manufacturing of metal-ceramic-composites by thermoplastic 3D-printing (3DTP). J Ceram Sci Technol 6:125–132 Scheithauer U, Slawik T, Schwarzer E, Richter HJ, Moritz T, Michaelis A (2015) Additive manufacturing of metal-ceramic-composites by thermoplastic 3D-printing (3DTP). J Ceram Sci Technol 6:125–132
16.
Zurück zum Zitat Lengauer W et al. (2018) Preparation and properties of extrusion-based 3D-printed hardmetal and cermet parts. Euro PM 2018 Congress and Exhibition Lengauer W et al. (2018) Preparation and properties of extrusion-based 3D-printed hardmetal and cermet parts. Euro PM 2018 Congress and Exhibition
17.
Zurück zum Zitat Vafadar A, Guzzomi F, Rassau A, Hayward K (2021) Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges. Appl Sci 11:1–33CrossRef Vafadar A, Guzzomi F, Rassau A, Hayward K (2021) Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges. Appl Sci 11:1–33CrossRef
18.
Zurück zum Zitat Ren X, Shao H, Lin T, Zheng H (2016) 3D gel-printing-An additive manufacturing method for producing complex shape parts. Mater Des 101:80–87CrossRef Ren X, Shao H, Lin T, Zheng H (2016) 3D gel-printing-An additive manufacturing method for producing complex shape parts. Mater Des 101:80–87CrossRef
19.
Zurück zum Zitat Li JP, de Wijn JR, Van Blitterswijk CA, de Groot K (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27(8):1223–1235CrossRef Li JP, de Wijn JR, Van Blitterswijk CA, de Groot K (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27(8):1223–1235CrossRef
20.
Zurück zum Zitat Elsayed H et al (2019) "Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Mater Sci Eng 103:109794CrossRef Elsayed H et al (2019) "Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Mater Sci Eng 103:109794CrossRef
21.
Zurück zum Zitat Nurhudan AI, Supriadi S, Whulanza Y, Saragih AS (2021) Additive manufacturing of metallic based on extrusion process: a review. J Manuf Process 66:228–237CrossRef Nurhudan AI, Supriadi S, Whulanza Y, Saragih AS (2021) Additive manufacturing of metallic based on extrusion process: a review. J Manuf Process 66:228–237CrossRef
22.
Zurück zum Zitat Wohlers T (2017) Desktop metal: a rising star of metal AM targets speed, cost and high-volume production. Metal AM: 89–92 Wohlers T (2017) Desktop metal: a rising star of metal AM targets speed, cost and high-volume production. Metal AM: 89–92
23.
Zurück zum Zitat Campbell I, Wohlers T (2017) Markforged: taking a different approach to metal additive manufacturing Campbell I, Wohlers T (2017) Markforged: taking a different approach to metal additive manufacturing
24.
Zurück zum Zitat Kukla C, Gonzalez-Gutierrez J, Hampel S, Burkhardt C, Holzer C (2017) The SDS process: a viable way for the production of metal parts. 11th International Conference on Industrial Tools and Advanced Processing Technologies Kukla C, Gonzalez-Gutierrez J, Hampel S, Burkhardt C, Holzer C (2017) The SDS process: a viable way for the production of metal parts. 11th International Conference on Industrial Tools and Advanced Processing Technologies
25.
Zurück zum Zitat Watson A, Belding J, Ellis BD (2020) Characterization of 17–4 PH processed via bound metal deposition (BMD). TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. Springer, Cham, Switzerland. pp 205–216CrossRef Watson A, Belding J, Ellis BD (2020) Characterization of 17–4 PH processed via bound metal deposition (BMD). TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. Springer, Cham, Switzerland. pp 205–216CrossRef
26.
Zurück zum Zitat Galati M, Minetola P (2019) Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) process for metal parts. Materials 12(24):4122CrossRef Galati M, Minetola P (2019) Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) process for metal parts. Materials 12(24):4122CrossRef
27.
Zurück zum Zitat Kurose T et al (2020) Influence of the layer directions on the properties of 316l stainless steel parts fabricated through fused deposition of metals. Materials 13:2493CrossRef Kurose T et al (2020) Influence of the layer directions on the properties of 316l stainless steel parts fabricated through fused deposition of metals. Materials 13:2493CrossRef
28.
Zurück zum Zitat Hassan W, Farid MA, Tosi A, Rane K, Strano M (2021) The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts. Int J Adv Manuf Technol 114(9):3057–3067CrossRef Hassan W, Farid MA, Tosi A, Rane K, Strano M (2021) The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts. Int J Adv Manuf Technol 114(9):3057–3067CrossRef
29.
Zurück zum Zitat Singh P, Balla VK, Tofangchi A, Atre SV, Kate KH (2020) Printability studies of Ti-6Al-4V by metal fused filament fabrication (MF3). Int J Refract Metals Hard Mater 91:15249CrossRef Singh P, Balla VK, Tofangchi A, Atre SV, Kate KH (2020) Printability studies of Ti-6Al-4V by metal fused filament fabrication (MF3). Int J Refract Metals Hard Mater 91:15249CrossRef
30.
Zurück zum Zitat Gong H, Snelling D, Kardel K, Carrano A (2019) Comparison of stainless steel 316L parts made by FDM- and SLM-based additive manufacturing processes. JOM 71:880–885CrossRef Gong H, Snelling D, Kardel K, Carrano A (2019) Comparison of stainless steel 316L parts made by FDM- and SLM-based additive manufacturing processes. JOM 71:880–885CrossRef
31.
Zurück zum Zitat Capus J (2020) Making steel powders for PM and AM. Metal Powder Rep 75:148–150CrossRef Capus J (2020) Making steel powders for PM and AM. Metal Powder Rep 75:148–150CrossRef
32.
Zurück zum Zitat Korotchenko AY, Khilkov DE, Tverskoy MV, Khilkova AA (2020) Use of additive technologies for metal injection molding. Eng Solid Mech 8:143–150CrossRef Korotchenko AY, Khilkov DE, Tverskoy MV, Khilkova AA (2020) Use of additive technologies for metal injection molding. Eng Solid Mech 8:143–150CrossRef
33.
Zurück zum Zitat Wu G, Langrana NA, Sadanji R, Danforth S (2002) Solid freeform fabrication of metal components using fused deposition of metals. Mater Des 23:97–105CrossRef Wu G, Langrana NA, Sadanji R, Danforth S (2002) Solid freeform fabrication of metal components using fused deposition of metals. Mater Des 23:97–105CrossRef
34.
Zurück zum Zitat Kukla C, Cano S, Kaylani D, Schuschnigg S, Holzer C, Gonzalez-Gutierrez J (2019) Debinding behaviour of feedstock for material extrusion additive manufacturing of zirconia. Powder Met 62:196–204CrossRef Kukla C, Cano S, Kaylani D, Schuschnigg S, Holzer C, Gonzalez-Gutierrez J (2019) Debinding behaviour of feedstock for material extrusion additive manufacturing of zirconia. Powder Met 62:196–204CrossRef
35.
Zurück zum Zitat Amin AM, Ibrahim MHI, Asmawi R, Mustaffa N, Hashim MY (2017) Thermal debinding and sintering of water atomised SS316L metal injection moulding process. IOP Conf Series Mater Sci Eng 226:12155CrossRef Amin AM, Ibrahim MHI, Asmawi R, Mustaffa N, Hashim MY (2017) Thermal debinding and sintering of water atomised SS316L metal injection moulding process. IOP Conf Series Mater Sci Eng 226:12155CrossRef
36.
Zurück zum Zitat Rane K, Farid MA, Hassan W, Strano M (2021) Effect of printing parameters on mechanical properties of extrusion-based additively manufactured ceramic parts. Ceram Int 47:12189–12198CrossRef Rane K, Farid MA, Hassan W, Strano M (2021) Effect of printing parameters on mechanical properties of extrusion-based additively manufactured ceramic parts. Ceram Int 47:12189–12198CrossRef
37.
Zurück zum Zitat Ahn S, Park SJ, Lee S, Atre SV, German RM (2009) Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process. Powder Technol 193:162–169CrossRef Ahn S, Park SJ, Lee S, Atre SV, German RM (2009) Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process. Powder Technol 193:162–169CrossRef
38.
Zurück zum Zitat Quinard C, Barriere T, Gelin JC (2009) Development and property identification of 316L stainless steel feedstock for PIM and μPIM. Powder Technol 190:123–128CrossRef Quinard C, Barriere T, Gelin JC (2009) Development and property identification of 316L stainless steel feedstock for PIM and μPIM. Powder Technol 190:123–128CrossRef
39.
Zurück zum Zitat Momeni V, Alaei MH, Askari A, Rahimi AH, Nekouee K (2020) Effect of the fraction of steel 4605 powder in the load in injection molding with the use of a polymer-based binder. Metal Sci Heat Treat 61:777–781CrossRef Momeni V, Alaei MH, Askari A, Rahimi AH, Nekouee K (2020) Effect of the fraction of steel 4605 powder in the load in injection molding with the use of a polymer-based binder. Metal Sci Heat Treat 61:777–781CrossRef
40.
Zurück zum Zitat Virdhian S, Doloksaribu M, Supriadi S, Balfas NM, Suharno B, Shieddieque AD (2020) Characterization of 17–4 PH stainless steel metal injection molding feedstock using mixing torque data. IOP Conf Ser Mater Sci Eng 980:20CrossRef Virdhian S, Doloksaribu M, Supriadi S, Balfas NM, Suharno B, Shieddieque AD (2020) Characterization of 17–4 PH stainless steel metal injection molding feedstock using mixing torque data. IOP Conf Ser Mater Sci Eng 980:20CrossRef
41.
Zurück zum Zitat Toropkov N, Lerner M, Mironov E (2019) Feedstock investigation based on SAE 316L steel bimodal powders and PLA/PMMA for injection molding: an experimental study. AIP Conf Proc 2167:20367CrossRef Toropkov N, Lerner M, Mironov E (2019) Feedstock investigation based on SAE 316L steel bimodal powders and PLA/PMMA for injection molding: an experimental study. AIP Conf Proc 2167:20367CrossRef
42.
Zurück zum Zitat Park DY et al (2017) Investigation of powder size effects on sintering of powder injection moulded 17–4PH stainless steel. Powder Metal 60:139–148CrossRef Park DY et al (2017) Investigation of powder size effects on sintering of powder injection moulded 17–4PH stainless steel. Powder Metal 60:139–148CrossRef
43.
Zurück zum Zitat Rane K et al. (2018) Rapid production of hollow SS316 profiles by extrusion based additive manufacturing. AIP Conference Proceedings 1960 Rane K et al. (2018) Rapid production of hollow SS316 profiles by extrusion based additive manufacturing. AIP Conference Proceedings 1960
44.
Zurück zum Zitat Kassym K, Perveen A (2019) Atomization processes of metal powders for 3D printing. Mater Today Proc 26:1727–1733CrossRef Kassym K, Perveen A (2019) Atomization processes of metal powders for 3D printing. Mater Today Proc 26:1727–1733CrossRef
45.
Zurück zum Zitat Ren L et al (2017) Process parameter optimization of extrusion-based 3D metal printing utilizing PW-LDPE-SA binder system. Materials 10:305CrossRef Ren L et al (2017) Process parameter optimization of extrusion-based 3D metal printing utilizing PW-LDPE-SA binder system. Materials 10:305CrossRef
46.
Zurück zum Zitat Annoni M, Giberti H, Strano M (2016) Feasibility study of an extrusion-based direct metal additive manufacturing technique. Procedia Manuf 5:916–927CrossRef Annoni M, Giberti H, Strano M (2016) Feasibility study of an extrusion-based direct metal additive manufacturing technique. Procedia Manuf 5:916–927CrossRef
47.
Zurück zum Zitat Lu Z, Ayeni OI, Yang X, Park HY, Jung YG, Zhang J (2020) Microstructure and phase analysis of 3D-printed components using bronze metal filament. J Mater Eng Perform 29:1650–1656CrossRef Lu Z, Ayeni OI, Yang X, Park HY, Jung YG, Zhang J (2020) Microstructure and phase analysis of 3D-printed components using bronze metal filament. J Mater Eng Perform 29:1650–1656CrossRef
48.
Zurück zum Zitat Li JP, De Wijn JR, Van Blitterswijk CA, De Groot K (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27:1223–1235CrossRef Li JP, De Wijn JR, Van Blitterswijk CA, De Groot K (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27:1223–1235CrossRef
49.
Zurück zum Zitat Kang H, Kitsomboonloha R, Jang J, Subramanian V (2012) High-performance printed transistors realized using femtoliter gravure-printed sub-10 μm metallic nanoparticle patterns and highly uniform polymer dielectric and semiconductor layers. Adv Mater 24:3065–3069CrossRef Kang H, Kitsomboonloha R, Jang J, Subramanian V (2012) High-performance printed transistors realized using femtoliter gravure-printed sub-10 μm metallic nanoparticle patterns and highly uniform polymer dielectric and semiconductor layers. Adv Mater 24:3065–3069CrossRef
50.
Zurück zum Zitat Li J, Xie Z, Zhang X, Zeng Q, Liu H (2010) Study of metal powder extrusion and accumulating rapid prototyping. Key Eng Mater 443:81–86CrossRef Li J, Xie Z, Zhang X, Zeng Q, Liu H (2010) Study of metal powder extrusion and accumulating rapid prototyping. Key Eng Mater 443:81–86CrossRef
51.
Zurück zum Zitat Rane K, Di Landro L, Strano M (2019) Processability of SS316L powder—binder mixtures for vertical extrusion and deposition on table tests. Powder Technol 345:553–562CrossRef Rane K, Di Landro L, Strano M (2019) Processability of SS316L powder—binder mixtures for vertical extrusion and deposition on table tests. Powder Technol 345:553–562CrossRef
52.
Zurück zum Zitat Liu B, Wang Y, Lin Z, Zhang T (2020) Creating metal parts by fused deposition modeling and sintering. Mater Lett 263:127252CrossRef Liu B, Wang Y, Lin Z, Zhang T (2020) Creating metal parts by fused deposition modeling and sintering. Mater Lett 263:127252CrossRef
53.
Zurück zum Zitat Gonzalez-Gutierrez J, Arbeiter F, Schlauf T, Kukla C, Holzer C (2019) Tensile properties of sintered 17–4PH stainless steel fabricated by material extrusion additive manufacturing. Mater Lett 248:165–168CrossRef Gonzalez-Gutierrez J, Arbeiter F, Schlauf T, Kukla C, Holzer C (2019) Tensile properties of sintered 17–4PH stainless steel fabricated by material extrusion additive manufacturing. Mater Lett 248:165–168CrossRef
54.
Zurück zum Zitat Gonzalez-Gutierrez J, Guráň R, Spoerk M, Holzer C, Godec D, Kukla C (2018) 3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts. Metalurgija 57:117–120 Gonzalez-Gutierrez J, Guráň R, Spoerk M, Holzer C, Godec D, Kukla C (2018) 3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts. Metalurgija 57:117–120
55.
Zurück zum Zitat Godec D, Cano S, Holzer C, Gonzalez-Gutierrez J (2020) Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17–4PH stainless steel. Materials 13:774CrossRef Godec D, Cano S, Holzer C, Gonzalez-Gutierrez J (2020) Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17–4PH stainless steel. Materials 13:774CrossRef
56.
Zurück zum Zitat Yan X, Hao L, Xiong W, Tang D (2017) Research on influencing factors and its optimization of metal powder injection molding without mold via an innovative 3D printing method. RSC Adv 7:55232–55239CrossRef Yan X, Hao L, Xiong W, Tang D (2017) Research on influencing factors and its optimization of metal powder injection molding without mold via an innovative 3D printing method. RSC Adv 7:55232–55239CrossRef
57.
Zurück zum Zitat Yan X, Wang C, Xiong W, Hou T, Hao L, Tang D (2018) Thermal debinding mass transfer mechanism and dynamics of copper green parts fabricated by an innovative 3D printing method. RSC Adv 8:10355–10360CrossRef Yan X, Wang C, Xiong W, Hou T, Hao L, Tang D (2018) Thermal debinding mass transfer mechanism and dynamics of copper green parts fabricated by an innovative 3D printing method. RSC Adv 8:10355–10360CrossRef
58.
Zurück zum Zitat Singh G, Missiaen JM, Bouvard D, Chaix JM (2021) Copper additive manufacturing using MIM feedstock: adjustment of printing, debinding, and sintering parameters for processing dense and defectless parts. Int J Adv Manuf Technol 115:449–462CrossRef Singh G, Missiaen JM, Bouvard D, Chaix JM (2021) Copper additive manufacturing using MIM feedstock: adjustment of printing, debinding, and sintering parameters for processing dense and defectless parts. Int J Adv Manuf Technol 115:449–462CrossRef
59.
Zurück zum Zitat Hong S, Sanchez C, Du H, Kim N (2015) Fabrication of 3D printed metal structures by use of high-viscosity cu paste and a screw extruder. J Electron Mater 44:836–841CrossRef Hong S, Sanchez C, Du H, Kim N (2015) Fabrication of 3D printed metal structures by use of high-viscosity cu paste and a screw extruder. J Electron Mater 44:836–841CrossRef
60.
Zurück zum Zitat Gibson I, Rosen D, Stucker B, Khorasani M (2021) Additive manufacturing technologies. Gewerbestrasse 11, 6330 Cham, Switzerland. 685 Gibson I, Rosen D, Stucker B, Khorasani M (2021) Additive manufacturing technologies. Gewerbestrasse 11, 6330 Cham, Switzerland. 685
61.
Zurück zum Zitat Antony LVM, Reddy RG (2003) Processes for production of high-purity metal powders. JOM 55:14–18CrossRef Antony LVM, Reddy RG (2003) Processes for production of high-purity metal powders. JOM 55:14–18CrossRef
62.
Zurück zum Zitat Miranda R (2013) Handbook of metal injection molding. Int J Environ Stud 70:165–165 Miranda R (2013) Handbook of metal injection molding. Int J Environ Stud 70:165–165
63.
Zurück zum Zitat Liu L, Loh NH, Tay BY, Tor SB, Murakoshi Y, Maeda R (2005) Mixing and characterisation of 316L stainless steel feedstock for micro powder injection molding. Mater Charact 54:230–238CrossRef Liu L, Loh NH, Tay BY, Tor SB, Murakoshi Y, Maeda R (2005) Mixing and characterisation of 316L stainless steel feedstock for micro powder injection molding. Mater Charact 54:230–238CrossRef
64.
Zurück zum Zitat Weston NS, Thomas B, Jackson M (2019) Processing metal powders via field assisted sintering technology (FAST): a critical review. Mater Sci Technol 35:1306–1328CrossRef Weston NS, Thomas B, Jackson M (2019) Processing metal powders via field assisted sintering technology (FAST): a critical review. Mater Sci Technol 35:1306–1328CrossRef
65.
Zurück zum Zitat Thompson Y, Gonzalez-Gutierrez J, Kukla C, Felfer P (2019) Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Addit Manuf 30:100861 Thompson Y, Gonzalez-Gutierrez J, Kukla C, Felfer P (2019) Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Addit Manuf 30:100861
66.
Zurück zum Zitat Gonzalez-Gutierrez J, Cano S, Schuschnigg S, Kukla C, Sapkota J, Holzer C (2018) Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials 11:840CrossRef Gonzalez-Gutierrez J, Cano S, Schuschnigg S, Kukla C, Sapkota J, Holzer C (2018) Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials 11:840CrossRef
67.
Zurück zum Zitat Rane K, Castelli K, Strano M (2019) Rapid surface quality assessment of green 3D printed metal-binder parts. J Manuf Process 38:290–297CrossRef Rane K, Castelli K, Strano M (2019) Rapid surface quality assessment of green 3D printed metal-binder parts. J Manuf Process 38:290–297CrossRef
68.
Zurück zum Zitat Giberti H, Sbaglia L, Silvestri M (2017) Mechatronic design for an extrusion-based additive manufacturing machine. Machines 5:29CrossRef Giberti H, Sbaglia L, Silvestri M (2017) Mechatronic design for an extrusion-based additive manufacturing machine. Machines 5:29CrossRef
69.
Zurück zum Zitat Tosto C, Tirillò J, Sarasini F, Cicala G (2021) Hybrid metal/polymer filaments for fused filament fabrication (FFF) to print metal parts. Appl Sci 11:1CrossRef Tosto C, Tirillò J, Sarasini F, Cicala G (2021) Hybrid metal/polymer filaments for fused filament fabrication (FFF) to print metal parts. Appl Sci 11:1CrossRef
70.
Zurück zum Zitat Rane K, Barriere T, Strano M (2020) Role of elongational viscosity of feedstock in extrusion-based additive manufacturing of powder-binder mixtures. Int J Adv Manuf Technol 107:4389–4402CrossRef Rane K, Barriere T, Strano M (2020) Role of elongational viscosity of feedstock in extrusion-based additive manufacturing of powder-binder mixtures. Int J Adv Manuf Technol 107:4389–4402CrossRef
71.
Zurück zum Zitat Ait-Mansour I, Kretzschmar N, Chekurov S, Salmi M, Rech J (2020) Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF. Prog Addit Manuf 5:51–57CrossRef Ait-Mansour I, Kretzschmar N, Chekurov S, Salmi M, Rech J (2020) Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF. Prog Addit Manuf 5:51–57CrossRef
72.
Zurück zum Zitat Raza MR et al (2017) Effects of debinding and sintering atmosphere on properties and corrosion resistance of powder injection molded 316 L—stainless steel. JSM 46:285–293CrossRef Raza MR et al (2017) Effects of debinding and sintering atmosphere on properties and corrosion resistance of powder injection molded 316 L—stainless steel. JSM 46:285–293CrossRef
73.
Zurück zum Zitat Rosnitschek T, Glamsch J, Lange C, Alber-Laukant B, Rieg F (2021) An automated open-source approach for debinding simulation in metal extrusion additive manufacturing. Designs 5:1–15CrossRef Rosnitschek T, Glamsch J, Lange C, Alber-Laukant B, Rieg F (2021) An automated open-source approach for debinding simulation in metal extrusion additive manufacturing. Designs 5:1–15CrossRef
74.
Zurück zum Zitat Parenti P, Cataldo S, Annoni M (2018) Shape deposition manufacturing of 316L parts via feedstock extrusion and green-state milling. Manuf Letters 18:6–11CrossRef Parenti P, Cataldo S, Annoni M (2018) Shape deposition manufacturing of 316L parts via feedstock extrusion and green-state milling. Manuf Letters 18:6–11CrossRef
75.
Zurück zum Zitat Gong P, Yan X, Xiong W, Hao L, Tang D, Li Y (2020) Design of a debinding process for polymetallic material green parts fabricatedviametal paste injection 3D printing with dual nozzles. RSC Adv 10:18000–18007CrossRef Gong P, Yan X, Xiong W, Hao L, Tang D, Li Y (2020) Design of a debinding process for polymetallic material green parts fabricatedviametal paste injection 3D printing with dual nozzles. RSC Adv 10:18000–18007CrossRef
76.
Zurück zum Zitat Gonzalez-Gutierrez J, Godec D, Kukla C, Schlauf T, Burkhardt C, Holzer C (2017) Shaping, debinding and sintering of steel components via fused filament fabrication. 16th International Scientific Conference on Production Engineering—CIM2017; 99–104 Gonzalez-Gutierrez J, Godec D, Kukla C, Schlauf T, Burkhardt C, Holzer C (2017) Shaping, debinding and sintering of steel components via fused filament fabrication. 16th International Scientific Conference on Production Engineering—CIM2017; 99–104
77.
Zurück zum Zitat Tuncer N, Bose A (2020) Solid-state metal additive manufacturing: a review. JOM 72:3090–3111CrossRef Tuncer N, Bose A (2020) Solid-state metal additive manufacturing: a review. JOM 72:3090–3111CrossRef
78.
Zurück zum Zitat Mirzababaei S, Pasebani S (2019) A review on binder jet additive manufacturing of 316L stainless steel. J Manuf Mater Process 3:82 Mirzababaei S, Pasebani S (2019) A review on binder jet additive manufacturing of 316L stainless steel. J Manuf Mater Process 3:82
79.
Zurück zum Zitat Lieberwirth C, Sarhan M, Seitz H (2018) Mechanical properties of stainless-steel structures fabricated by composite extrusion modelling. Metals 8(2):84CrossRef Lieberwirth C, Sarhan M, Seitz H (2018) Mechanical properties of stainless-steel structures fabricated by composite extrusion modelling. Metals 8(2):84CrossRef
80.
Zurück zum Zitat Zhang Y, Bai S, Riede M, Garratt E, Roch A (2020) A comprehensive study on fused filament fabrication of Ti-6Al-4V structures. Addit Manuf 34:101256 Zhang Y, Bai S, Riede M, Garratt E, Roch A (2020) A comprehensive study on fused filament fabrication of Ti-6Al-4V structures. Addit Manuf 34:101256
82.
Zurück zum Zitat Ye H, Liu XY, Hong H (2008) Sintering of 17–4PH stainless steel feedstock for metal injection molding. Mater Lett 62:3334–3336CrossRef Ye H, Liu XY, Hong H (2008) Sintering of 17–4PH stainless steel feedstock for metal injection molding. Mater Lett 62:3334–3336CrossRef
83.
Zurück zum Zitat Várez A, Levenfeld B, Torralba JM, Matula G, Dobrzanski LA (2004) Sintering in different atmospheres of T15 and M2 high speed steels produced by a modified metal injection moulding process. Mater Sci Eng A 366:318–324CrossRef Várez A, Levenfeld B, Torralba JM, Matula G, Dobrzanski LA (2004) Sintering in different atmospheres of T15 and M2 high speed steels produced by a modified metal injection moulding process. Mater Sci Eng A 366:318–324CrossRef
84.
Zurück zum Zitat Dourandish M, Simchi A (2009) Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding. J Mater Sci 44(5):1264–1274CrossRef Dourandish M, Simchi A (2009) Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding. J Mater Sci 44(5):1264–1274CrossRef
85.
Zurück zum Zitat Olevsky EA, Dudina DV (2018) Field-assisted sintering: science and applications. Field-Assisted Sintering: Science and Applications. Gewerbestrasse 11, 6330 Cham, Switzerland. 1–425 Olevsky EA, Dudina DV (2018) Field-assisted sintering: science and applications. Field-Assisted Sintering: Science and Applications. Gewerbestrasse 11, 6330 Cham, Switzerland. 1–425
86.
Zurück zum Zitat Anklekar RM, Agrawal DK, Roy R (2001) Microwave sintering and mechanical properties of PM copper steel. Powder Metal 44:355–362CrossRef Anklekar RM, Agrawal DK, Roy R (2001) Microwave sintering and mechanical properties of PM copper steel. Powder Metal 44:355–362CrossRef
87.
Zurück zum Zitat Panda SS, Singh V, Upadhyaya A, Agrawal D (2006) Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and microwave furnaces. Scripta Mater 54:2179–2183CrossRef Panda SS, Singh V, Upadhyaya A, Agrawal D (2006) Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and microwave furnaces. Scripta Mater 54:2179–2183CrossRef
88.
Zurück zum Zitat Ertugrul O, Park HS, Onel K, Willert-Porada M (2014) Effect of particle size and heating rate in microwave sintering of 316L stainless steel. Powder Technol 253:703–709CrossRef Ertugrul O, Park HS, Onel K, Willert-Porada M (2014) Effect of particle size and heating rate in microwave sintering of 316L stainless steel. Powder Technol 253:703–709CrossRef
89.
Zurück zum Zitat Mousapour M, Salmi M, Klemettinen L, Partanen J (2021) Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) technique. J Manuf Process 67:438–446CrossRef Mousapour M, Salmi M, Klemettinen L, Partanen J (2021) Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) technique. J Manuf Process 67:438–446CrossRef
90.
Zurück zum Zitat ASTM F3122-14 (2014) Standard guide for evaluating mechanical properties of metal materials made via additive manufacturing processes, ASTM International, West Conshohocken. http://www.astm.org ASTM F3122-14 (2014) Standard guide for evaluating mechanical properties of metal materials made via additive manufacturing processes, ASTM International, West Conshohocken. http://​www.​astm.​org
91.
Zurück zum Zitat Cooke S, Ahmadi K, Willerth S, Herring R (2020) Metal additive manufacturing: Technology, metallurgy and modelling. J Manuf Process 57:978–1003CrossRef Cooke S, Ahmadi K, Willerth S, Herring R (2020) Metal additive manufacturing: Technology, metallurgy and modelling. J Manuf Process 57:978–1003CrossRef
92.
Zurück zum Zitat Markforged (2020) Material datasheet 17-4 PH stainless steel: 1–2 Markforged (2020) Material datasheet 17-4 PH stainless steel: 1–2
93.
Zurück zum Zitat ASM (2014) AISI Type 316L Stainless Steel ASM: 1–2 ASM (2014) AISI Type 316L Stainless Steel ASM: 1–2
94.
Zurück zum Zitat Verlee B, Dormal T, Lecomte-Beckers J (2012) Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing. Powder Metall 55(4):260–267CrossRef Verlee B, Dormal T, Lecomte-Beckers J (2012) Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing. Powder Metall 55(4):260–267CrossRef
95.
Zurück zum Zitat Lou JK et al (2020) Investigation of decarburization behaviour during the sintering of metal injection moulded 420 stainless steel. Metals 10:211CrossRef Lou JK et al (2020) Investigation of decarburization behaviour during the sintering of metal injection moulded 420 stainless steel. Metals 10:211CrossRef
96.
Zurück zum Zitat Torralba JM (2012) Metal injection molding (MIM) of stainless steel. In: Donald FH (ed) Woodhead Publishing, Handbook of Metal Injection Molding: 393–414 Torralba JM (2012) Metal injection molding (MIM) of stainless steel. In: Donald FH (ed) Woodhead Publishing, Handbook of Metal Injection Molding: 393–414
97.
Zurück zum Zitat Shang F, Wang Z, Chen X, Ji Z, Ren S, Qu X (2021) UNS S32707 hyper-duplex stainless steel processed by powder injection molding and supersolidus liquid-phase sintering in nitrogen sintering atmosphere. Vacuum 184:109910CrossRef Shang F, Wang Z, Chen X, Ji Z, Ren S, Qu X (2021) UNS S32707 hyper-duplex stainless steel processed by powder injection molding and supersolidus liquid-phase sintering in nitrogen sintering atmosphere. Vacuum 184:109910CrossRef
98.
Zurück zum Zitat Mishra DK, Pandey PM (2020) Effect of sintering parameters on the microstructure and compressive mechanical properties of porous Fe scaffold fabricated using 3D printing and pressure less microwave sintering. Proc Inst Mech Eng C J Mech Eng Sci 234:4305–4320CrossRef Mishra DK, Pandey PM (2020) Effect of sintering parameters on the microstructure and compressive mechanical properties of porous Fe scaffold fabricated using 3D printing and pressure less microwave sintering. Proc Inst Mech Eng C J Mech Eng Sci 234:4305–4320CrossRef
99.
Zurück zum Zitat Zhang Z, Femi-Oyetoro J, Fidan I, Ismail M, Allen M (2021) Prediction of dimensional changes of low-cost metal material extrusion fabricated parts using machine learning techniques. Metals 11:690CrossRef Zhang Z, Femi-Oyetoro J, Fidan I, Ismail M, Allen M (2021) Prediction of dimensional changes of low-cost metal material extrusion fabricated parts using machine learning techniques. Metals 11:690CrossRef
Metadaten
Titel
Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review
verfasst von
Haidar Ramazani
Abdolvahed Kami
Publikationsdatum
22.01.2022
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing / Ausgabe 4/2022
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-021-00250-x

Weitere Artikel der Ausgabe 4/2022

Progress in Additive Manufacturing 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.