Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Metals

verfasst von : Bradley D. Fahlman

Erschienen in: Materials Chemistry

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Of the 118 elements listed in the periodic table, 80% are metals. Since the discovery of copper and bronze by early civilizations, the study of metals (i.e., metallurgy) contributed to most of the early investigations related to materials science. Whereas iron-based alloys have long been exploited for a variety of applications, there is a constant search for new metallic compositions that have increasing structural durability, but also possess sufficiently less density. The recent exploitation of titanium-based alloys results from this effort, and has resulted in very useful materials that are used for applications ranging from aircraft bodies to hip replacements and golf clubs. Indeed, there are many yet undiscovered metallic compositions that will undoubtedly prove invaluable for future applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Most rocks are composed of >95% silicates.
 
2
For instance, see: Srivastava, U.; Kawatra, S.; Eisele, T. Internat. J. Mineral Proc. 2013, 119, 51, and references therein.
 
3
The main use for V2O5 is for the catalysis of 2 SO2 + O2 ⇔ 2 SO3, used in sulfuric acid production, corresponding to annual production of 165 million tons, and over $8 billion.
 
4
Also known as a blast oven.
 
7
Canadian nickels were once made from strips rolled from pure nickel powder, but are now fabricated from steel (3.5% Cu) and contain only about 2% Ni, applied as an electrolytic coating.
 
8
Hohmann, C.; Tipton Jr., B.; Dutton, M. Propellant for the NASA Standard Initiator October 2000 (NASA/TP-2000-210,186).
 
9
Note: these cutoff values for steels are arbitrary. Iron at the lower end of this range is referred to either mild steel, or low-carbon steel.
 
10
A good reference for “crystal field theory” is Cotton, F. A.; Wilkinson, G.; Gaus, P. L. Basic Inorganic Chemistry, 3rd ed., Wiley: New York, 1994.
 
11
(a) Olson, G. B.; Cohen, M. Metallurg. Mater. Trans. A 1976, 7, 1897. (b) http://​hal.​archives-ouvertes.​fr/​docs/​00/​25/​56/​55/​PDF/​ajp-jp4199707C558.​pdf
 
13
Unfortunately, we now know that copper may be leached from pipes and pollute the drinking water supply. The use of lead pipes dates back to the Roman Empire; however, this material was still employed for plumbing in the early twentieth century. As we are familiar from the recent reports of water pollution in Flint, Michigan and many other places across the United States, lead, copper, and iron may leach into water supplies. The U.S. established the “Lead and Copper Rule (LCR) in 1991, which monitors the levels of heavy metals in drinking water. Since the replacement of all pipes across the nation would be too cost prohibitive, there are numerous corrosion control strategies that can be used to limit or prevent the leaching of these heavy metals into water: http://​www.​waterrf.​org/​resources/​StateOfTheScienc​eReports/​LeadCorrosion.​pdf
 
14
Kohler, J.; Whangbo, M -H. Chem. Mater. 2008, 20, 2751, and references therein.
 
15
For more details about the structure and composition of Zintl phases, see: http://​www3.​nd.​edu/​~sevovlab/​articles/​SlaviChapter.​pdf
 
16
Kohler, J.; Deng, S.; Lee, C.; Whangbo, M. -H. Inorg. Chem. 2007, 46, 1957, and references therein.
 
17
For a discussion regarding the bandgap of half-Heusler alloys, see: Kohler, J.; Deng, S. Inorg. Chem. 2007, 46, 1957, and references therein.
 
18
For a nice review of aluminum and magnesium metal for automotive applications, see Musfirah, A. H.; Jaharah, A. G. J. Appl. Sci. Res. 2012, 8, 4865.
 
19
Cumberland, R. W.; Weinberger, M. B.; Gilman, J. J.; Clark, S. M.; Tolbert, S. H.; Kaner, R. B. J. Am. Chem. Soc. 2005, 127, 7264.
 
20
Gu, Q.; Krauss, G.; Steurer, W. Adv. Mater. 2008, 20, 3620.
 
22
For instance, see: (a) Co-Ni-Al: Dilbal, S.; Sehitoglu, H.; Hamilton, R. F.; Maier, H. J.; Chumlyakov, Y. Mater. Sci. Eng. A 2011, 528, 2875. (b) Ni-Mn-Ga: Hamilton, R. F.; Dilbal, S.; Sehitoglu, H.; Maier, H. J. Mater. Sci. Eng. A 2011, 528, 1877. (c) Fe-Mn-Si-Cr-Ni-Sm: Shakoor, R. A.; Khalid, F. A. Mater. Sci. Eng. A 2009, 499, 411. (d) Fe-Mn-Si-Ni-Co: Wang, X. -X.; Zhang, C. -Y. J. Mater. Sci. Lett. 1998, 17, 1795. (e) Cu-Zn-Al: Lin, G. M.; Lai, J. K. L.; Chung, C. Y. Scripta Metallurgica Mater. 1995, 32, 1865. (f) Cu-Zn-Al-Mn: Gil, F. J.; Guilemany, J. M.; Sanchiz, I. J. Mater. Sci. 1993, 28, 1542.
 
23
For other biomedical applications for shape-memory alloys, see: (a) Lendlein, A.; Langer, R. Science 2002, 296, 1673. (b) El Feninat, F.; Laroche, G.; Fiset, M.; Mantovani, D. Adv. Engin. Mater. 2002, 4, 91. (c) http://​www.​scielo.​br/​pdf/​bjmbr/​v36n6/​4720.​pdf
 
24
Liang, W.; Zhou, M.; Ke, F. Nano Lett. 2005, 5, 2039.
 
25
For example, see: (a) Xu, J.; Liu, W. Wear 2006, 260, 486. (b) Mergia, K.; Liedtke, V.; Speliotis, T.; Apostolopoulos, G.; Messoloras, S. Adv. Mater. Res. 2009, 59, 87. (c) Benea, L.; Bonora, P. L.; Borello, A.; Martelli, S. Wear 2001, 249, 995.
 
26
Park, H.; Kim, K. Y.; Choi, W. J. Phys. Chem. B 2002, 106, 4775.
 
27
For instance, see Liang, Y.; Guan, Z. C.; Wang, H. P.; Du, R. G. Electrochem. Communic. 2017, 77, 120.
 
28
The unit emu is short for “electromagnetic unit”, which is equivalent to erg G−1, where 1 erg = 1 × 10−7 J and G = Gauss (1 × 10−4 tesla, T).
 
29
Think of the atom in the middle of the bcc unit cell, at lattice position (1/2, 1/2, 1/2). Since there are no atoms on the unit cell faces in a bcc array, no atoms will be positioned directly along the x, y, and z axes emanating from this central atom.
 
30
For more information and statistics related to rare-earth metals, see: https://​minerals.​usgs.​gov/​minerals/​pubs/​commodity/​rare_​earths/​
 
31
(a) Dutta, T.; Kim, K. H.; Uchimiya, M.; Kwon, E. E.; Jeon, B. H.; Deep, A.; Yun, S. T. Environ. Res. 2016, 150, 182, and references therein. (b) McLellan, B. C.; Corder, G. D.; Ali, S. H. Minerals 2013, 3, 304.
 
32
Pathak, A. K.; Khan, M.; Gschneidner, K. A.; McCallum, R. W.; Zhou, L.; Sun, K.; Dennis, K. W.; Zhou, C.; Pinkerton, F. E.; Kramer, M. J.; Pecharsky, V. K. Adv. Mater. 2015, 27, 2663 (DOI: https://​doi.​org/​10.​1002/​adma.​201404892).
 
35
Widmer, J. D.; Martin, R.; Kimiabeigi, M. Sustain. Mater. Technol. 2015, 3, 7, and references therein (DOI: https://​doi.​org/​10.​1016/​j.​susmat.​2015.​02.​001).
 
38
For example, see: Sprecher, B.; Xiao, Y.; Walton, A.; Speight, J.; Harris, R.; Kleijn, R.; Visser, G.; Kramer, G. J. Environ. Sci. Technol. 2014, 48, 3951 (DOI: https://​doi.​org/​10.​1021/​es404596q).
 
42
For instance, see: (a) Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 3494. (b) Latroche, M.; Surble’, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J. H.; Chang, J. S.; Jhung, S. H., Fe’rey, G. Angew. Chem., Int. Ed. 2006, 45, 8227. (c) Chahine, R.; Benard, P. In Advances in cryogenic engineering Kittel, P., Ed.; Plenum Press: New, York, 1998. (d) Kabbour, H.; Baumann, T. F.; Satcher, J. H., Jr., Saulnier, A.; Ahn, C. C. Chem. Mater. 2006, 18, 6085.
 
43
Liu, Y.; Kabbour, H.; Brown, C. M.; Neumann, D. A.; Ahn, C. C. Langmuir 2008, 24, 4772.
 
44
Schlapbach, L.; Zuttel, A. Nature, 2001, 414, 353.
 
45
Filinchuk, Y.; Chernyshov, D.; Nevidomskyy, A.; Dmitriev, V. Angew. Chem. Int. Ed. Eng. 2008, 47, 529.
 
46
For instance, see: Bogdanovi, B.; Schwickardi, M. J. Alloys Compounds 1997, 253–254, 1.
 
47
For example, see: Maiti, A.; Gee, R. H.; Maxwell, R.; Saab, A. P. Chem. Phys. Lett. 2007, 440, 244.
 
48
For instance, see: (a) Moller, K. T.; Grinderslev, J. B.; Jensen, T. R. J. Alloys Compounds 2017, 720, 497 (DOI: https://​doi.​org/​10.​1016/​j.​jallcom.​2017.​05.​264). (b) Schimmel, H. G.; Huot, J.; Chapon, L. C.; Tichelaar, F. D.; Mulder, F. M. J. Am. Chem. Soc. 2005 , 127, 14,348.
 
49
For instance, see: (a) Poletaev, A. A.; Denys, R. V.; Haehlen, J. P.; Solbrg, J. K.; Tarasov, B. P.; Yartys, V. A. Internat. J. Hydrogen Energy 2012, 37, 3548. (b) Zhang, Q. A.; Jiang, C. J.; Liu, D. D. Internat. J. Hydrogen Energy 2012, 37, 10,709. (c) Yuan, H. J.; An, Y. Xu, G. H.; Chen, C. P. Mater. Chem. Phys. 2004, 83, 340. (d) Wang, Y.; Wang, X.; Li, C. M. Internat. J. Hydrogen Energy 2010, 35, 3550. (e) Zhang, Y. H.; Yuan, Z. M.; Yang, T.; Bu, W. G.; Hou, Z. H.; Zhao, D. L. J. Central South Univ. 2017, 24, 773.
 
Literatur
1.
Zurück zum Zitat Callister WD. Materials science and engineering: an introduction. 9th ed. New York: Wiley; 2013. Callister WD. Materials science and engineering: an introduction. 9th ed. New York: Wiley; 2013.
2.
Zurück zum Zitat Hibbeler RC. Mechanics of materials. 10th ed. New York: Pearson; 2016. Hibbeler RC. Mechanics of materials. 10th ed. New York: Pearson; 2016.
3.
Zurück zum Zitat Porter DA, Easterling KE. Phase transformations in metals and alloys. 3rd ed. New York: CRC Press; 2009. Porter DA, Easterling KE. Phase transformations in metals and alloys. 3rd ed. New York: CRC Press; 2009.
4.
Zurück zum Zitat Honeycombe RWK, Bhadeshia HKDH. Steels: microstructure and properties. 4th ed. New York: Wiley; 2017. Honeycombe RWK, Bhadeshia HKDH. Steels: microstructure and properties. 4th ed. New York: Wiley; 2017.
5.
Zurück zum Zitat Grosvenor AW. Basic metallurgy: volume I, principles. Cleveland: American Society for Metals; 1962. Grosvenor AW. Basic metallurgy: volume I, principles. Cleveland: American Society for Metals; 1962.
6.
Zurück zum Zitat Beddoes J, Parr JG. Introduction to stainless steels. 3rd ed. Materials Park: ASM International; 1999. Beddoes J, Parr JG. Introduction to stainless steels. 3rd ed. Materials Park: ASM International; 1999.
7.
Zurück zum Zitat Lacheisserie ET, Gignoux D, Schlenker M, editors. Magnetism: fundamentals. New York: Springer; 2004. Lacheisserie ET, Gignoux D, Schlenker M, editors. Magnetism: fundamentals. New York: Springer; 2004.
8.
Zurück zum Zitat Reis M. Fundamentals of magnetism. New York: Academic Press; 2013. Reis M. Fundamentals of magnetism. New York: Academic Press; 2013.
9.
Zurück zum Zitat Mattis D, The C. Theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods. World Scientific Publishing Company: New York; 2006.CrossRef Mattis D, The C. Theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods. World Scientific Publishing Company: New York; 2006.CrossRef
10.
Zurück zum Zitat Lefteri C, Arad R. Metals: materials for inspirational design. London: Rotovision; 2004. Lefteri C, Arad R. Metals: materials for inspirational design. London: Rotovision; 2004.
11.
Zurück zum Zitat Sedriks AJ. Corrosion of stainless steel. New York: Wiley; 1996. Sedriks AJ. Corrosion of stainless steel. New York: Wiley; 1996.
12.
Zurück zum Zitat Damping Structural Vibrations with Shape-Memory Metals. NASA Publication, University Press of the Pacific; 2004. Damping Structural Vibrations with Shape-Memory Metals. NASA Publication, University Press of the Pacific; 2004.
13.
Zurück zum Zitat Lecce L, Concilio A. Shape memory alloy engineering: for aerospace, structural and biomedical applications. New York: Butterworth-Heinemann; 2014. Lecce L, Concilio A. Shape memory alloy engineering: for aerospace, structural and biomedical applications. New York: Butterworth-Heinemann; 2014.
14.
Zurück zum Zitat Arun DI, Chakravarthy P, Santhosh B, Arockiakumar R. Shape memory materials. New York: CRC Press; 2018.CrossRef Arun DI, Chakravarthy P, Santhosh B, Arockiakumar R. Shape memory materials. New York: CRC Press; 2018.CrossRef
Metadaten
Titel
Metals
verfasst von
Bradley D. Fahlman
Copyright-Jahr
2018
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-024-1255-0_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.