Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Semiconductors

verfasst von : Bradley D. Fahlman

Erschienen in: Materials Chemistry

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Our technologically advanced way of life would not be possible without the semiconductor industry. The first semiconductor device, known as a transistor, was discovered at Bell Labs in the late 1940s and was widely used shortly thereafter for radio electronics. Today, transistors are still pervasive in every chip that lies at the heart of portable electronic devices, modes of transportation, and computers. In fact, modern computer chips now contain over 10 billion individual transistors—all on a surface that is smaller than a fingernail!

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
2
Hemlock Semiconductor homepage: http://​www.​hscpoly.​com
 
3
For example, see: (a) Sanjurjo, A. U.S. Patent 5006317. (b) Yoon, P.; Song, Y. U.S. Patent 4786477. (c) Boone, J. E.; Owens, D. W.; Farritor, R. E.; Blank, W. D. U.S. Patent 4806317.
 
4
Homoepitaxial growth refers to growing a film onto an atomically-flat substrate, wherein both film and substrate are compositionally equivalent. In contrast, heteroepitaxial growth would refer to growing a thin film of different composition onto a substrate (e.g., GaAs thin film on a Si substrate). Such film growth occurs usually by vapor-phase techniques, which facilitates exact lattice matching of the crystal orientation and spacing of the growing thin film with the underlying substrate.
 
5
The 24-core AMD EPYC 7401P server CPU currently contains the largest number of transistors: 19.2 billion on a chip area of 195 mm2! However, commercial CPU chips, such as the Core i7 (355 mm2) contains around 3.2 billion transistors; the Apple A11 Bionic (87.66 mm2), contains 4.1 billion transistors. The latest graphics processing units (GPUs) contain significantly more transistors; for example, the GV100 Volta from Nvidia contains 21.1 billion transistors on a chip size of 815 mm2. It should be noted that flash-memory chips have long featured over 1 billion transistors. Since 2005, 8 GB memory chips (146 mm2) have featured over 4 billion transistors, and the latest 512 GB SD cards are estimated to contain over 500 billion transistors!
 
6
An article that describes some possible strategies beyond Moore’s Law: http://​www.​economist.​com/​technology-quarterly/​2016-03-12/​after-moores-law
 
7
Although the current should, in theory, be zero for a reverse-bias diode, there will still be a very small number of electrons/holes with enough energy to overcome the large junction potential, resulting in a very small current.
 
8
Whereas it is easy to conceptualize the uphill movement of electrons due to an applied voltage that exceeds the junction potential, it is not as straight-forward to rationalize hole migration. That is, they will move downhill from p-n regions during forward bias. A picture that may help visualize this is to think of holes as helium-filled balloons that are adhered to a ceiling. Energy would be required in order to pull them down; having a larger balloon with more helium would require even more energy (analogous to reverse-bias), whereas a small balloon would be easier to pull down (forward bias).
 
9
The V T is related to the difference in the work function (i.e., ϕ—the energy required to remove an electron from the surface of a material) between the gate and channel regions.
 
11
Due to its high solubility in silicon lattices, boron was commonly used as a dopant for the p-MOSFET, being implanted as B+ or BF2 + ions. However, boron has a greater solubility in SiO2, which results in diffusion from the polysilicon gate into the SiO2 gate insulating layer and even into the silicon channel. These positive charges within the oxide and channel regions causes an increase in scattering, thus reducing the carrier mobility and on-current.
 
12
It should be noted that the “technology node” no longer refers to physical dimensions of the transistor, but is rather an industry term related to a new fabrication process every 2 years, in accord with Moore’s Law. By definition, the technology node refers to half the distance (half-pitch) between cells in a DRAM memory chip. It is noteworthy that the gate length, L, officially moved into the nanoregime in the year 2000.
 
13
For instance, see: (a) Jones, A. C. et al. J. Mater. Chem., 2004, 14, 3101. (b) Musgrave, C.; Gordon, R. G. Future Fab International 2005, 18, 126. (c) Vincenzini, P.; Marletta, G. Adv. Sci. Technol. 2006, 51, 156.
 
14
Locquet, J. P.; Marchiori, C.; Sousa, M.; Fompeyrine, J. J. Appl. Phys. 2006, 100, 051610.
 
15
Landgraf, E.; Rosner, W.; Stadele, M.; Dreeskornfeld, L.; Hartwich, J.; Hofmann, F.; Kretz, J.; Lutz, T.; Luyken, R. J.; Schulz, T.; Specht, M.; Risch, L. Solid-State Electron. 2006, 50, 38.
 
16
(a) Sadana, D. K.; Current, M. “Fabrication of Silicon-on-Insulator (SOI) Wafers Using Ion Implantation”, in Ion Implantation Science and Technology, Ziegler, J. F. ed., Edgewater: Ion Implantation Technology Co., 2000. (b) Colinge, J. P. Silicon-on-Insulator Technology: Materials to VLSI, 2nd ed., Dordrecht: Kluwer Academic Publishers, 1997. (c) Marshall, A.; Natarajan, S. SOI Design: Analog, Memory, and Digital Techniques, Boston: Kluwer Academic Publishers, 2002.
 
18
Choi, Y. K. Et al. IEEE Electron Device Lett. 2000, 254.
 
19
An issue of the MRS Bulletin was recently devoted to scaling future CMOS logic devices with Ge and III-V materials: MRS Bull. 2009, 34, 485.
 
20
(a) Nihei, R.; Usami, N.; Nakajima, K. Jpn. J. Appl. Phys. 2009, 48, 115,507, and references therein. (b) Jankovic, N. D.; O’Neill, A. Semicond. Sci. Technol. 2003, 18, 901.
 
21
Plummer, J. D.; Deal, M. D.; Griffin, P. B. Silicon VLSI Technology: Fundamentals, Practice, and Modeling, Prentice Hall: New Jersey, 2000.
 
22
A detailed video of the Si(111) 7 × 7 reconstruction may be found at: http://​www.​vimeo.​com/​1086112
 
24
For GaAs substrates, primers such as xylene or trichlorobenzene are used, as GaAs is already a polar surface.
 
25
Masks are either comprised of soda-lime glass (coated with either a photographic emulsion, Fe2O3, or Cr films), or quartz (with a Cr film). Due to the absorption of UV light by glass, the latter is required for deep UV (DUV) photolithography. Masks may be classified as either “light-field” or “dark-field”; whereas the former is mostly clear with opaque patterns, the latter is an opaque mask, with transparent features.
 
26
For example: (a) Nonogaki, S. Polymer J. 1987, 19, 99. (b) Liu, H. -H.; Chen, W. -T.; Wu, F. -C. J. Polym. Res. 2002, 9, 251.
 
28
The use of double- and triple-patterning has extended the 193-nm photolithography timeline beyond that originally anticipated. For more details on this technology, see: (a) http://​www.​semi.​org/​cms/​groups/​public/​documents/​web_​content/​ctr_​030805.​pdf. (b) Wu, B.; Singh, A. K. Extreme Ultraviolet Lithography, McGraw-Hill: New York, 2009 (page 5 of the Introduction has a lithography roadmap for the extension of 193-nm photolithography, and EUV not likely being instituted until the 22 or 16 nm node (ca. 2015+).
 
29
For more details regarding EUV, see: Hutcheson, G. D. et al. Scientific American 2004, 290, 76.
 
30
Hiroshi, I. Adv. Polym. Sci. 2005, 172, 37, and references therein.
 
31
(a) http://​people.​ccmr.​cornell.​edu/​~cober/​MiniPresentation​s/​PAG_​RBSPC.​pdf. (b) Kim, K. -M.; Ayothi, R.; Ober, C. K. Polym. Bull. 2005, 55, 333.
 
32
For instance, see: (a) Dai, J.; Ober, C. K.; Wang, L.; Cerrina, F.; Nealey, P. F. Proc. SPIE - Int. Soc. Opt. Eng. 2002, 4690, 1193. (b) Kessel, C. R.; Boardman, L. D.; Rhyner, S. J.; Cobb, J. L.; Henderson, C. C.; Rao, V.; Okoroanyanwu, U. Proc. SPIE - Int. Soc. Opt. Eng. 1999, 3678, 214. (c) Bratton, D.; Yang, D.; Dai, J.; Ober, C. K. Polym. Adv. Technol. 2006, 17, 94, and references therein.
 
33
The depth of focus (DOF = λ/(NA)2) is also paramount toward resolution, as wafers are not atomically flat. Though it may be possible to adjust the wavelength and NA to achieve better resolution, the depth of field will decrease, making it difficult to define features simultaneously at the top and bottom surfaces. Consequently, chemical mechanical polishing (CMP) is used to planarize the wafer prior to high-resolution photolithography, and as thin a layer as possible of photoresist is applied to the wafer.
 
34
There are two methods used to remove the patterned material. Etching is where the photoresist is developed on top of the deposited layer. The underlying material is then removed by etching through openings in the mask. In contrast, lift-off is used when the material is deposited on top of the developed photoresist. The material is then lifted off when the resist is removed. For a nice summary of wet/dry etching, as well as etching vs. lift-off, see: http://​www.​mrsec.​harvard.​edu/​education/​ap298r2004/​Erli%20​chen%20​Fabrication%20​III%20​-%20​Etching.​pdf
 
35
A plasma is considered the fourth class of matter, in addition to solids, liquids, and gases. A plasma contains a mixture of ground-state and excited-state atoms, as well as ions.
 
36
C. J. Mogab, A. C. Adams, and D. L. Flamm, J. Appl. Phys. 1978, 49(7), 3796.
 
37
As its name applies, chemical mechanical polishing/planarization utilizes a hybrid of chemical and mechanical forces to yield a flat surface. It should be noted that using mechanical force alone (e.g., grinding) would successfully planarize a surface; however, this would cause too much surface degradation. For more information about this process, see: http://​maltiel-consulting.​com/​CMP-Chemical-mechanical_​planarization_​maltiel_​semiconductor.​pdf
 
39
This is typically performed through use of templates that are sacrificially removed following film deposition. For example, see: (a) Fuertes, M. C.; Soler-Illia, G. J. A. A. Chem. Mater. 2006, 18, 2109. (b) Xiao, L.; Zhang, H.; Scanlon, E.; Ramanathan, L. S.; Choe, E.-W.; Rogers, D.; Apple, T.; Benicewicz, B. C. Chem. Mater. 2005, 17, 5328. (c) Kanungo, M.; Deepa, P. N.; Collinson, M. M. Chem. Mater. 2004, 16, 5535. (d) Li, X. S.; Fryxell, G. E.; Birnbaum, J. C.; Wang, C. Langmuir 2004, 20, 9095.
 
40
For an animated website to illustrate the DC-diode and magnetron sputtering processes, see: http://​www.​ajaint.​com/​whatis.​htm
 
41
For example, Sigel, G. H.; Homa, D. S. U.S. Patent 7181116.
 
42
(a) Nasibulin, A. G.; Shurygina, L. I.; Kauppinen, E. I. Colloid J. 2005, 67, 1, and references therein. (b) Suzuki, K.; Kijima, K. Jpn. J. Appl. Phys. 2005, 44, 2081. (c) Chen, R. S.; Huang, Y. S.; Liang, Y. M.; Tsai, D. S.; Tiong, K. K. J. Alloys Compd. 2004, 383, 273. (d) Wang, Y. Q.; Chen, J. H.; Yoo, W. J.; Yeo, Y. -C. Mat. Res. Soc. Symp. Proc. 2005, 830, 269.
 
43
Barron, A. R. in CVD of Nonmetals, Rees, W. S. ed., Wiley: New York, 1996.
 
44
For a thorough description of kinetic and mass-transport mechanisms involved in CVD, as well as dependent variables, see: Pierson, H. O. Handbook of Chemical Vapor Deposition, 2nd ed., William Andrew: Norwich, NY, 1999.
 
45
(a) Schropp, R. E. Mater. Res. Soc. Symp. Proc. 2003, 762, 479. (b) Schropp, R. E. Thin Solid Films 2004, 451, 455. (c) Lau, K. K. S.; Murthy, S. K.; Lewis, H. G.; Pryce, C.; Jeffrey, A.; Gleason, K. K. J. Fluorine Chem. 2003, 122, 93. (d) Mahan, A. H. Solar Energy Mater. Solar Cells 2003, 78, 299. (e) Stannowski, B.; Rath, J. K.; Schropp, R. E. Thin Solid Films 2003, 430, 220. (f) Schroeder, B. Thin Solid Films 2003, 430, 1. (g) Duan, H. L.; Zaharias, G. A.; Bent, S. E. Curr. Opin. Solid State Mater. Sci. 2002, 6, 471. (h) Mahan, A. H. Solar Energy 2004, 77, 931. (i) Matsumura, H.; Umemoto, H.; Masuda, A. J. Non-Cryst. Solids 2004, 338, 19.
 
46
(a) Fahlman, B. D.; Barron, A. R. Adv. Mater. Opt. Electron. 2000, 10, 135. (b) Richards, V. N.; Vohs, J. K.; Williams, G. L.; Fahlman, B. D. J. Am. Ceram. Soc. 2005, 88, 1973.
 
47
Zhang, W. J.; Bello, I.; Lifshitz, Y.; Chan, K. M.; Meng, X. M.; Wu, Y.; Chan, C. Y.; Lee, S. T. Adv. Mater. 2004, 16, 1405.
 
49
For instance, see: (a) Xiong, G.; Elam, J. W.; Feng, H.; Han, C. Y.; Wang, H.-H.; Iton, L. E.; Curtiss, L. A.; Pellin, M. J.; Kung, M.; Kung, H.; Stair, P. C. J. Phys. Chem. B. 2005, 109, 14059. (b) Niinisto, J.; Rahtu, A.; Putkonen, M.; Ritala, M.; Leskela, M.; Niinisto, L. Langmuir 2005, 21, 7321. (c) Sechrist, Z. A.; Fabreguette, F. H.; Heintz, O.; Phung, T. M.; Johnson, D. C.; George, S. M. Chem. Mater. 2005, 17, 3475. (d) Reijnen, L.; Meester, B.; de Lange, F.; Schoonman, J.; Goossens, A. Chem. Mater. 2005, 17, 2724. (e) Matero, R.; Rahtu, A.; Ritala, M. Langmuir 2005, 21, 3498. (f) Min, Y.-S.; Cho, Y. J.; Hwang, C. S. Chem. Mater. 2005, 17, 626. (g) Gu, W.; Tripp, C. P. Langmuir 2005, 21, 211. (h) https://​pure.​tue.​nl/​ws/​files/​3625583/​671193474080774.​pdf. (i) http://​www.​cambridgenanotec​hald.​com/​pdf/​Li-ion-battery-web.​pdf
 
50
Fahlman, B. D.; Barron, A. R. Adv. Mater. Opt. Electron. 2000, 10(3–5), 135.
 
51
Although commercial ALD systems are priced well over 0024;100,000 USD, effective laboratory-scale systems may be fabricated at much lower cost: Lubitz, M.; Medina, P. A.; Antic, A.; Rosin, J. T.; Fahlman, B. D. J. Chem. Ed. 2014, 91, 1022.
 
52
(a) Hansen, B. N.; Hybertson, B. M.; Barkley, R. M.; Sievers, R. E. Chem. Mater. 1992, 4, 749. (b) Lagalante, A. F.; Hansen, B. N.; Bruno, T. J.; Sievers, R. E. Inorg. Chem. 1995, 34, 5781. (c) Fernandes, N. E.; Fisher, S. M.; Poshusta, J. C.; Vlachos, D. G.; Tsapatsis, M.; Watkins, J. J. Chem. Mater. 2001, 13, 2023. (d) Cabanas, A.; Long, D. P.; Watkins, J. J. Chem. Mater. 2004, 16, 2028. (e) Blackburn, J. M.; Long, D. P.; Watkins, J. J. Chem. Mater. 2000, 12, 2625. (f) Blackburn, J. M.; Long, D. P.; Cabanas, A.; Watkins, J. J. Science 2001, 294, 141. (g) Cabanas, A.; Blackburn, J. M.; Watkins, J. J. Microelectron. Eng. 2002, 64, 53. (h) Ohde, H.; Kramer, S.; Moore, S.; Wai, C. M. Chem. Mater. 2004, 16, 4028.
 
53
For a thorough review of CVD/ALD precursors, see: Fahlman, B. D. Curr. Org. Chem. 2006, 10, 1021.
 
54
Gardiner, R. A.; Gordon, D. C.; Stauf, G. T.; Vaarstra, B. A.; Ostrander, R. L.; Rheingold, L. Chem. Mater. 1994, 6, 1967.
 
55
For an example of fluorine-free polyether ligands used to successfully prevent oligomerization of barium complexes (particularly problematic for heavy Group II complexes due to the large ionic radius of the metal), see: Studebaker, D. B.; Neumayer, D. A.; Hinds, B. J.; Stern, C. L.; Marks, T. J. Inorg. Chem. 2000, 39, 3148.
 
56
For example, see: Gillan, E. G.; Bott, S. G.; Barron, A. R. Chem. Mater. 1997, 9, 796.
 
57
Hansen, B. N.; Brooks, M. H.; Barkley, R. M.; Sievers, R. E. Chem. Mater. 1992, 4, 749.
 
58
(a) Banger, K. K.; Jin, M. H.-C.; Harris, J. D.; Fanwick, P. E.; Hepp, A. F. Inorg. Chem. 2003, 42, 7713. (b) Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. Chem. Mater. 2003, 15, 3142.
 
59
In order to reduce the adhesion between a polymeric mold and a silicon/quartz master, the master surface is typically modified with a fluorosilane (e.g., CF3(CF2)6(CH2)2SiCl3(g)). In addition, the final removal of the mold may also be carried out in the presence of a liquid with a low viscosity such as methanol (solvent-assisted micromolding (SAMIM)).
 
60
For a nice survey of the benefits for (nano)imprint lithography relative to photolithography, see: https://​www.​azonano.​com/​article.​aspx?​ArticleID=​4323
 
61
A recent thorough review of nanofabrication using both hard and soft molds, as well as other forms of soft lithography, see: Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1171; for instance, CDs are made by imprinting patterns from Ni masters in polycarbonate (a) J. S. Winslow, IEEE Trans. Consumer Electron. 1976 (Nov.), 318); holograms are made by imprinting patterns from a fused quartz master in SURPHEX photopolymer (F. P. Shvartsman in Diffractive and Miniaturized Optics (Ed.: S.-H. Lee), SPIE Optical Engineering Press, Bellingham, WA, 1993, 165)
 
62
For example, see: Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Science 1996, 272, 85.
 
63
For example, see: Jackman, R. J.; Wilbur, J. L.; Whitesides, G. M. Science 1995, 269, 664.
 
64
(a) Im, J.; Kang, J.; Lee, M.; Kim, B.; Hong, S. J. Phys. Chem. B 2006, 110, 12839. (b) Cabrera, E. J.; Amade, R.; Jaller, L.; Pascual, E.; Bertran, E. J. Nanopart. Res. 2014, 16, 2172.
 
65
Myung, S.; Lee, M.; Kim, G. T.; Ha, J. S.; Hong, S. Adv. Mater. 2005, 17, 2361.
 
67
(a) Odom, T. W.; Thalladi, V. R.; Love, J. C.; Whitesides, G. M. J. Am. Chem. Soc. 2002, 124, 12112. (b) Odom, T. W.; Love, J. C.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Langmuir 2002, 18, 5314.
 
68
Li, H.-W.; Muir, B. V. O.; Fichet, G.; Huck, W. T. S. Langmuir 2003, 19, 1963.
 
69
Steward, A.; Toca-Herrera, J. L.; Clarke, J. Protein Sci. 2002, 11, 2179.
 
70
Note: PDMS is known to swell in organic solvents and leaves a silicone residue behind during its release from the substrate; these limitations are overcome for PFPE molds; for example, see: (a) Lee, J. N.; Park, C.; Whitesides, G. M. Anal. Chem. 2003, 75, 6544. (b) Rolland, J. P.; Hagberg, E. C.; Denison, G. M.; Carter, K. R.; DeSimone, J. M. Angew. Chem., Int. Ed. 2004, 43, 5796. (c) Rolland, J. P.; Van Dam, R. M.; Schorzman, D. A.; Quake, S. R.; DeSimone, J. M. J. Am. Chem. Soc. 2004, 126, 2322.
 
71
Maynor, B. W.; Larue, I.; Hu, Z.; Rolland, J. P.; Pandya, A.; Fu, Q.; Liu, J.; Spontak, R. J.; Sheiko, S. S.; Samulski, R. J.; Samulski, E. T.; DeSimone, J. M.
Small 2007, 3, 845.
 
72
Kelly, J. Y.; DeSimone, J. M. J. Am. Chem. Soc. 2008, 130, 5438.
 
73
Gratton, S. E. A.; Williams, S. S.; Napier, M. E.; Pohlhaus, P. D.; Zhou, Z.; Wiles, K. B.; Maynor, B. W.; Shen, C.; Olafsen, T.; Samulski, E. T.; Desimone, J. M. Acc. Chem. Res. 2008, 41, 1685.
 
74
Gratton, S. E. A.; Pohlhaus, P. D.; Lee, J.; Guo, J.; Cho, M. J.; DeSimone, J. M. J. Controlled Release 2007, 121, 10.
 
75
Gates, B. D.; Whitesides, G. M. J. Am. Chem. Soc. 2003, 125, 14986.
 
76
We will discuss the operating principle of atomic force microscopy (AFM) and other scanning force microscopies in more detail in Chap. 7. At this point, simply think of this technique as analogous to an antiquated record player, in which the needle gently touches the surface of the record to produce music. Similarly, the AFM tip either gently taps, or hovers immediately above, the surface of a planar substrate.
 
77
(a) Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661. (b) Hong, S.; Zhu, J.; Mirkin, C. A. Science 1999, 286, 523. (c) Hong, S.; Mirkin, C. A. Science 2000, 288, 1808.
 
78
(a) Rozhok, S.; Piner, R.; Mirkin, C. A J. Phys. Chem. B 2002, 107, 751. (b) Hampton, J. R.; Dameron, A. A.; Weiss, P. S. J. Am. Chem. Soc. 2006, 128, 1648. (c) Liu, G.; Zhou, Y.; Banga, R. S.; Boya, R.; Brown, K. A.; Chipre, A. J.; Mirkin, C. A. Chem. Sci. 2013, 4, 2093. (d) Urtizberea, A.; Hirtz, M.; Fuchs, H. Nanofab. 2016, 2, 43.
 
79
For a nice summary of phosphor classes, see: (a) https://​www.​electrochem.​org/​dl/​interface/​wtr/​wtr09/​wtr09_​p032-036.​pdf. (b) Xie, R. J.; Hirosaki, N. Sci. Technol. Adv. Mater. 2007, 8, 588.
 
80
For a review of nitride- and oxynitride-based phosphors, see: Xie, R. J.; Hirosaki, N. Sci. Technol. Adv. Mater. 2007, 8, 588.
 
81
Bowers, M. J.; McBride, J. R.; Rosenthal, S. J. J. Am. Chem. Soc. 2005, 127, 15378.
 
82
The fabrication steps for polymer OLED displays include: (i) deposit and pattern the ITO anode, (ii) pattern the conducting and emissive polymer layers (via spin-coating, ink jet printing, screen printing, or web coating methods), (iii) pattern and vacuum deposit the cathode (Ba, Ca/Al, etc.). For small-molecule OLEDs, the multilayer structure is fabricated in vacuo, involving a variety of patterning steps via shadow masking, followed by thermal evaporation (PVD) of layers using appropriate source materials.
 
83
For a review of transparent conductive films (fabrication and applications), see: Gordon, R. G. MRS Bull. 2000, 8, 52.
 
84
For a review of the band structure of doped tin oxide, see: Batzill, M.; Diebold, U. Prog. Surf. Sci. 2005, 79, 47.
 
86
For a review of exciton formation and OLEDs, see: Yersin, H. Top. Curr. Chem. 2004, 241, 1.
 
87
Note: spin-orbit coupling refers to the interaction of the spin magnetic moment of an electron with the magnetic moment arising from the orbital motion of the electron.
 
88
For a nice summary of triplet emitters for OLED applications, see: Yersin, H.; Finkenzeller, W. J. in Highly Efficient OLEDs with Phosphorescent Materials, Yersin, H. ed., Wiley-VCH: Weinheim, 2008.
 
90
Vidor, F. F.; Meyers, T.; Hilleringmann, U. Electronics 2015, 4, 480.
 
92
For more details regarding amorphous oxide semiconductors and thin-film transistor designs, see: (a) Fortunato, E.; Barquinha, P.; Martins, R. Adv. Mater. 2012, 24, 2945. (b) Park, J. S.; Maeng, W. J.; Kim, H. S.; Park, J. S. Thin Solid Films 2012, 520, 1679. (c) Lin, Y. H.; Faber, H.; Labram, J. G.; Stratakis, E.; Sygellou, L.; Kymakis, E.; Hastas, N. A.; Li, R.; Zhao, K.; Armassian, A.; Treat, N. D.; McLachlan, M.; Anthopoulos, T. D. Adv. Sci. 2015, 2, 1500058. (d) Kwon, J. Y.; Lee, D. J.; Kim, K. B. Electron. Mater. Lett. 2011, 7, 1. (e) Hosono, H.; Kim, J.; Toda, Y.; Kamiya, T.; Watanabe, S. Proc. Nat. Acad. Sci. 2016, 114, 233.
 
94
A nice brief overview of thermoelectricity may be found online: https://​www.​technologyreview​.​com/​s/​401415/​thermoelectric-materials/​
 
95
For details regarding all aspects of thermoelectric materials, refer to the March 31, 2006 issue of the MRS Bulletin, which is devoted entirely to this topic. More information is also found in: Uher, C. Materials Aspect of Thermoelectricity, CRC Press: New York, 2016 (ISBN: 9781498754903).
 
96
For example, see: Mangersnes, K.; Lovvik, O. M.; Prytz, O. New J. Phys. 2008, 10, 1.
 
97
For example, see: Kleinke, H. J. Appl. Phys. 2009, 105, 053703.
 
98
For example, see: Hebert, S.; Lambert, S.; Pelloquin, D.; Maignan, A. Phys. Rev. B 2001, 64, 172101, and references therein.
 
99
For example, see: Wilson-Short, G. B.; Singh, D. J.; Fornari, M.; Suewattana, M. Phys. Rev. B 2007, 75, 035121, and references therein.
 
100
For example: (a) Johnsen, S.; He, J.; Androulakis, J.; Dravid, V. P.; Todorov, L.; Chung, D. Y.; Kanatzidis, M. G. J. Am. Chem. Soc. 2011, 133, 3460. (b) Maltsev, Y. V.; Nensberg, E. D.; Petrov, A. V.; Semiletov, S. A.; Ukhanov, Y. I. Phys. Solid State 1967, 8, 1713. (c) Sootsman, J. R.; Pcionek, R. J.; Kong, H. J.; Uher, C.; Kanatzidis, M. G. Chem. Mater. 2006, 18, 4993.
 
101
Lo, S. H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V. P.; Katatzidis, M. G. Nature 2014, 508, 373.
 
102
For example, see: Liang, W.; Hochbaum, A. I.; Fardy, M.; Rabin, O.; Zhang, M.; Yang, P. Nano Lett. 2009, 9, 1689, and references therein.
 
103
For instance, see: Ham, J.; Shim, W.; Kim, D. H.; Lee, S.; Roh, J.; Sohn, S. W.; Oh, K. H.; Voorhees, P. W.; Lee, W. Nano Lett. 2009, 9, 2867, and references therein.
 
104
Lee, J. -H.; Galli, G. A.; Grossman, J. C. Nano Lett. 2008, 8, 3750.
 
105
Girard, S. N.; He, J.; Zhou, X.; Shoemaker, D.; Jaworski, C. M.; Uher, C.; Dravid, V. P.; Heremans, J. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2011, 133, 16588.
 
106
(a) Biswas, K.; He, J.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. Nature 2012, 489, 414. (b) Zhao, L. D.; Zhang, X.; Wu, H.; Tan, G.; Pei, Y.; Xiao, Y.; Chang, C.; Wu, D.; Chi, H.; Zheng, L.; Gong, S.; Uher, C.; He, J.; Kanatzidis, M. G. J. Am. Chem. Soc. 2016, 138, 2366. (c) Lee, Y.; Lo, S. H.; Chen, C.; Sun, H.; Chung, D. Y.; Chasapis, T. C.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Nature Commun. 2014, 5, 3640. (d) Zhao, L. D.; Lo, S. H.; He, J.; Li, H.; Biswas, K.; Androulakis, J.; Wu, C. I.; Hogan, T. P.; Chung, D. Y.; Dravid, V. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2011, 133, 20476.
 
107
More details regarding the benefits of nanostructures for thermoelectric applications may be found at: http://​www.​cs.​duke.​edu/​~reif/​NSF.​NanoEnergy/​Report/​
 
108
For a nice summary of the development of nanomaterials with high ZT, see: Li, J. F.; Liu, W. S.; Zhao, L. D.; Zhou, M. NPG Asia Mater. 2010, 2, 152 (available online: https://​www.​nature.​com/​am/​journal/​v2/​n4/​pdf/​am2010112a.​pdf)
 
110
Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. The remaining photon energy is primarily lost by reflection or transmission through the cell, conversion to heat, or exciton recombination.
 
111
http://​www.​nrel.​gov. It should be noted that solar cells are limited by a number of intrinsic and extrinsic losses. Extrinsic sources include reflection, series resistance, absorption within interlayers, nonradiative recombination, and many others. Intrinsic sources include inefficient collection of solar photon energies by each layer, and radiative recombination. For details on these limitations, see: Henry, C. H. J. Appl. Phys. 1980, 51, 4494.
 
112
For a review of the processes involved in DSSCs, see: Peter, L. Acc. Chem. Res. 2009, 42, 1839.
 
113
There have been recent efforts toward designing solid-state DSSCs, which represent a more commercially-viable device. Previous designs featured liquid electrolytes; for example: Yanagida, S.; Yu, Y.; Manseki, K. Acc. Chem. Res. 2009, 42, 1827. However, iodine/iodide-based electrolytes have certain disadvantages. Other designs have featured solid electrolytes poly(N-alkyl-4-vinyl-pyridine) iodide/N-methyl pyridine iodide and 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spiro-bifluorene (Spiro-OMeTAD). For example, see: (a) Wu, J.; Hao, S.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Li, P.; Yin, S.; Sato, T. J. Am. Chem. Soc. 2008, 130, 11568. (b) Moon, S. -J.; Yum, Y -H.; Humphry-Baker, R.; Karlsson, K. M.; Hagberg, D. P.; Marinado, T.; Hagfeldt, A.; Sun, L.; Gratzel, M.; Nazeeruddin, M. K. J. Phys. Chem. C 2009, 113, 16816. (c) Cappel, U. B.; Karlsson, M. H.; Pschirer, N. G.; Eickemeyer, F.; Schoneboom, J.; Erk, P.; Boschloo, G.; Gagfeldt, A. J. Phys. Chem. C 2009, 113, 14595.
 
114
For a thorough review of DSSCs, see: (a) Gratzel, M. Inorg. Chem. 2005, 44, 6841. (b) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
 
115
Park, B.; Moon, J. Procedia Comp. Sci. 2017, 122, 965.
 
116
For a review of polymer-based organic solar cells, see: (a) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324. (b) Kim, H.; Nam, S.; Jeong, J.; Lee, S.; Seo, J.; Han, H.; Kim, Y. Kor. J. Chem. Eng. 2014, 31, 1095.
 
117
Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486.
 
118
Wang, Y. Solar Energy Mater. Solar Cells 2009, 93, 1167.
 
119
Due to the toxicity of lead, there is interest in replacing Pb with Sn for perovskite solar cells. For instance, see: Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nat. Photonics 2014, 8, 489.
 
120
McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Horantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Science 2016, 351, 151.
 
121
(a) Sivaram, V.; Stranks, S. D.; Snaith, H. J. Sci. Am. 2015, 313, 54. (b) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Prog. Photovolt. Res. Appl. 2015, 23, 805.
 
122
Serrano-Lujan, L.; Espinosa, N.; Larsen-Olsen, T. T.; Abad, J.; Urbina, A.; Krebs, F. C. Adv. Energy Mater. 2015, 5, 01119.
 
Literatur
1.
Zurück zum Zitat Kasap SO. Principles of electronic materials and devices. 4th ed. New York: McGraw Hill; 2017. Kasap SO. Principles of electronic materials and devices. 4th ed. New York: McGraw Hill; 2017.
2.
Zurück zum Zitat Plummer JD, Deal MD, Griffin PB. Silicon VLSI technology: fundamentals, practice, and modeling. Upper Saddle River: Prentice Hall; 2000. Plummer JD, Deal MD, Griffin PB. Silicon VLSI technology: fundamentals, practice, and modeling. Upper Saddle River: Prentice Hall; 2000.
3.
Zurück zum Zitat Rabaey JM, Chandrakasan A, Nikolic B. Digital integrated circuits. 2nd ed. New York: Pearson; 2003. Rabaey JM, Chandrakasan A, Nikolic B. Digital integrated circuits. 2nd ed. New York: Pearson; 2003.
4.
Zurück zum Zitat Campbell SA. Fabrication engineering at the micro- and nanoscale. 4th ed. New York: Oxford Univ. Press; 2012. Campbell SA. Fabrication engineering at the micro- and nanoscale. 4th ed. New York: Oxford Univ. Press; 2012.
5.
Zurück zum Zitat Weste N, Harris D. CMOS VLSI design: a circuits and systems perspective. 4th ed. New York: Pearson; 2010. Weste N, Harris D. CMOS VLSI design: a circuits and systems perspective. 4th ed. New York: Pearson; 2010.
6.
Zurück zum Zitat Wilmsen C, editor. Physics and chemistry of III–V compound semiconductor interfaces. New York: Springer; 1985. Wilmsen C, editor. Physics and chemistry of III–V compound semiconductor interfaces. New York: Springer; 1985.
7.
Zurück zum Zitat Misra A, Hogan JD, Chorush RA. Handbook of chemicals and gases for the semiconductor industry. New York: Wiley; 2002.CrossRef Misra A, Hogan JD, Chorush RA. Handbook of chemicals and gases for the semiconductor industry. New York: Wiley; 2002.CrossRef
8.
Zurück zum Zitat Moss SJ, Ledwith A. The chemistry of the semiconductor industry. New York: Chapman and Hall; 1987. Moss SJ, Ledwith A. The chemistry of the semiconductor industry. New York: Chapman and Hall; 1987.
9.
Zurück zum Zitat Turley J. The essential guide to semiconductors. Upper Saddle River: Prentice Hall; 2003. Turley J. The essential guide to semiconductors. Upper Saddle River: Prentice Hall; 2003.
10.
Zurück zum Zitat Pierret RF. Semiconductor fundamentals, vol. I. 2nd ed. Upper Saddle River: Prentice Hall; 1988. Pierret RF. Semiconductor fundamentals, vol. I. 2nd ed. Upper Saddle River: Prentice Hall; 1988.
11.
Zurück zum Zitat Streetman B, Banerjee S. Solid state electronic devices. 7th ed. Upper Saddle River: Prentice Hall; 2014. Streetman B, Banerjee S. Solid state electronic devices. 7th ed. Upper Saddle River: Prentice Hall; 2014.
12.
Zurück zum Zitat Hamers RJ, Wang Y. Atomically-resolved studies of the chemistry and bonding at silicon surfaces. Chem Rev. 1996;96:1261.CrossRef Hamers RJ, Wang Y. Atomically-resolved studies of the chemistry and bonding at silicon surfaces. Chem Rev. 1996;96:1261.CrossRef
13.
Zurück zum Zitat Waltenburg HN, Yates JT. Surface chemistry of silicon. Chem Rev. 1995;95:1589.CrossRef Waltenburg HN, Yates JT. Surface chemistry of silicon. Chem Rev. 1995;95:1589.CrossRef
14.
Zurück zum Zitat Recent reviews of high-κ dielectric materials: (a) Locquet J-P, Marchiori C, Sousa M, Fompeyrine J, Seo JW. J Appl Phys. 2006;100:051610; (b) Robertson, J. Rep Prog Phys 2006;69:327. Recent reviews of high-κ dielectric materials: (a) Locquet J-P, Marchiori C, Sousa M, Fompeyrine J, Seo JW. J Appl Phys. 2006;100:051610; (b) Robertson, J. Rep Prog Phys 2006;69:327.
16.
Zurück zum Zitat Pierson HO. Handbook of CVD. 2nd ed. Norwich: Noyes Publications; 1999. Pierson HO. Handbook of CVD. 2nd ed. Norwich: Noyes Publications; 1999.
17.
Zurück zum Zitat Madou MJ. Fundamentals of microfabrication and nanotechnology. 3rd ed. New York: CRC Press; 2011.CrossRef Madou MJ. Fundamentals of microfabrication and nanotechnology. 3rd ed. New York: CRC Press; 2011.CrossRef
18.
Zurück zum Zitat Jones AC, Hitchman ML. Chemical vapor deposition: precursors, processes and applications. London: RSC; 2009. Jones AC, Hitchman ML. Chemical vapor deposition: precursors, processes and applications. London: RSC; 2009.
19.
Zurück zum Zitat Dobkin DM, Zuraw MK. Principles of chemical vapor deposition. New York: Kluwer; 2003.CrossRef Dobkin DM, Zuraw MK. Principles of chemical vapor deposition. New York: Kluwer; 2003.CrossRef
Metadaten
Titel
Semiconductors
verfasst von
Bradley D. Fahlman
Copyright-Jahr
2018
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-024-1255-0_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.