Skip to main content

2018 | Supplement | Buchkapitel

9. Metasurface Antennas

verfasst von : Gabriele Minatti, Marco Faenzi, Mario Mencagli, Francesco Caminita, David González Ovejero, Cristian Della Giovampaola, Alice Benini, Enrica Martini, Marco Sabbadini, Stefano Maci

Erschienen in: Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reports design and analysis methods for planar antennas based on modulated metasurfaces (MTSs). These antennas transform a surface wave (SW) into a leaky wave by means of the interaction with a MTS having a spatially modulated equivalent impedance. The basic concept is that the MTS imposes the impedance boundary conditions (BCs) seen by the SW, and therefore the MTS controls amplitude, phase, and polarization of the aperture field. Thus, MTS antennas are highly customizable in terms of their performances, by simply changing the MTS and without affecting the overall structure. Several technological solutions can be adopted to implement the MTS, from sub-wavelength patches printed on a grounded slab at microwave frequencies, to a bed of nails structure in the millimetre and sub-millimetre wave range: in any case, the resulting device has light weight and a low profile. The design of the MTS is based on a generalized form of the Floquet wave theorem adiabatically applied to curvilinear locally periodic BCs. The design defines the continuous BCs required for reproducing a desired aperture field, and it is verified by a fast full-wave solver for impedance BCs. Next, the continuous BCs are discretized and implemented by a distribution of electrically small printed metallic elements in a regular lattice, like pixels in an image. The final layout is composed of tens of thousands of pixels and it is analyzed by a full-wave solver which makes use of entire domain basis functions combined with a fast-multipole algorithm. Examples of design and realizations of MTS antennas are shown, proving the effectiveness of the concept.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.L. Holloway, A. Dienstfrey, E.F. Kuester, J.F. O’Hara, A.K. Azad, A.J. Taylor, A discussion on the interpretation and characterization of metafilms/metasurfaces: the two dimensional equivalent of metamaterials. Metamaterials 3, 100–112 (2009)CrossRef C.L. Holloway, A. Dienstfrey, E.F. Kuester, J.F. O’Hara, A.K. Azad, A.J. Taylor, A discussion on the interpretation and characterization of metafilms/metasurfaces: the two dimensional equivalent of metamaterials. Metamaterials 3, 100–112 (2009)CrossRef
2.
Zurück zum Zitat M.G. Silverinha, C.A. Fernandes, J.R. Costa, Electromagnetic charactrerization of textured surfaces formed by metallic pins. IEEE Trans. Antennas Propag. 56(2), 405, 415 (2008) M.G. Silverinha, C.A. Fernandes, J.R. Costa, Electromagnetic charactrerization of textured surfaces formed by metallic pins. IEEE Trans. Antennas Propag. 56(2), 405, 415 (2008)
3.
Zurück zum Zitat C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54(2), 10–35 (2012)CrossRef C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54(2), 10–35 (2012)CrossRef
4.
Zurück zum Zitat G. Minatti, F. Caminita, M. Casaletti, S. Maci, Spiral leaky-wave antennas based on modulated surface impedance. IEEE Trans. Antennas Propag. 59(12), 4436–4444 (2011)MathSciNetCrossRefMATH G. Minatti, F. Caminita, M. Casaletti, S. Maci, Spiral leaky-wave antennas based on modulated surface impedance. IEEE Trans. Antennas Propag. 59(12), 4436–4444 (2011)MathSciNetCrossRefMATH
5.
Zurück zum Zitat A.M. Patel, A. Grbic, A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface. IEEE Trans. Antennas Propag. 59(6), 2087–2096 (2011)CrossRef A.M. Patel, A. Grbic, A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface. IEEE Trans. Antennas Propag. 59(6), 2087–2096 (2011)CrossRef
6.
Zurück zum Zitat G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, S. Maci, Modulated metasurface antennas for space: synthesis, analysis and realizations. IEEE Trans. Antennas Propag. 63(4), 1288–1300 (2015)MathSciNetCrossRef G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, S. Maci, Modulated metasurface antennas for space: synthesis, analysis and realizations. IEEE Trans. Antennas Propag. 63(4), 1288–1300 (2015)MathSciNetCrossRef
7.
Zurück zum Zitat B.H. Fong, J.S. Colburn, J.J. Ottusch, J.L. Visher, D.F. Sievenpiper, Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58(10), 3212–3221 (2010)CrossRef B.H. Fong, J.S. Colburn, J.J. Ottusch, J.L. Visher, D.F. Sievenpiper, Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58(10), 3212–3221 (2010)CrossRef
8.
Zurück zum Zitat G. Minatti, S. Maci, P. De Vita, A. Freni, M. Sabbadini, A circularly-polarized isoflux antenna based on anisotropic metasurface. IEEE Trans. Antennas Propag. 60(11), 4998–5009 (2012)MathSciNetCrossRefMATH G. Minatti, S. Maci, P. De Vita, A. Freni, M. Sabbadini, A circularly-polarized isoflux antenna based on anisotropic metasurface. IEEE Trans. Antennas Propag. 60(11), 4998–5009 (2012)MathSciNetCrossRefMATH
9.
Zurück zum Zitat M. Faenzi, F. Caminita, E. Martini, P. De Vita, G. Minatti, M. Sabbadini, S. Maci, Realization and measurement of broadside beam modulated metasurface antennas, in Antennas Wirel. Propag. Lett. IEEE 15, 610–613, (2016)CrossRef M. Faenzi, F. Caminita, E. Martini, P. De Vita, G. Minatti, M. Sabbadini, S. Maci, Realization and measurement of broadside beam modulated metasurface antennas, in Antennas Wirel. Propag. Lett. IEEE 15, 610–613, (2016)CrossRef
10.
Zurück zum Zitat S. Pandi, C.A. Balanis, C.R. Birtcher, Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization. IEEE Trans. Antennas Propag. 63(7), 3016–3024 (2015)MathSciNetCrossRefMATH S. Pandi, C.A. Balanis, C.R. Birtcher, Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization. IEEE Trans. Antennas Propag. 63(7), 3016–3024 (2015)MathSciNetCrossRefMATH
11.
Zurück zum Zitat M. Casaletti, M. Śmierzchalski, M. Ettorre, R. Sauleau, N. Capet, Polarized beams using scalar metasurfaces. IEEE Trans. Antennas Propag. 64(8), 3391–3400 (2016)MathSciNetCrossRefMATH M. Casaletti, M. Śmierzchalski, M. Ettorre, R. Sauleau, N. Capet, Polarized beams using scalar metasurfaces. IEEE Trans. Antennas Propag. 64(8), 3391–3400 (2016)MathSciNetCrossRefMATH
12.
Zurück zum Zitat M. Sabbadini, G. Minatti, S. Maci, P. De Vita, Method for designing a modulated metasurface antenna structure. Patent WO 2015090351 A1, 25 June 2015 M. Sabbadini, G. Minatti, S. Maci, P. De Vita, Method for designing a modulated metasurface antenna structure. Patent WO 2015090351 A1, 25 June 2015
13.
Zurück zum Zitat S. Maci, G. Minatti, M. Casaletti, M. Bosiljevac, Metasurfing: addressing waves on impenetrable metasurfaces. IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011)CrossRef S. Maci, G. Minatti, M. Casaletti, M. Bosiljevac, Metasurfing: addressing waves on impenetrable metasurfaces. IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011)CrossRef
14.
Zurück zum Zitat E. Martini, S. Maci, Metasurface Transformation Theory, in Transformation Electromagnetics and Metamaterials, ed. by D.H. Werner, D.H. Know (Springer, London, 2013), pp. 83–116 E. Martini, S. Maci, Metasurface Transformation Theory, in Transformation Electromagnetics and Metamaterials, ed. by D.H. Werner, D.H. Know (Springer, London, 2013), pp. 83–116
15.
Zurück zum Zitat C. Pfeiffer, A. Grbic, A printed, broadband Luneburg lens antenna. IEEE Trans. Antennas Propag. 58(9), 3055–3059 (2010)CrossRef C. Pfeiffer, A. Grbic, A printed, broadband Luneburg lens antenna. IEEE Trans. Antennas Propag. 58(9), 3055–3059 (2010)CrossRef
16.
Zurück zum Zitat M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, S. Maci, Non-uniform metasurface Luneburg lens antenna design. IEEE Trans. Antennas Propag. 60(9), 4065–4073 (2012)MathSciNetCrossRefMATH M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, S. Maci, Non-uniform metasurface Luneburg lens antenna design. IEEE Trans. Antennas Propag. 60(9), 4065–4073 (2012)MathSciNetCrossRefMATH
17.
Zurück zum Zitat C. Pfeiffer, A. Grbic, Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110(19), 197401 (2013)CrossRef C. Pfeiffer, A. Grbic, Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110(19), 197401 (2013)CrossRef
18.
Zurück zum Zitat M. Selvanayagam, G. Eleftheriades, Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Opt. Express 21(12), 14409–14429 (2013)CrossRef M. Selvanayagam, G. Eleftheriades, Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Opt. Express 21(12), 14409–14429 (2013)CrossRef
19.
Zurück zum Zitat N. Yu, P. Genevet, F. Aieta, M.A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, F. Capasso, Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Topics Quantum Electron. 19(3), 4700423–4700423 (2013) N. Yu, P. Genevet, F. Aieta, M.A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, F. Capasso, Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Topics Quantum Electron. 19(3), 4700423–4700423 (2013)
20.
Zurück zum Zitat P.S. Kildal, E. Alfonso, A. Valero-Nogueira, E. Rajo-Iglesias, Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009)CrossRef P.S. Kildal, E. Alfonso, A. Valero-Nogueira, E. Rajo-Iglesias, Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009)CrossRef
21.
Zurück zum Zitat A.M. Patel, A. Grbic, Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces. IEEE Trans. Microwave Theory Tech. 62(5), 1102–1111 (2014)CrossRef A.M. Patel, A. Grbic, Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces. IEEE Trans. Microwave Theory Tech. 62(5), 1102–1111 (2014)CrossRef
22.
Zurück zum Zitat R. Quarfoth, D. Sievenpiper, Surface wave scattering reduction using beam shifters. IEEE Antennas Wirel. Propag. Lett. 13, 963,966 (2014)CrossRef R. Quarfoth, D. Sievenpiper, Surface wave scattering reduction using beam shifters. IEEE Antennas Wirel. Propag. Lett. 13, 963,966 (2014)CrossRef
23.
Zurück zum Zitat A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291–1294 (2011)CrossRef A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291–1294 (2011)CrossRef
24.
Zurück zum Zitat R. Yang, Y. Hao, An accurate control of the surface wave using transformation optics. Opt. Express 20(9), 9341–9350 (2012)CrossRef R. Yang, Y. Hao, An accurate control of the surface wave using transformation optics. Opt. Express 20(9), 9341–9350 (2012)CrossRef
25.
Zurück zum Zitat R. Yang, W. Tang, T. Hao, Wideband beam-steerable flat reflectors via transformation optics. IEEE Antennas Wirel. Propag. Lett. 10, 99–102 (2011) R. Yang, W. Tang, T. Hao, Wideband beam-steerable flat reflectors via transformation optics. IEEE Antennas Wirel. Propag. Lett. 10, 99–102 (2011)
26.
Zurück zum Zitat W. Tang, C. Argyropoulos, E. Kallos, S. Wei, Y. Hao, Discrete coordinate transformation for designing all-dielectric flat antennas. IEEE Trans. Antennas Propag. 58(12), 3795–3804 (2010)CrossRef W. Tang, C. Argyropoulos, E. Kallos, S. Wei, Y. Hao, Discrete coordinate transformation for designing all-dielectric flat antennas. IEEE Trans. Antennas Propag. 58(12), 3795–3804 (2010)CrossRef
27.
Zurück zum Zitat M. Mencagli Jr., E. Martini, D. Gonzàlez-Ovejero, S. Maci, Metasurface transformation optics. J. Opt. 16, 125106 (2014)CrossRef M. Mencagli Jr., E. Martini, D. Gonzàlez-Ovejero, S. Maci, Metasurface transformation optics. J. Opt. 16, 125106 (2014)CrossRef
28.
Zurück zum Zitat M. Mencagli Jr., E Martini, D Gonzàlez-Ovejero, S Maci Metasurfing by Transformation Electromagnetics. IEEE Antennas Wirel. Propag. 13, 1767, 1770 (2014)CrossRef M. Mencagli Jr., E Martini, D Gonzàlez-Ovejero, S Maci Metasurfing by Transformation Electromagnetics. IEEE Antennas Wirel. Propag. 13, 1767, 1770 (2014)CrossRef
29.
Zurück zum Zitat E. Martini, M. Mencagli, S. Maci, Metasurface transformation for Surface wave control. Phyl. Trans. R. Soc. A A373, 20140355 (2015)CrossRef E. Martini, M. Mencagli, S. Maci, Metasurface transformation for Surface wave control. Phyl. Trans. R. Soc. A A373, 20140355 (2015)CrossRef
30.
Zurück zum Zitat M. Mencagli, E. Martini, S. Maci, Surface wave dispersion for anisotropic metasurfaces constituted by elliptical patches. IEEE Trans. Antennas Propag. 63(7), 2992–3003 (2015)MathSciNetCrossRefMATH M. Mencagli, E. Martini, S. Maci, Surface wave dispersion for anisotropic metasurfaces constituted by elliptical patches. IEEE Trans. Antennas Propag. 63(7), 2992–3003 (2015)MathSciNetCrossRefMATH
31.
Zurück zum Zitat A.M. Patel, A. Grbic, Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS). IEEE Trans. Microwave Theory Tech. 61(4), 1403–1413 (2013)CrossRef A.M. Patel, A. Grbic, Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS). IEEE Trans. Microwave Theory Tech. 61(4), 1403–1413 (2013)CrossRef
32.
Zurück zum Zitat M. Mencagli Jr., E. Martini, S. Maci, Transition functions for closed form representation of metasurface reactance. IEEE Trans. Antennas Propag. 64(1), 136–145 (2016)MathSciNetCrossRefMATH M. Mencagli Jr., E. Martini, S. Maci, Transition functions for closed form representation of metasurface reactance. IEEE Trans. Antennas Propag. 64(1), 136–145 (2016)MathSciNetCrossRefMATH
33.
Zurück zum Zitat M. Mencagli Jr., C. Della Giovampaola, S. Maci, A Closed-form representation of isofrequency dispersion curve and group velocity for surface waves supported by anisotropic and spatially dispersive metasurfaces, 64(6), 2319–2327 (2016) M. Mencagli Jr., C. Della Giovampaola, S. Maci, A Closed-form representation of isofrequency dispersion curve and group velocity for surface waves supported by anisotropic and spatially dispersive metasurfaces, 64​(6), 2319–2327 (2016)
34.
Zurück zum Zitat O.M Bucci, G Franceschetti, G. Mazzarella, G. Panariello, Intersection approach to array pattern synthesis. IEE Proc. H Microwaves Antennas Propag. 137(6), 349–357 (1990)CrossRef O.M Bucci, G Franceschetti, G. Mazzarella, G. Panariello, Intersection approach to array pattern synthesis. IEE Proc. H Microwaves Antennas Propag. 137(6), 349–357 (1990)CrossRef
35.
Zurück zum Zitat G. Minatti, F. Caminita, E. Martini, S. Maci, Flat optics for leaky-waves on modulated metasurfaces: adiabatic floquet-wave analysis. IEEE Trans. Antennas Propag. 64(9), 3896–3906 (2016)MathSciNetCrossRefMATH G. Minatti, F. Caminita, E. Martini, S. Maci, Flat optics for leaky-waves on modulated metasurfaces: adiabatic floquet-wave analysis. IEEE Trans. Antennas Propag. 64(9), 3896–3906 (2016)MathSciNetCrossRefMATH
36.
Zurück zum Zitat G. Minatti, F. Caminita, E. Martini, M. Sabbadini, S. Maci, Synthesis of modulated-metasurface antennas with amplitude, phase and polarization control. IEEE Trans. Antennas Propag. 64(9), 3907–3919 (2016)MathSciNetCrossRefMATH G. Minatti, F. Caminita, E. Martini, M. Sabbadini, S. Maci, Synthesis of modulated-metasurface antennas with amplitude, phase and polarization control. IEEE Trans. Antennas Propag. 64(9), 3907–3919 (2016)MathSciNetCrossRefMATH
37.
Zurück zum Zitat D. Gonzalez-Ovejero, S. Maci, Gaussian ring basis functions for the analysis of modulated metasurface antennas. IEEE Trans. Antennas Propag. 63(9), 3982–3993 (2015)MathSciNetCrossRefMATH D. Gonzalez-Ovejero, S. Maci, Gaussian ring basis functions for the analysis of modulated metasurface antennas. IEEE Trans. Antennas Propag. 63(9), 3982–3993 (2015)MathSciNetCrossRefMATH
38.
Zurück zum Zitat S. Maci, M. Caiazzo, A. Cucini, M. Casaletti, A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab. IEEE Trans. Antennas Propag. 53(1), 70–81 (2005)CrossRef S. Maci, M. Caiazzo, A. Cucini, M. Casaletti, A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab. IEEE Trans. Antennas Propag. 53(1), 70–81 (2005)CrossRef
39.
Zurück zum Zitat M.A. Francavilla, E. Martini, S. Maci, G. Vecchi, On the numerical simulation of metasurfaces with impedance boundary condition integral equations. IEEE Trans. Antennas Propag. 63(5), 2153–2161 (2015)CrossRef M.A. Francavilla, E. Martini, S. Maci, G. Vecchi, On the numerical simulation of metasurfaces with impedance boundary condition integral equations. IEEE Trans. Antennas Propag. 63(5), 2153–2161 (2015)CrossRef
40.
Zurück zum Zitat V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 36(2), 414–439 (1990)MathSciNetCrossRefMATH V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 36(2), 414–439 (1990)MathSciNetCrossRefMATH
41.
Zurück zum Zitat C.R. Anderson, An implementation of the fast multipole method without multipole. SIAM J. Sci. Stat. Comput. 13(4), 923–947 (1992)MathSciNetCrossRef C.R. Anderson, An implementation of the fast multipole method without multipole. SIAM J. Sci. Stat. Comput. 13(4), 923–947 (1992)MathSciNetCrossRef
42.
Zurück zum Zitat M. Albani, A. Mazzinghi, A. Freni, Asymptotic approximation of mutual admittance involved in MoM analysis of RLSA antennas. IEEE Trans. Antennas Propag. 57(4) (2009)CrossRef M. Albani, A. Mazzinghi, A. Freni, Asymptotic approximation of mutual admittance involved in MoM analysis of RLSA antennas. IEEE Trans. Antennas Propag. 57(4) (2009)CrossRef
43.
Zurück zum Zitat A. Tellechea, F. Caminita, E. Martini, I. Ederra, J.C. Iriarte, R. Gonzalo, S. Maci, Dual circularly-polarized broadside beam metasurface antenna. IEEE Trans. Antennas Propag. 64(7) 2944–2953 (2016) A. Tellechea, F. Caminita, E. Martini, I. Ederra, J.C. Iriarte, R. Gonzalo, S. Maci, Dual circularly-polarized broadside beam metasurface antenna. IEEE Trans. Antennas Propag. 64(7) 2944–2953 (2016)
44.
Zurück zum Zitat A. Chakraborty, B.N. Das, G.S. Sanyal, Determination of phase functions for a desired one-dimensional pattern. IEEE Trans. Antennas Propag. 29(3), 502–506 (1981)CrossRef A. Chakraborty, B.N. Das, G.S. Sanyal, Determination of phase functions for a desired one-dimensional pattern. IEEE Trans. Antennas Propag. 29(3), 502–506 (1981)CrossRef
45.
Zurück zum Zitat G. Minatti, E. Martini, S. Maci, Efficiency of metasurface antennas. IEEE Trans. Antennas Propag. 65(4), 1532–1541, (2017)MathSciNetCrossRef G. Minatti, E. Martini, S. Maci, Efficiency of metasurface antennas. IEEE Trans. Antennas Propag. 65(4), 1532–1541, (2017)MathSciNetCrossRef
46.
Zurück zum Zitat A.L. Cullen, The excitation of plane surface waves. Proc. IEE—Part IV Inst. Monogr. 101(7), 225–234 (1954) A.L. Cullen, The excitation of plane surface waves. Proc. IEE—Part IV Inst. Monogr. 101(7), 225–234 (1954)
47.
Zurück zum Zitat A. Kay, F. Zucker, Efficiency of surface wave excitation, in 1958 IRE International Convention Record (New York, NY, USA, 1955), pp. 1–5 A. Kay, F. Zucker, Efficiency of surface wave excitation, in 1958 IRE International Convention Record (New York, NY, USA, 1955), pp. 1–5
48.
Zurück zum Zitat A.L. Cullen, A note on the excitation of surface waves. Proc. IEE—Part C Monogr. 104(6), 472–474 (1957)CrossRef A.L. Cullen, A note on the excitation of surface waves. Proc. IEE—Part C Monogr. 104(6), 472–474 (1957)CrossRef
49.
Zurück zum Zitat D.A. Hill, J.R. Wait, Excitation of the Zenneck surface wave by a vertical aperture. Radio Sci. 13(6), 969–977 (1978)CrossRef D.A. Hill, J.R. Wait, Excitation of the Zenneck surface wave by a vertical aperture. Radio Sci. 13(6), 969–977 (1978)CrossRef
50.
Zurück zum Zitat S. Mahmoud, Y.M.M. Antar, H. Hammad, A. Freundorfer, Theoretical considerations in the optimization of surface waves on a planar structure. IEEE Trans. Antennas Propag. 52(8), 2057–2063 (2004)MathSciNetCrossRef S. Mahmoud, Y.M.M. Antar, H. Hammad, A. Freundorfer, Theoretical considerations in the optimization of surface waves on a planar structure. IEEE Trans. Antennas Propag. 52(8), 2057–2063 (2004)MathSciNetCrossRef
51.
Zurück zum Zitat H. Hammad, Y.M.M. Antar, A. Freundorfer, S. Mahmoud, Uniplanar CPW-fed slot launchers for efficient TM0 surface wave excitation. IEEE Trans. Microwave Theory Tech. 51(4), 1234–1240 (2003)CrossRef H. Hammad, Y.M.M. Antar, A. Freundorfer, S. Mahmoud, Uniplanar CPW-fed slot launchers for efficient TM0 surface wave excitation. IEEE Trans. Microwave Theory Tech. 51(4), 1234–1240 (2003)CrossRef
52.
Zurück zum Zitat B. Friedman, W. Elwyn Williams, Excitation of surface waves. Proc. IEE—Part C Monogr. 105(7), 252–258 (1958) B. Friedman, W. Elwyn Williams, Excitation of surface waves. Proc. IEE—Part C Monogr. 105(7), 252–258 (1958)
53.
Zurück zum Zitat G. Tsandoulas, Excitation of a grounded dielectric slab by a horizontal dipole. IEEE Trans. Antennas Propag. 17(2), 156–161 (1969)CrossRef G. Tsandoulas, Excitation of a grounded dielectric slab by a horizontal dipole. IEEE Trans. Antennas Propag. 17(2), 156–161 (1969)CrossRef
54.
Zurück zum Zitat M. Ebrahimpouri, E. Rajo-Iglesias, Z. Sipus, O. Quevedo-Teruel, Low-cost metasurface using glide symmetry for integrated waveguides, in 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos (2016), pp. 1–2 M. Ebrahimpouri, E. Rajo-Iglesias, Z. Sipus, O. Quevedo-Teruel, Low-cost metasurface using glide symmetry for integrated waveguides, in 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos (2016), pp. 1–2
55.
Zurück zum Zitat O. Quevedo-Teruel, M. Ebrahimpouri, M. Ng Mou Kehn, Ultrawideband metasurface lenses based on off-shifted opposite layers. IEEE Antennas Wirel. Propag. Lett. 15, 484–487 (2016)CrossRef O. Quevedo-Teruel, M. Ebrahimpouri, M. Ng Mou Kehn, Ultrawideband metasurface lenses based on off-shifted opposite layers. IEEE Antennas Wirel. Propag. Lett. 15, 484–487 (2016)CrossRef
Metadaten
Titel
Metasurface Antennas
verfasst von
Gabriele Minatti
Marco Faenzi
Mario Mencagli
Francesco Caminita
David González Ovejero
Cristian Della Giovampaola
Alice Benini
Enrica Martini
Marco Sabbadini
Stefano Maci
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62773-1_9

Neuer Inhalt