Skip to main content
Erschienen in: Computational Mechanics 5/2020

16.01.2020 | Original Paper

Method for real-time simulation of haptic interaction with deformable objects using GPU-based parallel computing and homogeneous hexahedral elements

verfasst von: Seong Pil Byeon, Doo Yong Lee

Erschienen in: Computational Mechanics | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a method for simulating real-time haptic interaction with deformable objects. The deformable model consists of regular hexahedrons of a single type. This homogeneity is exploited to improve the efficiency in deformation computations. Model boundaries are approximated using a moving-least-squares function reflecting the deformation results of the hexahedrons. A method for adaptively approximating the model boundaries is presented for efficient collision handling in the haptic loop. The proposed method can simulate a model of 16,481 nodes in less than 1 ms, which is a significant improvement over the previous methods in the literature. Small gap between the model boundary and the hexahedrons can cause errors in the proposed method. Numerical examples considering the characteristics of human tissues show that the errors are less than just-noticeable difference of human.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang J, Zhong Y, Gu C (2018) Deformable models for surgical simulation: a survey. IEEE Rev Biomed Eng 11:143–164 Zhang J, Zhong Y, Gu C (2018) Deformable models for surgical simulation: a survey. IEEE Rev Biomed Eng 11:143–164
2.
Zurück zum Zitat Peterlik I, Nouicer M, Duriez C, Cotin S, Kheddar A (2011) Constraint-based haptic rendering of multirate compliant mechanisms. IEEE Trans Haptics 4(3):175–187 Peterlik I, Nouicer M, Duriez C, Cotin S, Kheddar A (2011) Constraint-based haptic rendering of multirate compliant mechanisms. IEEE Trans Haptics 4(3):175–187
3.
Zurück zum Zitat Tian Y, Yang Y, Guo X, Prabhakaran B (2014) Haptic simulation of needle-tissue interaction based on shape matching. In: Proceedings of IEEE international symposium on haptic, audio and visual environments and games (HAVE 2014), pp 7–12 Tian Y, Yang Y, Guo X, Prabhakaran B (2014) Haptic simulation of needle-tissue interaction based on shape matching. In: Proceedings of IEEE international symposium on haptic, audio and visual environments and games (HAVE 2014), pp 7–12
4.
Zurück zum Zitat Knott TC, Kuhlen TW (2016) Accurate and adaptive contact modeling for multi-rate multi-point haptic rendering of static and deformable environments. Comput Graph 57:68–80 Knott TC, Kuhlen TW (2016) Accurate and adaptive contact modeling for multi-rate multi-point haptic rendering of static and deformable environments. Comput Graph 57:68–80
5.
Zurück zum Zitat Zhang X, Sun W, Song A (2014) Layered rhombus-chain-connected model for real-time haptic rendering. Artif Intell Rev 41(1):49–65 Zhang X, Sun W, Song A (2014) Layered rhombus-chain-connected model for real-time haptic rendering. Artif Intell Rev 41(1):49–65
6.
Zurück zum Zitat Wang D, Shi Y, Liu S, Zhang Y, Xiao J (2014) Haptic simulation of organ deformation and hybrid contacts in dental operations. IEEE Trans Haptics 7(1):48–60 Wang D, Shi Y, Liu S, Zhang Y, Xiao J (2014) Haptic simulation of organ deformation and hybrid contacts in dental operations. IEEE Trans Haptics 7(1):48–60
7.
Zurück zum Zitat Zhang J, Zhong Y, Gu C (2019) Neural network modelling of soft tissue deformation for surgical simulation. Artif Intell Med 97:61–70 Zhang J, Zhong Y, Gu C (2019) Neural network modelling of soft tissue deformation for surgical simulation. Artif Intell Med 97:61–70
8.
Zurück zum Zitat Barbič J, James DL (2008) Six-dof haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans Haptics 1(1):39–52 Barbič J, James DL (2008) Six-dof haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans Haptics 1(1):39–52
9.
Zurück zum Zitat Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng 13(1):91–128MathSciNetMATH Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng 13(1):91–128MathSciNetMATH
10.
Zurück zum Zitat Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Methods Programs Biomed 91(3):223–231 Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Methods Programs Biomed 91(3):223–231
11.
Zurück zum Zitat Niroomandi S, Alfaro I, Cueto E, Chinesta F (2012) Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput Methods Programs Biomed 105(1):1–12 Niroomandi S, Alfaro I, Cueto E, Chinesta F (2012) Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput Methods Programs Biomed 105(1):1–12
12.
Zurück zum Zitat González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283(1):210–223 González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283(1):210–223
13.
Zurück zum Zitat Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27(5):650–663 Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27(5):650–663
14.
Zurück zum Zitat Joldes GR, Wittek A, Miller K (2010) Real-time nonlinear finite element computations on GPU–Application to neurosurgical simulation. Comput Methods Appl Mech Eng 199:3305–3314MATH Joldes GR, Wittek A, Miller K (2010) Real-time nonlinear finite element computations on GPU–Application to neurosurgical simulation. Comput Methods Appl Mech Eng 199:3305–3314MATH
15.
Zurück zum Zitat Mafi R, Sirouspour S, Mahdavikhah B, Moody B, Elizeh K, Kinsman A, Nicolici N (2010) A parallel computing platform for real-time haptic interaction with deformable bodies. IEEE Trans Haptics 3(3):211–223 Mafi R, Sirouspour S, Mahdavikhah B, Moody B, Elizeh K, Kinsman A, Nicolici N (2010) A parallel computing platform for real-time haptic interaction with deformable bodies. IEEE Trans Haptics 3(3):211–223
16.
Zurück zum Zitat Mahdavikhah B, Mafi R, Sirouspour S, Nicolici N (2014) A Multiple-FPGA parallel computing architecture for real-time simulation of soft-object deformation. ACM Trans Embed Comput Syst (TECS) 13(4):81 Mahdavikhah B, Mafi R, Sirouspour S, Nicolici N (2014) A Multiple-FPGA parallel computing architecture for real-time simulation of soft-object deformation. ACM Trans Embed Comput Syst (TECS) 13(4):81
17.
Zurück zum Zitat Courtecuisse H, Allard J, Kerfriden P, Bordas SP, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18(2):394–410 Courtecuisse H, Allard J, Kerfriden P, Bordas SP, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18(2):394–410
18.
Zurück zum Zitat Jia S, Zhang W, Yu X, Pan Z (2015) CPU–GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL. Int J Comput Assist Radiol Surg 10(9):1477–1491 Jia S, Zhang W, Yu X, Pan Z (2015) CPU–GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL. Int J Comput Assist Radiol Surg 10(9):1477–1491
19.
Zurück zum Zitat Jia S, Zhang W, Yu X, Pan Z (2018) CPU–GPU Parallel framework for real-time interactive cutting of adaptive octree-based deformable objects. Comput Graph Forum 37(1):45–59 Jia S, Zhang W, Yu X, Pan Z (2018) CPU–GPU Parallel framework for real-time interactive cutting of adaptive octree-based deformable objects. Comput Graph Forum 37(1):45–59
20.
Zurück zum Zitat Weber D, Bender J, Schnoes M, Stork A, Fellner D (2013) Efficient GPU data structures and methods to solve sparse linear systems in dynamics applications. In: Computer graphics forum, vol 32, no 1. Blackwell Publishing Ltd, Oxford Weber D, Bender J, Schnoes M, Stork A, Fellner D (2013) Efficient GPU data structures and methods to solve sparse linear systems in dynamics applications. In: Computer graphics forum, vol 32, no 1. Blackwell Publishing Ltd, Oxford
21.
Zurück zum Zitat Kumar AV, Padmanabhan S, Burla R (2008) Implicit boundary method for finite element analysis using non-conforming mesh or grid. Int J Numer Meth Eng 74(9):1421–1447MathSciNetMATH Kumar AV, Padmanabhan S, Burla R (2008) Implicit boundary method for finite element analysis using non-conforming mesh or grid. Int J Numer Meth Eng 74(9):1421–1447MathSciNetMATH
22.
Zurück zum Zitat Kumar AV, Burla R, Padmansbhan S, Gu L (2008) Finite element analysis using nonconforming mesh. J Comput Inf Sci Eng 8(3):031005 Kumar AV, Burla R, Padmansbhan S, Gu L (2008) Finite element analysis using nonconforming mesh. J Comput Inf Sci Eng 8(3):031005
23.
Zurück zum Zitat Dick C, Georgii J, Westermann R (2011) A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans Vis Comput Graph 17(11):1663–1675 Dick C, Georgii J, Westermann R (2011) A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans Vis Comput Graph 17(11):1663–1675
24.
Zurück zum Zitat Wu J, Dick C, Westermann R (2013) Efficient collision detection for composite finite element simulation of cuts in deformable bodies. Vis Comput 29(6–8):739–749 Wu J, Dick C, Westermann R (2013) Efficient collision detection for composite finite element simulation of cuts in deformable bodies. Vis Comput 29(6–8):739–749
25.
Zurück zum Zitat Müller M, Dorsey J, McMillan L, Jagnow R, Cutler B (2002) Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/eurographics symposium on computer animation, pp 49–54 Müller M, Dorsey J, McMillan L, Jagnow R, Cutler B (2002) Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/eurographics symposium on computer animation, pp 49–54
26.
Zurück zum Zitat Barnes JM, Przybyla L, Weaver VM (2017) Tissue mechanics regulate brain development, homeostasis and disease. J Cell Sci 130(1):71–82 Barnes JM, Przybyla L, Weaver VM (2017) Tissue mechanics regulate brain development, homeostasis and disease. J Cell Sci 130(1):71–82
27.
Zurück zum Zitat Fierz B, Spillmann J, Harders M (2011) Element-wise mixed implicit-explicit integration for stable dynamic simulation of deformable objects. In: Proceedings of the 2011 ACM SIGGRAPH/eurographics symposium on computer animation, pp 257–266 Fierz B, Spillmann J, Harders M (2011) Element-wise mixed implicit-explicit integration for stable dynamic simulation of deformable objects. In: Proceedings of the 2011 ACM SIGGRAPH/eurographics symposium on computer animation, pp 257–266
28.
Zurück zum Zitat Xie H, Liu H, Luo S, Seneviratne LD, Althoefer K (2013) Fiber optics tactile array probe for tissue palpation during minimally invasive surgery. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 2539–2544 Xie H, Liu H, Luo S, Seneviratne LD, Althoefer K (2013) Fiber optics tactile array probe for tissue palpation during minimally invasive surgery. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 2539–2544
29.
Zurück zum Zitat Müller M, Heidelberger B, Teschner M, Gross M (2005) Meshless deformations based on shape matching. ACM Trans Graph (TOG) 24(3):471–478 Müller M, Heidelberger B, Teschner M, Gross M (2005) Meshless deformations based on shape matching. ACM Trans Graph (TOG) 24(3):471–478
30.
Zurück zum Zitat Fried I (1972) Condition of finite element matrices generated from nonuniform meshes. AIAA J 10(2):219–221MATH Fried I (1972) Condition of finite element matrices generated from nonuniform meshes. AIAA J 10(2):219–221MATH
31.
Zurück zum Zitat Lim YJ, Deo D, Singh TP, Jones DB, De S (2009) In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation. Surg Endosc 23(6):1298–1307 Lim YJ, Deo D, Singh TP, Jones DB, De S (2009) In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation. Surg Endosc 23(6):1298–1307
32.
Zurück zum Zitat Anuradha C, Ramakrishna B, Venkatramani S (2012) Formula for calculating standard liver volume in Indians. Indian J Gastroenterol 31(1):15–19 Anuradha C, Ramakrishna B, Venkatramani S (2012) Formula for calculating standard liver volume in Indians. Indian J Gastroenterol 31(1):15–19
33.
Zurück zum Zitat Atluri SN, Cho JY, Kim HG (1999) Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations. Comput Mech 24(5):334–347MATH Atluri SN, Cho JY, Kim HG (1999) Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations. Comput Mech 24(5):334–347MATH
34.
Zurück zum Zitat Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158MathSciNetMATH Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158MathSciNetMATH
35.
Zurück zum Zitat De S, Bathe KJ (2001) Displacement/pressure mixed interpolation in the method of finite spheres. Int J Numer Meth Eng 51(3):275–292MATH De S, Bathe KJ (2001) Displacement/pressure mixed interpolation in the method of finite spheres. Int J Numer Meth Eng 51(3):275–292MATH
36.
Zurück zum Zitat Steven WS (1997) The scientist and engineer’s guide to digital signal processing. California Technical Pub Steven WS (1997) The scientist and engineer’s guide to digital signal processing. California Technical Pub
38.
Zurück zum Zitat Paggetti G, Cizmeci B, Dillioglugil C, Steinbach E (2014) On the discrimination of stiffness during pressing and pinching of virtual spring. In: 2014 IEEE international symposium on haptic, audio and visual environments and games (HAVE) proceedings, pp 94–99 Paggetti G, Cizmeci B, Dillioglugil C, Steinbach E (2014) On the discrimination of stiffness during pressing and pinching of virtual spring. In: 2014 IEEE international symposium on haptic, audio and visual environments and games (HAVE) proceedings, pp 94–99
Metadaten
Titel
Method for real-time simulation of haptic interaction with deformable objects using GPU-based parallel computing and homogeneous hexahedral elements
verfasst von
Seong Pil Byeon
Doo Yong Lee
Publikationsdatum
16.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2020
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-020-01815-3

Weitere Artikel der Ausgabe 5/2020

Computational Mechanics 5/2020 Zur Ausgabe

Neuer Inhalt