Skip to main content
Erschienen in: Experimental Mechanics 9/2020

17.08.2020 | Research paper

Methodology for Bone–Implant Stiffness Evaluation

verfasst von: N. Rosa, S. M. O. Tavares, R. J. C. Carbas, R. Simoes, F. D. Magalhães, A. T. Marques

Erschienen in: Experimental Mechanics | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

It has been difficult to improve the intramedullary nail technique because of the lack of consistency in the procedures used to evaluate the bone-implant stiffness.

Objective

The goal of this study was to develop a simple methodology for determining the stiffness of a bone implant that considers the physiological loads and bone orientation, and allows a finite element analysis and its validation using mechanical experimentation.

Methods

Finite element models for a composite tibia before and after an intramedullary nail was implanted were created and validated using the results of a set of mechanical experiments, in which the stiffness values of the model were measured and compared under axial compression, 4-point bending, shear, and torsional loads considering the patient’s condition in the early healing phase. Grips with personalized bone interfaces were developed to guarantee the physiological loads and bone orientation.

Results

In the 4-point bending, torsional, and shear loading modes, the developed bone-implant finite element model showed a satisfactory level of predictive potential in relation to the experimental observations, with a percentage variation of less than 35%. This study also demonstrated that despite the high stiffness of the bone-implant construct, motion was always generated at the interfragmentary site during the early healing phase. In addition, during this stage, the nail supported most of the load applied to the lower limb (up to 85%).

Conclusions

This strategy could contribute to the future determination of the ideal mechanical environment at a fracture site and how this environment evolves throughout the healing process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
Zurück zum Zitat Schmitt K-U, Niederer PF, Muser MH, Walz F (2010) Injuries of the pelvis and the lower extremities. In: Schmitt K-U, Muser MH (eds) Trauma biomechanics: accidental injury in traffic and sports, 3rd edn. Springer-Verlag, Berlin Heidelberg, pp 183–212 Schmitt K-U, Niederer PF, Muser MH, Walz F (2010) Injuries of the pelvis and the lower extremities. In: Schmitt K-U, Muser MH (eds) Trauma biomechanics: accidental injury in traffic and sports, 3rd edn. Springer-Verlag, Berlin Heidelberg, pp 183–212
13.
14.
Zurück zum Zitat Keller TS, Liebschner MAK (1999) Tensile and compression testing of bone. In: An YH, Draughn RA (eds) Mechanical testing of bone and the bone - implant Interface, 1st edn. CRC Press, London, pp 175–206CrossRef Keller TS, Liebschner MAK (1999) Tensile and compression testing of bone. In: An YH, Draughn RA (eds) Mechanical testing of bone and the bone - implant Interface, 1st edn. CRC Press, London, pp 175–206CrossRef
21.
Zurück zum Zitat Goodyear SR, Aspden RM (2012) Mechanical properties of bone ex vivo. In: Helfrich MH, Ralston SH (eds) Bone research protocols, methods in molecular biology, vol 816. Methods in molecular biology - springer protocols, 2nd edn. Springer Science+Business Media, London, pp 555–572. https://doi.org/10.1007/978-1-61779-415-5_35CrossRef Goodyear SR, Aspden RM (2012) Mechanical properties of bone ex vivo. In: Helfrich MH, Ralston SH (eds) Bone research protocols, methods in molecular biology, vol 816. Methods in molecular biology - springer protocols, 2nd edn. Springer Science+Business Media, London, pp 555–572. https://​doi.​org/​10.​1007/​978-1-61779-415-5_​35CrossRef
27.
Zurück zum Zitat Turner CH, Burr DB (2001) Experimental techniques for bone mechanics. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC Press LLC, London, pp 1–35 Turner CH, Burr DB (2001) Experimental techniques for bone mechanics. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC Press LLC, London, pp 1–35
29.
Zurück zum Zitat Arezes P, Barroso M, Cordeiro P, Gomes da Costa L, Miguel AS (2006) anthropometric study of the Portuguese population. Portuguese Institute for Safety and Health at work (ISHST), Lisbon Arezes P, Barroso M, Cordeiro P, Gomes da Costa L, Miguel AS (2006) anthropometric study of the Portuguese population. Portuguese Institute for Safety and Health at work (ISHST), Lisbon
30.
Zurück zum Zitat Bones S (2015) Mechanical test materials. Malmö, Sweden Bones S (2015) Mechanical test materials. Malmö, Sweden
33.
Zurück zum Zitat Disegi J (2008) Implant materials – Titanium-6% Aluminum-7% niobium 2nd edn., Pennsylvania Disegi J (2008) Implant materials – Titanium-6% Aluminum-7% niobium 2nd edn., Pennsylvania
34.
Zurück zum Zitat Wegst CW (2013) Stahlschlüssel (key to steel), 23th edn. ASM International, Marbach Wegst CW (2013) Stahlschlüssel (key to steel), 23th edn. ASM International, Marbach
37.
Zurück zum Zitat Yardımeden A, Turkiye D, Keleştemur MH, İnan A, Turkiye E (2008) The stress analysis of human tibia under axial loading using finite element method. Paper presented at the 12th international research/expert conference, Istanbul, Turkey, Yardımeden A, Turkiye D, Keleştemur MH, İnan A, Turkiye E (2008) The stress analysis of human tibia under axial loading using finite element method. Paper presented at the 12th international research/expert conference, Istanbul, Turkey,
40.
Zurück zum Zitat Begum F (2011) Experimental and numerical analysis of augmented locking plate fixation repair for proximal humeral fractures. University of Alberta, Alberta Begum F (2011) Experimental and numerical analysis of augmented locking plate fixation repair for proximal humeral fractures. University of Alberta, Alberta
42.
Zurück zum Zitat Cordey J, Mikuschka-Galgòczy E, Blümlein H, Schneider U, Perren SM (1979) Importance of the friction between plate and bone in the anchoring of plates for osteosynthesis. Determination of the coefficient of metal-bone friction in animal in vivo. Helv Chir Acta 46:183–187 Cordey J, Mikuschka-Galgòczy E, Blümlein H, Schneider U, Perren SM (1979) Importance of the friction between plate and bone in the anchoring of plates for osteosynthesis. Determination of the coefficient of metal-bone friction in animal in vivo. Helv Chir Acta 46:183–187
43.
44.
Zurück zum Zitat Shore SW, Unnikrishnan GU, Hussein AI, Morgan EF (2012) Bone biomechanics. In: Winkelstein BA (ed) Orthopaedic biomechanics. CRC Press, Florida, pp 3–48CrossRef Shore SW, Unnikrishnan GU, Hussein AI, Morgan EF (2012) Bone biomechanics. In: Winkelstein BA (ed) Orthopaedic biomechanics. CRC Press, Florida, pp 3–48CrossRef
46.
Zurück zum Zitat Raunest J, Kynast W, Lesch V, Kukulies U, Hackländer T, Schwarting KH, Arnold G (1996) Geometric properties of the fractured tibia stabilized by unreamed interlocking nail: development of a three-dimensional finite element model. Comput Biomed Res 29(4):259–270. https://doi.org/10.1006/cbmr.1996.0019CrossRef Raunest J, Kynast W, Lesch V, Kukulies U, Hackländer T, Schwarting KH, Arnold G (1996) Geometric properties of the fractured tibia stabilized by unreamed interlocking nail: development of a three-dimensional finite element model. Comput Biomed Res 29(4):259–270. https://​doi.​org/​10.​1006/​cbmr.​1996.​0019CrossRef
47.
Metadaten
Titel
Methodology for Bone–Implant Stiffness Evaluation
verfasst von
N. Rosa
S. M. O. Tavares
R. J. C. Carbas
R. Simoes
F. D. Magalhães
A. T. Marques
Publikationsdatum
17.08.2020
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 9/2020
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-020-00654-w

Weitere Artikel der Ausgabe 9/2020

Experimental Mechanics 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.