Skip to main content
Erschienen in: Interceram - International Ceramic Review 3/2021

01.09.2021 | Research and Development

MgO-C Refractories: A Detailed Review of These Irreplaceable Refractories in Steelmaking

verfasst von: Rishabh Kundu, Ritwik Sarkar

Erschienen in: Interceram - International Ceramic Review | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract: This paper reviews the raw materials, additives, general properties, oxidation and corrosion of MgO-C refractories, which are irreplaceable in the steelmaking process. Because it is a composite refractory, it benefits from the combined properties of magnesia and carbon. High-purity magnesia aggregates (fused as well as sintered), graphite as a carbon source, additives like antioxidants (primarily metal powders) and organic binders (resins) are used in manufacturing MgO-C refractories. The properties of the refractories may be tuned as per application demands by varying their carbon content. MgO-C refractories are majorly used in steelmaking converters for the entire lining of basic oxygen furnaces, electric arc furnaces, steel ladles and secondary steelmaking.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Interceram - International Ceramic Review

Interceram - Das internationale Fachmagazin für das gesamte Gebiet der keramischen sowie thematisch verwandter Technologien. Jetzt kostenlos testen!

Literatur
[1]
Zurück zum Zitat R. Sarkar, Refractory Technology, 2016. doi:10.1201/9781315368054. R. Sarkar, Refractory Technology, 2016. doi:10.1201/9781315368054.
[2]
Zurück zum Zitat S.K. Sadrnezhaad, S. Mahshid, B. Hashemi, Z.A. Nemati, Oxidation mechanism of C in MgO-C refractory bricks, J. Am. Ceram. Soc. 89 (2006) 1308-1316. doi:10.1111/j.1551-2916.2005.00863.x. S.K. Sadrnezhaad, S. Mahshid, B. Hashemi, Z.A. Nemati, Oxidation mechanism of C in MgO-C refractory bricks, J. Am. Ceram. Soc. 89 (2006) 1308-1316. doi:10.1111/j.1551-2916.2005.00863.x.
[3]
Zurück zum Zitat M.A. Faghihi-Sani, A. Yamaguchi, Oxidation kinetics of MgO-C refractory bricks, Ceram. Int. 28 (2002) 835-839. doi:10.1016/S0272-8842(02)00049-4. M.A. Faghihi-Sani, A. Yamaguchi, Oxidation kinetics of MgO-C refractory bricks, Ceram. Int. 28 (2002) 835-839. doi:10.1016/S0272-8842(02)00049-4.
[4]
Zurück zum Zitat B. Hashemi, Z.A. Nemati, M.A. Faghihi-Sani, Effects of resin and graphite content on density and oxidation behavior of MgO-C refractory bricks, Ceram. Int. 32 (2006) 313-319. doi:10.1016/j.ceramint.2005.03.008. B. Hashemi, Z.A. Nemati, M.A. Faghihi-Sani, Effects of resin and graphite content on density and oxidation behavior of MgO-C refractory bricks, Ceram. Int. 32 (2006) 313-319. doi:10.1016/j.ceramint.2005.03.008.
[5]
Zurück zum Zitat J. Xiao, J. Chen, Y. Wei, Y. Zhang, S. Zhang, N. Li, Oxidation behaviors of MgO-C refractories with different Si/SiC ratio in the 1100-1500 °C range, Ceram. Int. 45 (2019) 21099-21107. doi:10.1016/j.ceramint.2019.07.086. J. Xiao, J. Chen, Y. Wei, Y. Zhang, S. Zhang, N. Li, Oxidation behaviors of MgO-C refractories with different Si/SiC ratio in the 1100-1500 °C range, Ceram. Int. 45 (2019) 21099-21107. doi:10.1016/j.ceramint.2019.07.086.
[6]
Zurück zum Zitat E.M.M. Ewais, Carbon based refractories, J. Ceram. Soc. Japan. 112 (2004) 517-532. doi:10.2109/jcersj.112.517. E.M.M. Ewais, Carbon based refractories, J. Ceram. Soc. Japan. 112 (2004) 517-532. doi:10.2109/jcersj.112.517.
[7]
Zurück zum Zitat E. Ruh, Magnesia-carbon refractories, history, development, types & applications, Int. Ceram. Monogr. 1 (1994) 772-793.. E. Ruh, Magnesia-carbon refractories, history, development, types & applications, Int. Ceram. Monogr. 1 (1994) 772-793..
[8]
Zurück zum Zitat C.W. Hardy, M.O. Warman, BOS Vessel Linings - Experience with magnesia carbon in the United Kingdom., Veitsch-Radex Rundschau. 75 (1987) 457-463. C.W. Hardy, M.O. Warman, BOS Vessel Linings - Experience with magnesia carbon in the United Kingdom., Veitsch-Radex Rundschau. 75 (1987) 457-463.
[9]
Zurück zum Zitat K. Kasai, Recent advances in refractories technology for steelmaking, Nippon Steel Tech. Rep. 61 (1994) 83-89. K. Kasai, Recent advances in refractories technology for steelmaking, Nippon Steel Tech. Rep. 61 (1994) 83-89.
[10]
Zurück zum Zitat A.P. Luz, T.M. Souza, C. Pagliosa, M.A.M. Brito, V.C. Pandolfelli, In situ hot elastic modulus evolution of MgO-C refractories containing Al, Si or Al-Mg antioxidants, Ceram. Int. 42 (2016) 9836-9843. doi:10.1016/j.ceramint.2016.03.080. A.P. Luz, T.M. Souza, C. Pagliosa, M.A.M. Brito, V.C. Pandolfelli, In situ hot elastic modulus evolution of MgO-C refractories containing Al, Si or Al-Mg antioxidants, Ceram. Int. 42 (2016) 9836-9843. doi:10.1016/j.ceramint.2016.03.080.
[11]
Zurück zum Zitat A.S. Gokce, C. Gurcan, S. Ozgen, S. Aydin, The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks, Ceram. Int. 34 (2008) 323-330. doi:10.1016/j.ceramint.2006.10.004. A.S. Gokce, C. Gurcan, S. Ozgen, S. Aydin, The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks, Ceram. Int. 34 (2008) 323-330. doi:10.1016/j.ceramint.2006.10.004.
[12]
Zurück zum Zitat S. Behera, R. Sarkar, Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO-C refractory: An in-depth investigation, Ceram. Int. 42 (2016) 18484-18494. doi:10.1016/j.ceramint.2016.08.185. S. Behera, R. Sarkar, Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO-C refractory: An in-depth investigation, Ceram. Int. 42 (2016) 18484-18494. doi:10.1016/j.ceramint.2016.08.185.
[14]
Zurück zum Zitat M.K. Kujur, I. Roy, K. Kumar, P. Chintaiah, S. Ghosh, N.K. Ghosh, Raw materials for manufacturing of Superior quality MgO-C bricks, in: Mater. Today Proc., Elsevier Ltd, 2018: pp. 2359-2366. doi:10.1016/j.matpr.2017.09.242. M.K. Kujur, I. Roy, K. Kumar, P. Chintaiah, S. Ghosh, N.K. Ghosh, Raw materials for manufacturing of Superior quality MgO-C bricks, in: Mater. Today Proc., Elsevier Ltd, 2018: pp. 2359-2366. doi:10.1016/j.matpr.2017.09.242.
[15]
Zurück zum Zitat J. Li, Y. Zhang, S. Shao, S. Zhang, Comparative life cycle assessment of conventional and new fused magnesia production, J. Clean. Prod. 91 (2015) 170-179. doi:10.1016/j.jclepro.2014.12.043. J. Li, Y. Zhang, S. Shao, S. Zhang, Comparative life cycle assessment of conventional and new fused magnesia production, J. Clean. Prod. 91 (2015) 170-179. doi:10.1016/j.jclepro.2014.12.043.
[16]
Zurück zum Zitat A.S. Bhatti, D. Dollimore, A. Dyer, Magnesia from seawater: a review, Clay Miner. 19 (1984) 865-875. doi:10.1180/claymin.1984.019.5.14. A.S. Bhatti, D. Dollimore, A. Dyer, Magnesia from seawater: a review, Clay Miner. 19 (1984) 865-875. doi:10.1180/claymin.1984.019.5.14.
[17]
Zurück zum Zitat S. Mukherjee, S. Pramanik, S. Mukherjee, A comprehensive review of recent advances in magnesia carbon refractories, InterCeram Int. Ceram. Rev. 63 (2014) 90-98. doi:10.1007/bf03401039. S. Mukherjee, S. Pramanik, S. Mukherjee, A comprehensive review of recent advances in magnesia carbon refractories, InterCeram Int. Ceram. Rev. 63 (2014) 90-98. doi:10.1007/bf03401039.
[18]
Zurück zum Zitat T. Zhu, Y. Li, S. Sang, S. Jin, Y. Li, L. Zhao, X. Liang, Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories, Ceram. Int. 40 (2014) 4333-4340. doi:10.1016/j.ceramint.2013.08.101. T. Zhu, Y. Li, S. Sang, S. Jin, Y. Li, L. Zhao, X. Liang, Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories, Ceram. Int. 40 (2014) 4333-4340. doi:10.1016/j.ceramint.2013.08.101.
[19]
Zurück zum Zitat S. Mahato, S.K. Pratihar, S.K. Behera, Fabrication and properties of MgO-C refractories improved with expanded graphite, Ceram. Int. 40 (2014) 16535-16542. doi:10.1016/j.ceramint.2014.08.007. S. Mahato, S.K. Pratihar, S.K. Behera, Fabrication and properties of MgO-C refractories improved with expanded graphite, Ceram. Int. 40 (2014) 16535-16542. doi:10.1016/j.ceramint.2014.08.007.
[20]
Zurück zum Zitat T. Zhu, Y. Li, S. Sang, Z. Xie, A new approach to fabricate MgO-C refractories with high thermal shock resistance by adding artificial graphite, J. Eur. Ceram. Soc. 38 (2018) 2179-2185. doi:10.1016/j.jeurceramsoc.2017.10.018. T. Zhu, Y. Li, S. Sang, Z. Xie, A new approach to fabricate MgO-C refractories with high thermal shock resistance by adding artificial graphite, J. Eur. Ceram. Soc. 38 (2018) 2179-2185. doi:10.1016/j.jeurceramsoc.2017.10.018.
[21]
Zurück zum Zitat T. Zhu, Y. Li, S. Sang, Z. Xie, Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets, Mater. Des. 124 (2017) 16-23. doi:10.1016/j.matdes.2017.03.054. T. Zhu, Y. Li, S. Sang, Z. Xie, Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets, Mater. Des. 124 (2017) 16-23. doi:10.1016/j.matdes.2017.03.054.
[22]
Zurück zum Zitat M. Bag, S. Adak, R. Sarkar, Study on low carbon containing MgO-C refractory: Use of nano carbon, Ceram. Int. 38 (2012) 2339-2346. doi:10.1016/j.ceramint.2011.10.086. M. Bag, S. Adak, R. Sarkar, Study on low carbon containing MgO-C refractory: Use of nano carbon, Ceram. Int. 38 (2012) 2339-2346. doi:10.1016/j.ceramint.2011.10.086.
[23]
Zurück zum Zitat S. Behera, R. Sarkar, Low-Carbon Magnesia-Carbon Refractory: Use of N220 Nanocarbon Black, Int. J. Appl. Ceram. Technol. 11 (2014) 968-976. doi:10.1111/ijac.12324. S. Behera, R. Sarkar, Low-Carbon Magnesia-Carbon Refractory: Use of N220 Nanocarbon Black, Int. J. Appl. Ceram. Technol. 11 (2014) 968-976. doi:10.1111/ijac.12324.
[24]
Zurück zum Zitat M. Bag, S. Adak, R. Sarkar, Nano carbon containing MgO-C refractory: Effect of graphite content, Ceram. Int. 38 (2012) 4909-4914. doi:10.1016/j.ceramint.2012.02.082. M. Bag, S. Adak, R. Sarkar, Nano carbon containing MgO-C refractory: Effect of graphite content, Ceram. Int. 38 (2012) 4909-4914. doi:10.1016/j.ceramint.2012.02.082.
[25]
Zurück zum Zitat S. Behera, R. Sarkar, Study on variation of graphite content in N220 nanocarbon containing low carbon MgO-C refractory, Ironmak. Steelmak. 43 (2016) 130-136. doi:10.1179/1743281215Y.0000000057. S. Behera, R. Sarkar, Study on variation of graphite content in N220 nanocarbon containing low carbon MgO-C refractory, Ironmak. Steelmak. 43 (2016) 130-136. doi:10.1179/1743281215Y.0000000057.
[26]
Zurück zum Zitat S. Zhang, N.J. Marriott, W.E. Lee, Thermochemistry and microstructures of MgO-C refractories containing various antioxidants, J. Eur. Ceram. Soc. 21 (2001) 1037-1047. doi:10.1016/S0955-2219(00)00308-3. S. Zhang, N.J. Marriott, W.E. Lee, Thermochemistry and microstructures of MgO-C refractories containing various antioxidants, J. Eur. Ceram. Soc. 21 (2001) 1037-1047. doi:10.1016/S0955-2219(00)00308-3.
[27]
Zurück zum Zitat T. Zhu, Y. Li, M. Luo, S. Sang, Q. Wang, L. Zhao, Y. Li, S. Li, Microstructure and mechanical properties of MgOC refractories containing graphite oxide nanosheets (GONs), Ceram. Int. 39 (2013) 3017-3025. doi:10.1016/j.ceramint.2012.09.080. T. Zhu, Y. Li, M. Luo, S. Sang, Q. Wang, L. Zhao, Y. Li, S. Li, Microstructure and mechanical properties of MgOC refractories containing graphite oxide nanosheets (GONs), Ceram. Int. 39 (2013) 3017-3025. doi:10.1016/j.ceramint.2012.09.080.
[28]
Zurück zum Zitat M. Karakus, J.D. Smith, R.E. Moore, Cathodoluminescence mineralogy of used MgO-C bricks in basic oxygen furnaces, Veitsch-Radex Rundschau. (2000) 24-32. M. Karakus, J.D. Smith, R.E. Moore, Cathodoluminescence mineralogy of used MgO-C bricks in basic oxygen furnaces, Veitsch-Radex Rundschau. (2000) 24-32.
[29]
Zurück zum Zitat G.H. Cho, E.H. Kim, Y.G. Jung, Y.K. Byeun, Improving oxidation resistance and fracture strength of MgO-C refractory material through precursor coating, Surf. Coatings Technol. 260 (2014) 429-432. doi:10.1016/j.surfcoat.2014.11.035. G.H. Cho, E.H. Kim, Y.G. Jung, Y.K. Byeun, Improving oxidation resistance and fracture strength of MgO-C refractory material through precursor coating, Surf. Coatings Technol. 260 (2014) 429-432. doi:10.1016/j.surfcoat.2014.11.035.
[30]
Zurück zum Zitat S. Ghasemi-Kahrizsangi, H. Gheisari Dehsheikh, M. Boroujerdnia, Effect of micro and nano-Al2O3 addition on the microstructure and properties of MgO-C refractory ceramic composite, Mater. Chem. Phys. 189 (2017) 230-236. doi:10.1016/j.matchemphys.2016.12.068. S. Ghasemi-Kahrizsangi, H. Gheisari Dehsheikh, M. Boroujerdnia, Effect of micro and nano-Al2O3 addition on the microstructure and properties of MgO-C refractory ceramic composite, Mater. Chem. Phys. 189 (2017) 230-236. doi:10.1016/j.matchemphys.2016.12.068.
[31]
Zurück zum Zitat Y. Zhang, J. Chen, N. Li, Y. Wei, B. Han, Y. Cao, G. Li, The microstructure evolution and mechanical properties of MgO-C refractories with recycling Si/SiC solid waste from photovoltaic industry, Ceram. Int. 44 (2018) 16435-16442. doi:10.1016/j.ceramint.2018.06.057. Y. Zhang, J. Chen, N. Li, Y. Wei, B. Han, Y. Cao, G. Li, The microstructure evolution and mechanical properties of MgO-C refractories with recycling Si/SiC solid waste from photovoltaic industry, Ceram. Int. 44 (2018) 16435-16442. doi:10.1016/j.ceramint.2018.06.057.
[32]
Zurück zum Zitat H. Liu, F. Meng, Q. Li, Z. Huang, M. Fang, Y.G. Liu, X. Wu, Phase behavior analysis of MgO-C refractory at high temperature: Influence of Si powder additives, Ceram. Int. 41 (2015) 5186-5190. doi:10.1016/j.ceramint.2014.12.029. H. Liu, F. Meng, Q. Li, Z. Huang, M. Fang, Y.G. Liu, X. Wu, Phase behavior analysis of MgO-C refractory at high temperature: Influence of Si powder additives, Ceram. Int. 41 (2015) 5186-5190. doi:10.1016/j.ceramint.2014.12.029.
[33]
Zurück zum Zitat M. Chen, S. Gao, L. Xu, N. Wang, High temperature mechanical and corrosion resistance of Fe-containing MgO-C refractory in oxidizing atmosphere, Ceram. Int. 45 (2019) 21023-21028. doi:10.1016/j.ceramint.2019.06.306. M. Chen, S. Gao, L. Xu, N. Wang, High temperature mechanical and corrosion resistance of Fe-containing MgO-C refractory in oxidizing atmosphere, Ceram. Int. 45 (2019) 21023-21028. doi:10.1016/j.ceramint.2019.06.306.
[34]
Zurück zum Zitat S. Gao, L. Xu, M. Chen, N. Wang, Effect of Fe addition on the microstructure and oxidation behavior of MgO-C refractory, Mater. Chem. Phys. 238 (2019) 121935. doi:10.1016/j.matchemphys.2019.121935. S. Gao, L. Xu, M. Chen, N. Wang, Effect of Fe addition on the microstructure and oxidation behavior of MgO-C refractory, Mater. Chem. Phys. 238 (2019) 121935. doi:10.1016/j.matchemphys.2019.121935.
[35]
Zurück zum Zitat C.G. Aneziris, J. Hubálková, R. Barabás, Microstructure evaluation of MgO-C refractories with TiO2- and Al-additions, J. Eur. Ceram. Soc. 27 (2007) 73-78. doi:10.1016/j.jeurceramsoc.2006.03.001. C.G. Aneziris, J. Hubálková, R. Barabás, Microstructure evaluation of MgO-C refractories with TiO2- and Al-additions, J. Eur. Ceram. Soc. 27 (2007) 73-78. doi:10.1016/j.jeurceramsoc.2006.03.001.
[36]
Zurück zum Zitat V. Stein, C.G. Aneziris, U. Klippel, W. Schönwelski, E. Guéguen, Reinforcement of Carbon Bonded Mgo Refractories Due To Nanometer Additions, (n.d.) 3-6. V. Stein, C.G. Aneziris, U. Klippel, W. Schönwelski, E. Guéguen, Reinforcement of Carbon Bonded Mgo Refractories Due To Nanometer Additions, (n.d.) 3-6.
[37]
Zurück zum Zitat H. Gheisari Dehsheikh, S. Ghasemi-Kahrizsangi, Performance improvement of MgO-C refractory bricks by the addition of Nano-ZrSiO4, Mater. Chem. Phys. 202 (2017) 369-376. doi:10.1016/j.matchemphys.2017.09.055. H. Gheisari Dehsheikh, S. Ghasemi-Kahrizsangi, Performance improvement of MgO-C refractory bricks by the addition of Nano-ZrSiO4, Mater. Chem. Phys. 202 (2017) 369-376. doi:10.1016/j.matchemphys.2017.09.055.
[38]
Zurück zum Zitat S. Behera, R. Sarkar, Formation of Mg2C3 phase in N220 nanocarbon containing low carbon MgO-C composition, Bull. Mater. Sci. 40 (2017) 939-943. doi:10.1007/s12034-017-1429-6. S. Behera, R. Sarkar, Formation of Mg2C3 phase in N220 nanocarbon containing low carbon MgO-C composition, Bull. Mater. Sci. 40 (2017) 939-943. doi:10.1007/s12034-017-1429-6.
[39]
Zurück zum Zitat T. Bahtli, D.Y. Hopa, V.M. Bostanci, S. YalcinYasti, Thermal conductivity of MgO-C refractory ceramics: Effects of pyrolytic liquid and pyrolytic carbon black obtained from waste tire, Ceram. Int. 44 (2018) 13848-13851. doi:10.1016/j.ceramint.2018.04.230. T. Bahtli, D.Y. Hopa, V.M. Bostanci, S. YalcinYasti, Thermal conductivity of MgO-C refractory ceramics: Effects of pyrolytic liquid and pyrolytic carbon black obtained from waste tire, Ceram. Int. 44 (2018) 13848-13851. doi:10.1016/j.ceramint.2018.04.230.
[43]
Zurück zum Zitat A. Gardziella, L.A. Pilato, A. Knop, A. Gardziella, L.A. Pilato, A. Knop, Phenolic Resins: Chemistry, Reactions, Mechanism, in: Phenolic Resins, Springer Berlin Heidelberg, 2000: pp. 24-82. doi:10.1007/978-3-662-04101-7_2. A. Gardziella, L.A. Pilato, A. Knop, A. Gardziella, L.A. Pilato, A. Knop, Phenolic Resins: Chemistry, Reactions, Mechanism, in: Phenolic Resins, Springer Berlin Heidelberg, 2000: pp. 24-82. doi:10.1007/978-3-662-04101-7_2.
[44]
Zurück zum Zitat W.P. Freese, Phenolic Resins, in: Butterworth-Heinemann, 1985: pp. 35-41. doi:10.1016/B978-075064132-6/50064-4. W.P. Freese, Phenolic Resins, in: Butterworth-Heinemann, 1985: pp. 35-41. doi:10.1016/B978-075064132-6/50064-4.
[45]
Zurück zum Zitat G. Tang, L. Li, Z. He, Effects of dispersion method and content of nanometer carbon black on mechanical properties of low carbon MgO - C materials, Naihuo Cailiao/Refractories. 42 (2008) 165-168. G. Tang, L. Li, Z. He, Effects of dispersion method and content of nanometer carbon black on mechanical properties of low carbon MgO - C materials, Naihuo Cailiao/Refractories. 42 (2008) 165-168.
[46]
Zurück zum Zitat T. Bahtli, D.Y. Hopa, V.M. Bostanci, S.Y. Yasti, Investigation of thermal shock behaviour of MgO-C refractories by incorporation of pyrolytic liquid as a binder, Mater. Chem. Phys. 213 (2018) 14-22. doi:10.1016/j.matchemphys.2018.04.017. T. Bahtli, D.Y. Hopa, V.M. Bostanci, S.Y. Yasti, Investigation of thermal shock behaviour of MgO-C refractories by incorporation of pyrolytic liquid as a binder, Mater. Chem. Phys. 213 (2018) 14-22. doi:10.1016/j.matchemphys.2018.04.017.
[47]
Zurück zum Zitat C.G. Aneziris, F. Homola, D. Borzov, Material and process development of advanced refractories for innovative metal processing, Adv. Eng. Mater. 6 (2004) 562-568+470. doi:10.1002/adem.200400417. C.G. Aneziris, F. Homola, D. Borzov, Material and process development of advanced refractories for innovative metal processing, Adv. Eng. Mater. 6 (2004) 562-568+470. doi:10.1002/adem.200400417.
[48]
Zurück zum Zitat T. Zhu, Y. Li, S. Sang, Z. Xie, Mechanical behavior and thermal shock resistance of MgO-C refractories: Influence of graphite content, Ceram. Int. 43 (2017) 7177-7183. doi:10.1016/j.ceramint.2017.03.004. T. Zhu, Y. Li, S. Sang, Z. Xie, Mechanical behavior and thermal shock resistance of MgO-C refractories: Influence of graphite content, Ceram. Int. 43 (2017) 7177-7183. doi:10.1016/j.ceramint.2017.03.004.
[49]
Zurück zum Zitat K. Sung, G. Jo, Y. Jung, Y. Byeun, Effect of carbon content on the mechanical behavior of MgO - C refractories characterized by Hertzian indentation, Ceram. Int. 42 (2016) 9955-9962. doi:10.1016/j.ceramint.2016.03.097. K. Sung, G. Jo, Y. Jung, Y. Byeun, Effect of carbon content on the mechanical behavior of MgO - C refractories characterized by Hertzian indentation, Ceram. Int. 42 (2016) 9955-9962. doi:10.1016/j.ceramint.2016.03.097.
[50]
Zurück zum Zitat M. Bavand-Vandchali, H. Sarpoolaky, F. Golestani-Fard, H.R. Rezaie, Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO-C refractories matrix, Ceram. Int. 35 (2009) 861-868. doi:10.1016/j.ceramint.2008.03.001. M. Bavand-Vandchali, H. Sarpoolaky, F. Golestani-Fard, H.R. Rezaie, Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO-C refractories matrix, Ceram. Int. 35 (2009) 861-868. doi:10.1016/j.ceramint.2008.03.001.
[51]
Zurück zum Zitat S. Hu, R. Zhu, R. Liu, K. Dong, Decarburisation behaviour of high-carbon MgO-C refractories in O2-CO2 oxidising atmospheres, Ceram. Int. 44 (2018) 20641-20647. doi:10.1016/j.ceramint.2018.08.056. S. Hu, R. Zhu, R. Liu, K. Dong, Decarburisation behaviour of high-carbon MgO-C refractories in O2-CO2 oxidising atmospheres, Ceram. Int. 44 (2018) 20641-20647. doi:10.1016/j.ceramint.2018.08.056.
[52]
Zurück zum Zitat X. Li, M. Rigaud, S. Palco, Oxidation Kinetics of Graphite Phase in Magnesia-Carbon Refractories, J. Am. Ceram. Soc. 78 (1995) 965-971. doi:10.1111/j.1151-2916.1995.tb08423.x. X. Li, M. Rigaud, S. Palco, Oxidation Kinetics of Graphite Phase in Magnesia-Carbon Refractories, J. Am. Ceram. Soc. 78 (1995) 965-971. doi:10.1111/j.1151-2916.1995.tb08423.x.
[54]
Zurück zum Zitat W.E. Lee, S. Zhang, Melt corrosion of oxide and oxide-carbon refractories, Int. Mater. Rev. 44 (1999) 77-104. doi:10.1179/095066099101528234. W.E. Lee, S. Zhang, Melt corrosion of oxide and oxide-carbon refractories, Int. Mater. Rev. 44 (1999) 77-104. doi:10.1179/095066099101528234.
[55]
Zurück zum Zitat K.C. Mills, Y. Su, A.B. Fox, Z. Li, R.P. Thackray, H.T. Tsai, A review of slag splashing, ISIJ Int. 45 (2005) 619-633. doi:10.2355/isijinternational.45.619. K.C. Mills, Y. Su, A.B. Fox, Z. Li, R.P. Thackray, H.T. Tsai, A review of slag splashing, ISIJ Int. 45 (2005) 619-633. doi:10.2355/isijinternational.45.619.
[56]
Zurück zum Zitat I.A. Souza Santos, V.R. De Medeiros Santos, W. Dos Reis Lima, A.L. Da Silva, B.T. Maia, J.R. De Oliveira, Slag Splashing: Simulation and analysis of the slags conditions, J. Mater. Res. Technol. 8 (2019) 6173-6176. doi:10.1016/j.jmrt.2019.10.011. I.A. Souza Santos, V.R. De Medeiros Santos, W. Dos Reis Lima, A.L. Da Silva, B.T. Maia, J.R. De Oliveira, Slag Splashing: Simulation and analysis of the slags conditions, J. Mater. Res. Technol. 8 (2019) 6173-6176. doi:10.1016/j.jmrt.2019.10.011.
[57]
Zurück zum Zitat S.K. Sadrnezhaad, N. Bagheri, S. Mahshid, Effect of Si antioxidant on the rate of oxidation of carbon in MgO-C refractory, Int. J. Eng. Trans. B Appl. 24 (2011) 357-366. doi:10.5829/idosi.ije.2011.24.04b.06. S.K. Sadrnezhaad, N. Bagheri, S. Mahshid, Effect of Si antioxidant on the rate of oxidation of carbon in MgO-C refractory, Int. J. Eng. Trans. B Appl. 24 (2011) 357-366. doi:10.5829/idosi.ije.2011.24.04b.06.
[58]
Zurück zum Zitat O. Volkova, B. Sahebkar, J. Hubalkova, C.G. Aneziris, P.R. Scheller, Ladle heating procedure and its influence on the MgO-C-oxidation, Mater. Manuf. Process. 23 (2008) 758-763. doi:10.1080/10426910802381975. O. Volkova, B. Sahebkar, J. Hubalkova, C.G. Aneziris, P.R. Scheller, Ladle heating procedure and its influence on the MgO-C-oxidation, Mater. Manuf. Process. 23 (2008) 758-763. doi:10.1080/10426910802381975.
[59]
Zurück zum Zitat Z. Liu, J. Yu, S. Yue, D. Jia, E. Jin, B. Ma, L. Yuan, Effect of carbon content on the oxidation resistance and kinetics of MgO-C refractory with the addition of Al powder, Ceram. Int. 46 (2020) 3091-3098. doi:10.1016/j.ceramint.2019.10.010. Z. Liu, J. Yu, S. Yue, D. Jia, E. Jin, B. Ma, L. Yuan, Effect of carbon content on the oxidation resistance and kinetics of MgO-C refractory with the addition of Al powder, Ceram. Int. 46 (2020) 3091-3098. doi:10.1016/j.ceramint.2019.10.010.
[60]
Zurück zum Zitat S. Mahato, S.K. Behera, Oxidation resistance and microstructural evolution in MgO-C refractories with expanded graphite, Ceram. Int. 42 (2016) 7611-7619. doi:10.1016/j.ceramint.2016.01.169. S. Mahato, S.K. Behera, Oxidation resistance and microstructural evolution in MgO-C refractories with expanded graphite, Ceram. Int. 42 (2016) 7611-7619. doi:10.1016/j.ceramint.2016.01.169.
[61]
Zurück zum Zitat T. Bahtli, D.Y. Hopa, V.M. Bostanci, N.S. Ulvan, S.Y. Yasti, Corrosion behaviours of MgO-C refractories: Incorporation of graphite or pyrolytic carbon black as a carbon source, Ceram. Int. 44 (2018) 6780-6785. doi:10.1016/j.ceramint.2018.01.097. T. Bahtli, D.Y. Hopa, V.M. Bostanci, N.S. Ulvan, S.Y. Yasti, Corrosion behaviours of MgO-C refractories: Incorporation of graphite or pyrolytic carbon black as a carbon source, Ceram. Int. 44 (2018) 6780-6785. doi:10.1016/j.ceramint.2018.01.097.
[62]
Zurück zum Zitat R.A.A. Borges, G.F.B. Lenz e Silva, A statistical and post-mortem study of wear and performance of MgO-C resin bonded refractories used on the slag line ladle of a basic oxygen steelmaking plant, Eng. Fail. Anal. 78 (2017) 161-168. doi:10.1016/j.engfailanal.2017.03.020. R.A.A. Borges, G.F.B. Lenz e Silva, A statistical and post-mortem study of wear and performance of MgO-C resin bonded refractories used on the slag line ladle of a basic oxygen steelmaking plant, Eng. Fail. Anal. 78 (2017) 161-168. doi:10.1016/j.engfailanal.2017.03.020.
[63]
Zurück zum Zitat M. Guo, S. Parada, P.T. Jones, E. Boydens, J. V Dyck, B. Blanpain, P. Wollants, Interaction of Al2O3-rich slag with MgO-C refractories during VOD refining-MgO and spinel layer formation at the slag/refractory interface, J. Eur. Ceram. Soc. 29 (2009) 1053-1060. doi:10.1016/j.jeurceramsoc.2008.07.063. M. Guo, S. Parada, P.T. Jones, E. Boydens, J. V Dyck, B. Blanpain, P. Wollants, Interaction of Al2O3-rich slag with MgO-C refractories during VOD refining-MgO and spinel layer formation at the slag/refractory interface, J. Eur. Ceram. Soc. 29 (2009) 1053-1060. doi:10.1016/j.jeurceramsoc.2008.07.063.
[64]
Zurück zum Zitat M. Guo, S. Parada, P.T. Jones, J. Van Dyck, E. Boydens, D. Durinck, B. Blanpain, P. Wollants, Degradation mechanisms of magnesia-carbon refractories by high-alumina stainless steel slags under vacuum, Ceram. Int. 33 (2007) 1007-1018. doi:10.1016/j.ceramint.2006.03.009. M. Guo, S. Parada, P.T. Jones, J. Van Dyck, E. Boydens, D. Durinck, B. Blanpain, P. Wollants, Degradation mechanisms of magnesia-carbon refractories by high-alumina stainless steel slags under vacuum, Ceram. Int. 33 (2007) 1007-1018. doi:10.1016/j.ceramint.2006.03.009.
[65]
Zurück zum Zitat Z. Liu, L. Yuan, E. Jin, X. Yang, J. Yu, Wetting, spreading and corrosion behaviour of molten slag on dense MgO and MgO-C refractory, Ceram. Int. 45 (2019) 718-724. doi:10.1016/j.ceramint.2018.09.234. Z. Liu, L. Yuan, E. Jin, X. Yang, J. Yu, Wetting, spreading and corrosion behaviour of molten slag on dense MgO and MgO-C refractory, Ceram. Int. 45 (2019) 718-724. doi:10.1016/j.ceramint.2018.09.234.
Metadaten
Titel
MgO-C Refractories: A Detailed Review of These Irreplaceable Refractories in Steelmaking
verfasst von
Rishabh Kundu
Ritwik Sarkar
Publikationsdatum
01.09.2021
Verlag
Springer Fachmedien Wiesbaden
Erschienen in
Interceram - International Ceramic Review / Ausgabe 3/2021
Print ISSN: 0020-5214
Elektronische ISSN: 2523-8957
DOI
https://doi.org/10.1007/s42411-021-0457-9

Weitere Artikel der Ausgabe 3/2021

Interceram - International Ceramic Review 3/2021 Zur Ausgabe

Industries

Industries

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.