Skip to main content
Erschienen in: Archive of Applied Mechanics 12/2022

28.09.2022 | Original

MHD boundary layer flow of viscoelastic fluid over a wedge in porous medium

verfasst von: Ramesh B. Kudenatti, H. Amrutha

Erschienen in: Archive of Applied Mechanics | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The two-dimensional laminar boundary layer flow of viscoelastic fluid over a moving/static wedge, in the porous matrix, subjected to a uniformly applied magnetic field is studied to investigate the interplay of viscoelastic fluid and moving wedge. The viscoelastic fluid in the boundary layer is modelled using Walters’ liquid B fluid which describes the gradually fading memory. The wedge is allowed to move in the same/or opposite direction to that of mainstream flow, and the fluid flow vertically through the wedge is also taken into account. The resultant governing equation, obtained with the help of appropriate similarity transformations, is analysed numerically using the Keller-box method. The general features of the investigated physical solutions are the continuation of a Newtonian fluid, the effect of Walters’ liquid B fluid and the pressure gradient to enhance the velocity and decrease the thickness of the boundary layer. Analysis of the boundary layer flow of viscoelastic fluid along with the magnetic field and porous medium unveils single and double solution structures. We noticed an additional solution in the boundary layer for the same set of parameters. Naturally, there exists a critical point beyond which even a single solution does not exist. As the combination of magnetic and permeability parameters is increased, both solutions coalesce into one, thereby yielding a single solution to the model. The linear stability analysis is also performed on the dual solutions, and it reveals that the first solution is always practically realizable. Further, when the velocity ratio parameter is taken sufficiently large, the present model reduces to the flow situation in which the boundary layer forms due to a stretching sheet in a still fluid, and the corresponding equation is solved using an exponentially decaying series solution. Both results are shown to be compared well with each other and existing results in the literature. The interesting flow phenomena are discussed in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rajagopal, K.R., Na, T.Y., Gupta, A.S.: Flow of a viscoelastic fluid over a stretching sheet. Rheologica Acta 23(2), 213–215 (1984)CrossRef Rajagopal, K.R., Na, T.Y., Gupta, A.S.: Flow of a viscoelastic fluid over a stretching sheet. Rheologica Acta 23(2), 213–215 (1984)CrossRef
2.
Zurück zum Zitat Cortell, R.: MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. Chem. Eng. Process. 46(8), 721–728 (2007)CrossRef Cortell, R.: MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. Chem. Eng. Process. 46(8), 721–728 (2007)CrossRef
3.
Zurück zum Zitat Sachdev, P.L., Kudenatti, R.B., Bujurke, N.M.: Exact analytic solution of a boundary value problem for the Falkner–Skan equation. Stud. Appl. Math. 120(1), 1–16 (2008)MathSciNetMATHCrossRef Sachdev, P.L., Kudenatti, R.B., Bujurke, N.M.: Exact analytic solution of a boundary value problem for the Falkner–Skan equation. Stud. Appl. Math. 120(1), 1–16 (2008)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Siddheshwar, P.G., Chan, A., Mahabaleswar, U.S.: Suction-induced magnetohydrodynamics of a viscoelastic fluid over a stretching surface within a porous medium. IMA J. Appl. Math. 79(3), 445–458 (2012)MathSciNetMATHCrossRef Siddheshwar, P.G., Chan, A., Mahabaleswar, U.S.: Suction-induced magnetohydrodynamics of a viscoelastic fluid over a stretching surface within a porous medium. IMA J. Appl. Math. 79(3), 445–458 (2012)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Kudenatti, R.B., Kirsur, S.R., Achala, L.N., Bujurke, N.M.: MHD boundary layer flow over a non-linear stretching boundary with suction and injection. Int. J. Non-Linear Mech. 50, 58–67 (2013)CrossRef Kudenatti, R.B., Kirsur, S.R., Achala, L.N., Bujurke, N.M.: MHD boundary layer flow over a non-linear stretching boundary with suction and injection. Int. J. Non-Linear Mech. 50, 58–67 (2013)CrossRef
6.
Zurück zum Zitat Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids. Fluid mechanics, vol. 1. Wiley, New York (1987) Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids. Fluid mechanics, vol. 1. Wiley, New York (1987)
7.
Zurück zum Zitat Andersson, H.I., De Korte, E., Meland, R.: Flow of a power-law fluid over a rotating disk revisited. Fluid Dyn. Res. 28(2), 75 (2001)CrossRef Andersson, H.I., De Korte, E., Meland, R.: Flow of a power-law fluid over a rotating disk revisited. Fluid Dyn. Res. 28(2), 75 (2001)CrossRef
8.
Zurück zum Zitat Schowalter, W.R.: The application of boundary-layer theory to power-law pseudoplastic fluids: similar solutions. AIChE J. 6(1), 24–28 (1960)CrossRef Schowalter, W.R.: The application of boundary-layer theory to power-law pseudoplastic fluids: similar solutions. AIChE J. 6(1), 24–28 (1960)CrossRef
9.
Zurück zum Zitat Denier, J.P., Dabrowski, P.P.: On the boundary-layer equations for power-law fluids. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2051), 3143–3158 (2004)MathSciNetMATHCrossRef Denier, J.P., Dabrowski, P.P.: On the boundary-layer equations for power-law fluids. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2051), 3143–3158 (2004)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Mehmet, A., Yükselen, M.A.: Flow of power-law fluids over a moving wedge surface with wall mass injection. Arch. Appl. Mech. 81, 65–76 (2011)MATHCrossRef Mehmet, A., Yükselen, M.A.: Flow of power-law fluids over a moving wedge surface with wall mass injection. Arch. Appl. Mech. 81, 65–76 (2011)MATHCrossRef
11.
Zurück zum Zitat Xu, H.: Homotopy analysis of a self-similar boundary-flow driven by a power-law shear. Arch. Appl. Mech. 78, 311–320 (2008)MATHCrossRef Xu, H.: Homotopy analysis of a self-similar boundary-flow driven by a power-law shear. Arch. Appl. Mech. 78, 311–320 (2008)MATHCrossRef
12.
Zurück zum Zitat Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 16(1), 99–127 (1972)CrossRef Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 16(1), 99–127 (1972)CrossRef
13.
Zurück zum Zitat Khan, M., Hussain, A., Malik, M.Y., Salahuddin, T., Aly, S.: Numerical analysis of Carreau fluid flow for generalized Fourier’s and Fick’s laws. Appl. Numer. Math. 144, 100–117 (2019)MathSciNetMATHCrossRef Khan, M., Hussain, A., Malik, M.Y., Salahuddin, T., Aly, S.: Numerical analysis of Carreau fluid flow for generalized Fourier’s and Fick’s laws. Appl. Numer. Math. 144, 100–117 (2019)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Hassan, M., Issakhov, A., Khan, S.U.-D., El Haj Assad, M., Hani, E.H.B., Rahimi-Gorji, M., Nadeem, S., Khan, S.U.-D.: The effects of zero and high shear rates viscosities on the transportation of heat and mass in boundary layer regions: a non-Newtonian fluid with Carreau model. J. Mol. Liq. 317, 113991 (2020)CrossRef Hassan, M., Issakhov, A., Khan, S.U.-D., El Haj Assad, M., Hani, E.H.B., Rahimi-Gorji, M., Nadeem, S., Khan, S.U.-D.: The effects of zero and high shear rates viscosities on the transportation of heat and mass in boundary layer regions: a non-Newtonian fluid with Carreau model. J. Mol. Liq. 317, 113991 (2020)CrossRef
15.
Zurück zum Zitat Kudenatti, R.B., Sandhya, L., Bujurke, N.M.: Numerical study on magnetohydrodynamic boundary layer flow of the Carreau fluid in a porous medium: the Chebyshev collocation method. Eng. Comput. 38, 1–22 (2021) Kudenatti, R.B., Sandhya, L., Bujurke, N.M.: Numerical study on magnetohydrodynamic boundary layer flow of the Carreau fluid in a porous medium: the Chebyshev collocation method. Eng. Comput. 38, 1–22 (2021)
16.
Zurück zum Zitat Nazir, U., Saleem, S., Nawaz, M., Sadiq, M.A., Alderremy, A.A.: Study of transport phenomenon in carreau fluid using Cattaneo–Christov heat flux model with temperature dependent diffusion coefficients. Physica A 554, 123921 (2020)MathSciNetMATHCrossRef Nazir, U., Saleem, S., Nawaz, M., Sadiq, M.A., Alderremy, A.A.: Study of transport phenomenon in carreau fluid using Cattaneo–Christov heat flux model with temperature dependent diffusion coefficients. Physica A 554, 123921 (2020)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Khan, M.I., Waqas, M., Hayat, T., Alsaedi, A.: A comparative study of Casson fluid with homogeneous–heterogeneous reactions. J. Colloid Interface Sci. 498, 85–90 (2017)CrossRef Khan, M.I., Waqas, M., Hayat, T., Alsaedi, A.: A comparative study of Casson fluid with homogeneous–heterogeneous reactions. J. Colloid Interface Sci. 498, 85–90 (2017)CrossRef
18.
Zurück zum Zitat Mukhopadhyay, S., De, P.R., Bhattacharyya, K., Layek, G.C.: Casson fluid flow over an unsteady stretching surface. Ain Shams Eng. J. 4(4), 933–938 (2013)CrossRef Mukhopadhyay, S., De, P.R., Bhattacharyya, K., Layek, G.C.: Casson fluid flow over an unsteady stretching surface. Ain Shams Eng. J. 4(4), 933–938 (2013)CrossRef
19.
Zurück zum Zitat Nadeem, S., Haq, R.U., Lee, C.: MHD flow of a Casson fluid over an exponentially shrinking sheet. Scientia Iranica 19(6), 1550–1553 (2012)CrossRef Nadeem, S., Haq, R.U., Lee, C.: MHD flow of a Casson fluid over an exponentially shrinking sheet. Scientia Iranica 19(6), 1550–1553 (2012)CrossRef
20.
Zurück zum Zitat Walawender, W.P., Chen, T.Y., Cala, D.F.: An approximate Casson fluid model for tube flow of blood. Biorheology 12(2), 111–119 (1975)CrossRef Walawender, W.P., Chen, T.Y., Cala, D.F.: An approximate Casson fluid model for tube flow of blood. Biorheology 12(2), 111–119 (1975)CrossRef
21.
Zurück zum Zitat Hayat, T., Abbas, Z., Sajid, M.: Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys. Lett. A 358(5–6), 396–403 (2006)MATHCrossRef Hayat, T., Abbas, Z., Sajid, M.: Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys. Lett. A 358(5–6), 396–403 (2006)MATHCrossRef
22.
Zurück zum Zitat Abbas, Z., Sajid, M., Hayat, T.: MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel. Theoret. Comput. Fluid Dyn. 20(4), 229–238 (2006)MATHCrossRef Abbas, Z., Sajid, M., Hayat, T.: MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel. Theoret. Comput. Fluid Dyn. 20(4), 229–238 (2006)MATHCrossRef
23.
Zurück zum Zitat Chaudhary, I., Garg, P., Shankar, V., Subramanian, G.: Elasto-inertial wall mode instabilities in viscoelastic plane Poiseuille flow. J. Fluid Mech. 881, 119–163 (2019)MathSciNetMATHCrossRef Chaudhary, I., Garg, P., Shankar, V., Subramanian, G.: Elasto-inertial wall mode instabilities in viscoelastic plane Poiseuille flow. J. Fluid Mech. 881, 119–163 (2019)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Bilal, M., Nazeer, M.: Numerical analysis for the non-Newtonian flow over stratified stretching/shrinking inclined sheet with the aligned magnetic field and nonlinear convection. Arch. Appl. Mech. 91, 949–964 (2021)CrossRef Bilal, M., Nazeer, M.: Numerical analysis for the non-Newtonian flow over stratified stretching/shrinking inclined sheet with the aligned magnetic field and nonlinear convection. Arch. Appl. Mech. 91, 949–964 (2021)CrossRef
25.
Zurück zum Zitat Beard, D.W., Walters, K.: Elastico-viscous boundary-layer flows I. Two-dimensional flow near a stagnation point. Math. Proc. Camb. Philos. Soc. 60(3), 667–674 (1964)MathSciNetMATHCrossRef Beard, D.W., Walters, K.: Elastico-viscous boundary-layer flows I. Two-dimensional flow near a stagnation point. Math. Proc. Camb. Philos. Soc. 60(3), 667–674 (1964)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Chang, W.D.: The nonuniqueness of the flow of a viscoelastic fluid over a stretching sheet. Q. Appl. Math. 47(2), 365–366 (1989)MathSciNetMATHCrossRef Chang, W.D.: The nonuniqueness of the flow of a viscoelastic fluid over a stretching sheet. Q. Appl. Math. 47(2), 365–366 (1989)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Ariel, P.D.: MHD flow of a viscoelastic fluid past a stretching sheet with suction. Acta Mech. 105(1), 49–56 (1994)MATHCrossRef Ariel, P.D.: MHD flow of a viscoelastic fluid past a stretching sheet with suction. Acta Mech. 105(1), 49–56 (1994)MATHCrossRef
28.
Zurück zum Zitat Dandapat, B.S., Gupta, A.S.: Flow and heat transfer in a viscoelastic fluid over a stretching sheet. Int. J. Non-Linear Mech. 24(3), 215–219 (1989)MATHCrossRef Dandapat, B.S., Gupta, A.S.: Flow and heat transfer in a viscoelastic fluid over a stretching sheet. Int. J. Non-Linear Mech. 24(3), 215–219 (1989)MATHCrossRef
29.
Zurück zum Zitat Sedeek, A.: Heat and mass transfer on a stretching sheet with a magnetic field in a viscoelastic fluid flow through a porous medium with heat source and sink. Comput. Mater. Sci. 38, 781–787 (2007)CrossRef Sedeek, A.: Heat and mass transfer on a stretching sheet with a magnetic field in a viscoelastic fluid flow through a porous medium with heat source and sink. Comput. Mater. Sci. 38, 781–787 (2007)CrossRef
30.
Zurück zum Zitat Mahabaleshwar, U.S., Sarris, I.E., Lorenzini, G.: Effect of radiation and Navier slip boundary of Walters’ liquid B flow over a stretching sheet in a porous media. Int. J. Heat Mass Transf. 127, 1327–1337 (2018)CrossRef Mahabaleshwar, U.S., Sarris, I.E., Lorenzini, G.: Effect of radiation and Navier slip boundary of Walters’ liquid B flow over a stretching sheet in a porous media. Int. J. Heat Mass Transf. 127, 1327–1337 (2018)CrossRef
31.
Zurück zum Zitat Akinbo, B.J., Olajuwon, B.I.: Radiation and thermal-diffusion interaction on stagnation-point flow of Walters’ B fluid toward a vertical stretching sheet. Int. Commun. Heat Mass Transf. 126, 105471 (2021)CrossRef Akinbo, B.J., Olajuwon, B.I.: Radiation and thermal-diffusion interaction on stagnation-point flow of Walters’ B fluid toward a vertical stretching sheet. Int. Commun. Heat Mass Transf. 126, 105471 (2021)CrossRef
32.
Zurück zum Zitat Singh, J.K., Joshi, N., Rohidas, P.: Unsteady MHD natural convective flow of a rotating Walters’-B fluid over an oscillating plate with fluctuating wall temperature and concentration. J. Mech. 34(4), 519–532 (2018)CrossRef Singh, J.K., Joshi, N., Rohidas, P.: Unsteady MHD natural convective flow of a rotating Walters’-B fluid over an oscillating plate with fluctuating wall temperature and concentration. J. Mech. 34(4), 519–532 (2018)CrossRef
33.
Zurück zum Zitat Singh, J.K., Seth, G.S., Begum, G., Vishwanath, S.: Hydromagnetic free convective flow of Walters’-B fluid over a vertical surface with time varying surface conditions. World J. Eng. 8(3), 295–307 (2020)CrossRef Singh, J.K., Seth, G.S., Begum, G., Vishwanath, S.: Hydromagnetic free convective flow of Walters’-B fluid over a vertical surface with time varying surface conditions. World J. Eng. 8(3), 295–307 (2020)CrossRef
34.
Zurück zum Zitat Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)CrossRef Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)CrossRef
35.
Zurück zum Zitat Riley, N., Weidman, P.D.: Multiple solutions of the Falkner–Skan equation for flow past a stretching boundary. SIAM J. Appl. Math. 49(5), 1350–1358 (1989)MathSciNetMATHCrossRef Riley, N., Weidman, P.D.: Multiple solutions of the Falkner–Skan equation for flow past a stretching boundary. SIAM J. Appl. Math. 49(5), 1350–1358 (1989)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Kudenatti, R.B., Misbah, N.E., Bharathi, M.C.: Linear stability of momentum boundary layer flow and heat transfer over a moving wedge. J. Heat Transf. 142, 6 (2020)CrossRef Kudenatti, R.B., Misbah, N.E., Bharathi, M.C.: Linear stability of momentum boundary layer flow and heat transfer over a moving wedge. J. Heat Transf. 142, 6 (2020)CrossRef
37.
Zurück zum Zitat Jumana, S.A., Murtaza, M.G., Ferdows, M., Makinde, O.D., Zaimi, K.: Dual solutions analysis of melting phenomenon with mixed convection in a nanofluid flow and heat transfer past a permeable stretching/shrinking sheet. J. Nanofluids 9(4), 313–320 (2020)CrossRef Jumana, S.A., Murtaza, M.G., Ferdows, M., Makinde, O.D., Zaimi, K.: Dual solutions analysis of melting phenomenon with mixed convection in a nanofluid flow and heat transfer past a permeable stretching/shrinking sheet. J. Nanofluids 9(4), 313–320 (2020)CrossRef
38.
Zurück zum Zitat Dey, D., Makinde, O.D., Borah, R.: Analysis of dual solutions in MHD fluid flow with heat and mass transfer past an exponentially shrinking/stretching surface in a porous medium. Int. J. Appl. Comput. Math. 8(2), 1–18 (2022)MathSciNetMATHCrossRef Dey, D., Makinde, O.D., Borah, R.: Analysis of dual solutions in MHD fluid flow with heat and mass transfer past an exponentially shrinking/stretching surface in a porous medium. Int. J. Appl. Comput. Math. 8(2), 1–18 (2022)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Yuan, S.W.: Foundations of Fluid Mechanics (Book on Fluid Mechanics Foundations for Introductory and/or Secondary Fluid Mechanics Course, with Appendices Containing Vector Analysis, Inviscid Fluid Flow Equations, etc), p. 627. Prentice-Hall Inc., Englewood Cliffs (1967) Yuan, S.W.: Foundations of Fluid Mechanics (Book on Fluid Mechanics Foundations for Introductory and/or Secondary Fluid Mechanics Course, with Appendices Containing Vector Analysis, Inviscid Fluid Flow Equations, etc), p. 627. Prentice-Hall Inc., Englewood Cliffs (1967)
40.
Zurück zum Zitat Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer (2003)MATH Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer (2003)MATH
41.
42.
Zurück zum Zitat Kudenatti, R.B., Jyothi, B.: Two-dimensional boundary-layer flow and heat transfer over a wedge: numerical and asymptotic solutions. Therm. Sci. Eng. Progress. 11, 66–73 (2019)CrossRef Kudenatti, R.B., Jyothi, B.: Two-dimensional boundary-layer flow and heat transfer over a wedge: numerical and asymptotic solutions. Therm. Sci. Eng. Progress. 11, 66–73 (2019)CrossRef
43.
Zurück zum Zitat Gogate, S.S.P., Kudenatti, R.B.: Numerical study of three-dimensional boundary-layer flow over a wedge: magnetic field analysis. J. Appl. Comput. Mech. 8(3), 876–890 (2020) Gogate, S.S.P., Kudenatti, R.B.: Numerical study of three-dimensional boundary-layer flow over a wedge: magnetic field analysis. J. Appl. Comput. Mech. 8(3), 876–890 (2020)
44.
Zurück zum Zitat Serth, R.W.: Solution of a viscoelastic boundary layer equation by orthogonal collocation. J. Eng. Math. 8(2), 89–92 (1974)MATHCrossRef Serth, R.W.: Solution of a viscoelastic boundary layer equation by orthogonal collocation. J. Eng. Math. 8(2), 89–92 (1974)MATHCrossRef
45.
Zurück zum Zitat Madani, S.A.T., Abkar, R. Khoeilar, R: On the study of viscoelastic Walters’ B fluid in boundary layer flows. Math. Probl. Eng. (2012) Madani, S.A.T., Abkar, R. Khoeilar, R: On the study of viscoelastic Walters’ B fluid in boundary layer flows. Math. Probl. Eng. (2012)
46.
Zurück zum Zitat Sharma, R., Ishak, A., Pop, I.: Stability analysis of magnetohydrodynamic stagnation-point flow toward a stretching/shrinking sheet. Comput. Fluids 102, 94–98 (2014)CrossRef Sharma, R., Ishak, A., Pop, I.: Stability analysis of magnetohydrodynamic stagnation-point flow toward a stretching/shrinking sheet. Comput. Fluids 102, 94–98 (2014)CrossRef
Metadaten
Titel
MHD boundary layer flow of viscoelastic fluid over a wedge in porous medium
verfasst von
Ramesh B. Kudenatti
H. Amrutha
Publikationsdatum
28.09.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 12/2022
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-022-02275-2

Weitere Artikel der Ausgabe 12/2022

Archive of Applied Mechanics 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.