Skip to main content
Erschienen in: Integrating Materials and Manufacturing Innovation 1/2024

12.02.2024 | Thematic Section: Harnessing the Power of Materials Data

MICRO2D: A Large, Statistically Diverse, Heterogeneous Microstructure Dataset

verfasst von: Andreas E. Robertson, Adam P. Generale, Conlain Kelly, Michael O. Buzzy, Surya R. Kalidindi

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The availability of large, diverse datasets has enabled transformative advances in a wide variety of technical fields by unlocking data scientific and machine learning techniques. In Materials Informatics for Heterogeneous Microstructures capitalization on these techniques has been limited due to the extreme complexity of generating or curating sizeable heterogeneous microstructure datasets. Historically, this difficulty can be attributed to two main hurdles: quantification (i.e., measuring microstructure diversity) and curation (i.e., generating diverse microstructures). In this paper, we present a framework for curating large, statistically diverse mesoscale microstructure datasets composed of 2-phase microstructures. The framework generates microstructures which are statistically diverse with respect to their n-point statistics—the primary emphasis is on diversity in their 2-point statistics. The framework’s foundation is a proposed set of algorithms for synthesizing salient 2-point statistics and neighborhood distributions. We generate statistically diverse microstructures by using the outputs of these algorithms as inputs to a statistically conditioned Local-Global Decomposition generation procedure. Finally, we demonstrate the proposed framework by curating MICRO2D, a diverse, large-scale, and open source heterogeneous microstructure dataset comprised of 87, 379 2-phase microstructures. The contained microstructures are periodic and \(256 \times 256\) pixels. The dataset also contains salient homogenized elastic and thermal properties computed across a range of constituent contrast ratios for each microstructure. Using MICRO2D, we analyze the statistical and property diversity achievable via the proposed framework. We conclude by discussing important areas of future research in microstructure dataset curation.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Specifically, PCA is distance preserving only when the entire basis is maintained [112]. However, in practice, truncated PC representations provide useful dimensionality reduction while being approximately distance preserving [87, 88, 92].
 
2
We emphasize the similarity of this requirement to that given by Niezgoda et al. [71] above.
 
3
The mixture weights must sum to 1. In this work, all weights in a single parameterization were set to the same value.
 
4
In this work, we set this value to \(\epsilon =10^{-8}\).
 
5
Empirical observations strongly indicate that large parts of the parameter space are not important for many engineering systems (e.g., [94, 123]). For example, in general, peaks closer to zero, i.e., with \(\varvec{\mu }_i\) near zero, are more prevalent and important in real autocorrelations.
 
6
This will likely be true even if optimal space filling is accomplished over the parameter space, because of the nonlinear generation transformation step described earlier.
 
7
This approximation is a generalization of PYMKS’ standard generative model [125].
 
8
The parameterization is numerically implemented as a standard eigenvalue decomposition of the covariance matrix where the eigenvector matrices are the euler rotation matrices.
 
9
For example, the class ’VoidSmallBig’ is nonstationary, breaking the stationarity assumption that accompanies many stochastic quantification frameworks. Similarly, the sharp edges in the Voronoi classes and the small features in the NBSA class will be difficult for localization models [126], in particular those utilizing Fourier filters [127].
 
10
The exact parameter values—along with all the code necessary to generate the dataset—can be found in the GitHub repository identified at the end of the paper.
 
11
In particular, we noticed that if we did not employ volume fraction stratification the final autocorrelation dataset was strongly skewed toward higher volume fractions. We hypothesize that this is a fingerprint of the spacefilling under the \(L_2\)-norm.
 
12
The total number of microstructures is less than 100, 000 (i.e., \(10 \times 10,000\)) because several volume fraction and neighborhood combinations resulted in unstable generation, e.g., see NBSA in Table 1.
 
13
In the dataset, each class is stored separately to simplify studying subsets of the dataset.
 
14
We selected this specific discretization to balance the degree of achievable diversity against practical considerations. This resolution was sufficiently high to allow us to incorporate two important lengthscales: both salient individual features and long range patterns. However, it is sufficiently low to remain inline with the discretizations preferred by the microstructure informatics community (e.g., in Process-Structure–Property modeling [37, 72, 73, 79, 8183] and synthetic generation [58, 65, 76, 80, 128]). Additionally, we construct our heuristic strategies to ensure that the chosen discretization is sufficient to represent the generated systems. Primarily, we do this by ensuring that the correlation length of the generated statistics is less than half the domain size and by generating periodic microstructures. It is well established in the micromechanics community that periodic RVEs and SVEs provide highly stable estimates of homogenized properties even using relatively small domains [84, 129]. We note that the proposed framework is not restricted to this discretization and datasets containing smaller, larger, or even 3D microstructures can readily be generated without significantly altering the codebase referenced at the end of this paper. However, more advanced generation strategies will need to be established if one is interested in incorporating more than two feature lengthscales.
 
15
Other microstructures, like grain boundary structures, could be generated by the local diffusion model [64, 76].
 
16
The TAMU microstructures are rescaled down to \(256 \times 256\) for comparison.
 
17
The average relative \(L_2\) reconstruction error of the projection is \(0.0071 \pm 0.0077\) for the spinodal dataset. This is comparable with the reconstruction error of MICRO2D, Appendix B. Therefore, the dataset is well represented by the basis. Additionally, including the spinodal dataset in training the PC basis did not change the structure of the latent space.
 
18
We use an analysis congruent to the analysis reported in Robertson et al. [64]. Only the subset of 3-point statistics in which the first shift is equal to 3 are considered.
 
19
Additionally, we computed localized elastic strain fields that are not included in the dataset due to the extreme memory cost. Interested readers should contact the authors.
 
20
In practice, such second order variability arises in many important material classes and is important to study to achieve desirable properties (e.g., rafting in nickel superalloy [137, 138]).
 
Literatur
2.
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N, Uskoreit J, Jones L, Gomez A, Kaiser L, Polosukhin I. Attention is all you need, NeurIPS Vaswani A, Shazeer N, Parmar N, Uskoreit J, Jones L, Gomez A, Kaiser L, Polosukhin I. Attention is all you need, NeurIPS
3.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y Generative adversarial networks, NeurIPS Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y Generative adversarial networks, NeurIPS
8.
Zurück zum Zitat Devlin J, Chang M-W, Lee K, Toutanova K (2019) Bert: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 Devlin J, Chang M-W, Lee K, Toutanova K (2019) Bert: pre-training of deep bidirectional transformers for language understanding. arXiv:​1810.​04805
9.
Zurück zum Zitat Song Y, Sohl-Dickstein J, Kigma DP, Kumar A, Ermon S, Poole B (2021) Score-based generative modeling through stochastic differential equations. In: International congress for learning representation, pp 1–36 Song Y, Sohl-Dickstein J, Kigma DP, Kumar A, Ermon S, Poole B (2021) Score-based generative modeling through stochastic differential equations. In: International congress for learning representation, pp 1–36
10.
Zurück zum Zitat Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. NeurIPS Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. NeurIPS
14.
Zurück zum Zitat Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, Klingner J, Shah A, Johnson M, Liu X, Kaiser L, Gouws S, Kato Y, Kudo T, Kazawa H, Stevens K, Kurian G, Patil N, Wang W, Young C, Smith J, Riesa J, Rudnick A, Vinyals O, Corrado G, Hughes M, Dean J (2016) Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv:1609.08144 Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, Klingner J, Shah A, Johnson M, Liu X, Kaiser L, Gouws S, Kato Y, Kudo T, Kazawa H, Stevens K, Kurian G, Patil N, Wang W, Young C, Smith J, Riesa J, Rudnick A, Vinyals O, Corrado G, Hughes M, Dean J (2016) Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv:​1609.​08144
15.
Zurück zum Zitat Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronnberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl S, Ballard A, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Peterson S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior A, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with alphafold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2ADSCrossRefPubMedPubMedCentral Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronnberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl S, Ballard A, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Peterson S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior A, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with alphafold. Nature 596:583–589. https://​doi.​org/​10.​1038/​s41586-021-03819-2ADSCrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Christie CH, Dalenberg K, Di Costanzo L, Duarte JM, Dutta S, Feng Z, Ganesan S, Goodsell DS, Ghosh S, Green RK, Guranovi V, Guzenko D, Hudson BP, Lawson CL, Liang Y, Lowe R, Namkoong H, Peisach E, Persikova I, Randle C, Rose A, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Tao Y-P, Voigt M, Westbrook JD, Young JY, Zardecki C, Zhuravleva M (2020) RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49(D1):D437–D451. https://doi.org/10.1093/nar/gkaa1038CrossRefPubMedCentral Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Christie CH, Dalenberg K, Di Costanzo L, Duarte JM, Dutta S, Feng Z, Ganesan S, Goodsell DS, Ghosh S, Green RK, Guranovi V, Guzenko D, Hudson BP, Lawson CL, Liang Y, Lowe R, Namkoong H, Peisach E, Persikova I, Randle C, Rose A, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Tao Y-P, Voigt M, Westbrook JD, Young JY, Zardecki C, Zhuravleva M (2020) RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49(D1):D437–D451. https://​doi.​org/​10.​1093/​nar/​gkaa1038CrossRefPubMedCentral
19.
Zurück zum Zitat Zheng S, He J, Liu C, Shi Y, Lu Z, Feng W, Ju F, Wang J, Zhu J, Min Y, Zhang H, Tang S, Hao H, Jin P, Chen C, Noé F, Liu H, Liu T-Y (2023) Towards predicting equilibrium distributions for molecular systems with deep learning. arxiv:2306.05445 Zheng S, He J, Liu C, Shi Y, Lu Z, Feng W, Ju F, Wang J, Zhu J, Min Y, Zhang H, Tang S, Hao H, Jin P, Chen C, Noé F, Liu H, Liu T-Y (2023) Towards predicting equilibrium distributions for molecular systems with deep learning. arxiv:​2306.​05445
20.
Zurück zum Zitat Materials genome initiative for global competitiveness Materials genome initiative for global competitiveness
26.
Zurück zum Zitat Acar P, Sundararaghavan V (2019) Stochastic design optimization of microstructural features using linear programming for robust design. AIAA J 57:448–455ADSCrossRef Acar P, Sundararaghavan V (2019) Stochastic design optimization of microstructural features using linear programming for robust design. AIAA J 57:448–455ADSCrossRef
28.
32.
Zurück zum Zitat Diehl M, Groeber M, Haase C, Molodov D, Roters F, Raabe D (2017) Identifying structure-property relationships through dream. 3d representative volume elements and damask crystal plasticity simulations: An integrated computational materials engineering approach. JOM 69:848–855. https://doi.org/10.1007/s11837-017-2303-0ADSCrossRef Diehl M, Groeber M, Haase C, Molodov D, Roters F, Raabe D (2017) Identifying structure-property relationships through dream. 3d representative volume elements and damask crystal plasticity simulations: An integrated computational materials engineering approach. JOM 69:848–855. https://​doi.​org/​10.​1007/​s11837-017-2303-0ADSCrossRef
41.
Zurück zum Zitat Pilchak AL, Shank J, Tucker JC, Srivatsa S, Fagin PN, Semiatin SL(2016) A dataset for the development, verification, and validation of microstructure-sensitive process models for near-alpha titanium alloys. Integr Mater Manuf Innov, 1–18 https://doi.org/10.1186/s40192-016-0056-1 Pilchak AL, Shank J, Tucker JC, Srivatsa S, Fagin PN, Semiatin SL(2016) A dataset for the development, verification, and validation of microstructure-sensitive process models for near-alpha titanium alloys. Integr Mater Manuf Innov, 1–18 https://​doi.​org/​10.​1186/​s40192-016-0056-1
43.
Zurück zum Zitat Kalidindi S, Khosravani A, Yucel B, Shanker A, Blekh A (2019) Data infrastructure elements in support of accelerated materials innovation: ELA, PyMKS, and MATIN. Integr Mater Manuf Innov 8:441–454CrossRef Kalidindi S, Khosravani A, Yucel B, Shanker A, Blekh A (2019) Data infrastructure elements in support of accelerated materials innovation: ELA, PyMKS, and MATIN. Integr Mater Manuf Innov 8:441–454CrossRef
49.
Zurück zum Zitat Choudhary K, Garrity KF, Reid ACE, DeCost B, Biacchi AJ, Walker ARH, Trautt Z, Hattrick-Simpers J, Kusne AG, Centrone A, Davydov A, Jiang J, Pachter R, Cheon G, Reed E, Agrawal A, Qian X, Sharma V, Zhuang H, Kalinin SV, Sumpter BG, Pilania G, Acar P, Mandal S, Haule K, Vanderbilt D, Rabe K, Tavazza F, The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput Mater 6. https://doi.org/10.1038/s41524-020-00440-1 Choudhary K, Garrity KF, Reid ACE, DeCost B, Biacchi AJ, Walker ARH, Trautt Z, Hattrick-Simpers J, Kusne AG, Centrone A, Davydov A, Jiang J, Pachter R, Cheon G, Reed E, Agrawal A, Qian X, Sharma V, Zhuang H, Kalinin SV, Sumpter BG, Pilania G, Acar P, Mandal S, Haule K, Vanderbilt D, Rabe K, Tavazza F, The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput Mater 6. https://​doi.​org/​10.​1038/​s41524-020-00440-1
60.
61.
Zurück zum Zitat Adams B, Kalidindi S, Fullwood D (2013) Microstructure sensitive design for performance optimization. Butterworth-Heinemann, Waltham Adams B, Kalidindi S, Fullwood D (2013) Microstructure sensitive design for performance optimization. Butterworth-Heinemann, Waltham
76.
Zurück zum Zitat Lee K, Yun G Microstructure reconstruction using diffusion-based generative models Lee K, Yun G Microstructure reconstruction using diffusion-based generative models
80.
Zurück zum Zitat Dureth C, Seibert P, Rucker D, Handford S, Kastner M, Gude M. Conditional diffusion-based microstructure reconstruction Dureth C, Seibert P, Rucker D, Handford S, Kastner M, Gude M. Conditional diffusion-based microstructure reconstruction
83.
Zurück zum Zitat Iyer A, Dey B, Dasgupta A, Chen W. A conditional generative model for predicting material microstructures from processing methods Iyer A, Dey B, Dasgupta A, Chen W. A conditional generative model for predicting material microstructures from processing methods
94.
Zurück zum Zitat Yabansu YC, Iskakov A, Kapustina A, Rajagopalan S, Kalidindi S. Application of gaussian process regression models for capturing the evolution of microstructure statistics in aging of nickel-based superalloys. Acta Mater 178 Yabansu YC, Iskakov A, Kapustina A, Rajagopalan S, Kalidindi S. Application of gaussian process regression models for capturing the evolution of microstructure statistics in aging of nickel-based superalloys. Acta Mater 178
97.
Zurück zum Zitat Wilson A, Adams R (2013) Gaussian process kernels for pattern discovery and extrapolation, In: Proceedings of the 30th international conference on machine learning, vol 28 of proceedings of machine learning research, PMLR, pp 1067–1075 Wilson A, Adams R (2013) Gaussian process kernels for pattern discovery and extrapolation, In: Proceedings of the 30th international conference on machine learning, vol 28 of proceedings of machine learning research, PMLR, pp 1067–1075
98.
Zurück zum Zitat Lazaro-Gredilla M, Quinonero-Candela J, Rasmussen C, Figueiras-Vidal A (2010) Sparse spectrum gaussian process regression. J Mach Learn Res, 1865–1881 Lazaro-Gredilla M, Quinonero-Candela J, Rasmussen C, Figueiras-Vidal A (2010) Sparse spectrum gaussian process regression. J Mach Learn Res, 1865–1881
100.
Zurück zum Zitat Brown Jr WF (1955) Solid mixture permittivities. J Chem Phys 23:1514–1517 Brown Jr WF (1955) Solid mixture permittivities. J Chem Phys 23:1514–1517
101.
Zurück zum Zitat Kroner E (1977) Bounds for effective elastic moduli of disordered materials. J Mech Phys Solids 25:137–155ADSCrossRef Kroner E (1977) Bounds for effective elastic moduli of disordered materials. J Mech Phys Solids 25:137–155ADSCrossRef
102.
Zurück zum Zitat Safdari M, Baniassadi M, Garmestani H, Al-Haik M (2012) A modified strong-constrast expansion for estimating the effective thermal conductivity of multiphase heterogeneous materials. J Appl Phys 112:114318ADSCrossRef Safdari M, Baniassadi M, Garmestani H, Al-Haik M (2012) A modified strong-constrast expansion for estimating the effective thermal conductivity of multiphase heterogeneous materials. J Appl Phys 112:114318ADSCrossRef
103.
Zurück zum Zitat Torquato S (1997) Effective stiffness tensor of composite media: 1. Exact series expansions. J Mech Phys Solids 45:1421–1448ADSMathSciNetCrossRef Torquato S (1997) Effective stiffness tensor of composite media: 1. Exact series expansions. J Mech Phys Solids 45:1421–1448ADSMathSciNetCrossRef
104.
Zurück zum Zitat Torquato S (1998) Effective stiffness tensor of composite media: 2. Applications to isotropic dispersions. J Mech Phys Solids 46:1411–1440ADSMathSciNetCrossRef Torquato S (1998) Effective stiffness tensor of composite media: 2. Applications to isotropic dispersions. J Mech Phys Solids 46:1411–1440ADSMathSciNetCrossRef
105.
Zurück zum Zitat Fullwood D, Adams B, Kalidindi S (2008) A strong contrast homogenization formulation for multi-phase anistropic materials. J Mech Phys Solids 56:2287–2297ADSMathSciNetCrossRef Fullwood D, Adams B, Kalidindi S (2008) A strong contrast homogenization formulation for multi-phase anistropic materials. J Mech Phys Solids 56:2287–2297ADSMathSciNetCrossRef
110.
Zurück zum Zitat Kroner E (1972) Statistical continuum mechanics. Springer, New York Kroner E (1972) Statistical continuum mechanics. Springer, New York
123.
Zurück zum Zitat Cecen A (2017) Calculation, utilization, and inference of spatial statistics in practical spatio-temporal data. Georgia Tech Library, Atlanta Cecen A (2017) Calculation, utilization, and inference of spatial statistics in practical spatio-temporal data. Georgia Tech Library, Atlanta
136.
Zurück zum Zitat Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372ADSCrossRef Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372ADSCrossRef
142.
Zurück zum Zitat Ahrendt P (2023) The multivariate gaussian probability. Accessed 4 Oct 2023. https://d1wqtxts1xzle7.cloudfront.net/49874923/The_Multivariate_Gaussian_Probability_Di20161026-27105-77g7a0-libre.pdf?1477466954= &response-content-disposition=inline%3B+filename%3DThe_multivariate_gaussian_probability_di.pdf &Expires=1696429097 &Signature=EbY-smInGeeMVvC0qsTaERE9jTZTSJF8NC9MZl0fOkqTiBgWVcmYqZ~u-8vaYnjyuJyCgV-40kYMMHThOOAhgEGQ8~2dzZG~TV7Rn69mTy1I1ieWafwrsatRpsj3CB6KIbhRn6Y2MgwENUL0RVxnycgT2uiSJiAAoucqbOw5cxBO9H2OrgzgT2SywfSb2hxmr~GLayEwsCWUA~QRgm4AYcbK-YwWebZcZ6RkMOCMotDks-aCd66kbFpBz8bdM3avpmNpYJRWn9jxUFhDhJOnhz0OFdidp~fN96dS-J7~hSJDeK4dGDBE03b5sUd4Px7YrFf4jCCD6KOn1ldefSJR9w__ &Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA Ahrendt P (2023) The multivariate gaussian probability. Accessed 4 Oct 2023. https://​d1wqtxts1xzle7.​cloudfront.​net/​49874923/​The_​Multivariate_​Gaussian_​Probability_​Di20161026-27105-77g7a0-libre.​pdf?​1477466954=​ &​response-content-disposition=​inline%3B+filename%3DThe_​multivariate_​gaussian_​probability_​di.​pdf &​Expires=​1696429097 &​Signature=​EbY-smInGeeMVvC0qsTa​ERE9jTZTSJF8NC9M​Zl0fOkqTiBgWVcmY​qZ~u-8vaYnjyuJyCgV-40kYMMHThOOAhgEG​Q8~2dzZG~TV7Rn69​mTy1I1ieWafwrsat​Rpsj3CB6KIbhRn6Y​2MgwENUL0RVxnycg​T2uiSJiAAoucqbOw​5cxBO9H2OrgzgT2S​ywfSb2hxmr~GLayE​wsCWUA~QRgm4AYcb​K-YwWebZcZ6RkMOCMo​tDks-aCd66kbFpBz8bdM3​avpmNpYJRWn9jxUF​hDhJOnhz0OFdidp~​fN96dS-J7~hSJDeK4dGDBE0​3b5sUd4Px7YrFf4j​CCD6KOn1ldefSJR9​w_​_​ &​Key-Pair-Id=​APKAJLOHF5GGSLRB​V4ZA
144.
Zurück zum Zitat Hastie T, Tibshirani R, Friedman J (2016) The elements of statistical learning. Springer, New York Hastie T, Tibshirani R, Friedman J (2016) The elements of statistical learning. Springer, New York
145.
Zurück zum Zitat Vetterli M, Kovacevic J, Goyal V (2014) Foundations of signal processing. Cambridge University Press, CambridgeCrossRef Vetterli M, Kovacevic J, Goyal V (2014) Foundations of signal processing. Cambridge University Press, CambridgeCrossRef
146.
Zurück zum Zitat Berryman J (1987) Relationship between specific surface area and spatial correlation functions for anistropic porous media. J Math Phys 28:244–245ADSMathSciNetCrossRef Berryman J (1987) Relationship between specific surface area and spatial correlation functions for anistropic porous media. J Math Phys 28:244–245ADSMathSciNetCrossRef
Metadaten
Titel
MICRO2D: A Large, Statistically Diverse, Heterogeneous Microstructure Dataset
verfasst von
Andreas E. Robertson
Adam P. Generale
Conlain Kelly
Michael O. Buzzy
Surya R. Kalidindi
Publikationsdatum
12.02.2024
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 1/2024
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-023-00340-4

Weitere Artikel der Ausgabe 1/2024

Integrating Materials and Manufacturing Innovation 1/2024 Zur Ausgabe

Thematic Section: 7th World Congress on Integrated Computational Materials Engineering

PRISMS-Indentation: Multi-scale Elasto-Plastic Virtual Indentation Module

Thematic Section: Harnessing the Power of Materials Data

Beyond Combinatorial Materials Science: The 100 Prisoners Problem

Thematic Section: 7th World Congress on Integrated Computational Materials Engineering

Phase Identification in Synchrotron X-ray Diffraction Patterns of Ti–6Al–4V Using Computer Vision and Deep Learning

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.