Skip to main content

2016 | OriginalPaper | Buchkapitel

2. Microbial Polysaccharides as Advance Nanomaterials

verfasst von : Saurabh Bhatia

Erschienen in: Systems for Drug Delivery

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microorganisms offer great amounts of polysaccharides in the presence of additional carbon source. Certain polysaccharides serve as storage compounds. The polysaccharides excreted by the cells, called as exopolysaccharides, are of industrial importance. The exopolysaccharides may be reported in association with the cells or may remain in the medium. The microbial polysaccharides may be neutral (e.g. dextran, scleroglucan) or acidic (xanthan, gellan) in nature. Acidic polysaccharides possessing ionized groups such as carboxyl, which can function as polyelectrolytes, are commercially more important. These emerging microbial polysaccharides are recently explored as nano-materials for diverse biomedical applications. This chapter emphasize on nano-applications of microbial polysaccharides in diverse discipline of biomedical science.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xua W, Jina W, Lia Z, Lianga H, Wanga Y, Shaha BR, Lia Y, Lia B. Synthesis and characterization of nanoparticles based on negatively charged xanthan gum and lysozyme. Food Res Int. 2015;71:83–90.CrossRef Xua W, Jina W, Lia Z, Lianga H, Wanga Y, Shaha BR, Lia Y, Lia B. Synthesis and characterization of nanoparticles based on negatively charged xanthan gum and lysozyme. Food Res Int. 2015;71:83–90.CrossRef
2.
Zurück zum Zitat Kennedya JRM, Kent KE, Brown JR. Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles. Mater Sci Eng C. 2015;48:347–53.CrossRef Kennedya JRM, Kent KE, Brown JR. Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles. Mater Sci Eng C. 2015;48:347–53.CrossRef
3.
Zurück zum Zitat Sharma N, Deshpande RD, Sharma D, Sharma RK. Development of locust bean gum and xanthan gum based biodegradable microparticles of celecoxib using a central composite design and its evaluation original research article. Ind Crops Prod. 2016;82:161–70.CrossRef Sharma N, Deshpande RD, Sharma D, Sharma RK. Development of locust bean gum and xanthan gum based biodegradable microparticles of celecoxib using a central composite design and its evaluation original research article. Ind Crops Prod. 2016;82:161–70.CrossRef
4.
Zurück zum Zitat Kim J, Hwang J, Kang H, Choi J. Chlorhexidine-loaded xanthan gum-based biopolymers for targeted, sustained release of antiseptic agent. J Ind Eng Chem. 2015;32:44–8.CrossRef Kim J, Hwang J, Kang H, Choi J. Chlorhexidine-loaded xanthan gum-based biopolymers for targeted, sustained release of antiseptic agent. J Ind Eng Chem. 2015;32:44–8.CrossRef
5.
Zurück zum Zitat Manca ML, et al. Liposomes coated with Chitosan–Xanthan Gum (Chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci. 2012;101(2):566–75.CrossRef Manca ML, et al. Liposomes coated with Chitosan–Xanthan Gum (Chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci. 2012;101(2):566–75.CrossRef
6.
Zurück zum Zitat Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY. Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydr Polym. 2010;79(4):898–907.CrossRef Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY. Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydr Polym. 2010;79(4):898–907.CrossRef
7.
Zurück zum Zitat Koop HS, Freitas RA, Souza MM, Roberto SJ, Silveira JLM. Topical curcumin-loaded hydrogels obtained using galactomannan from Schizolobium parahybae and xanthan original research article. Carbohydr Polym. 2015;116:229–36.CrossRef Koop HS, Freitas RA, Souza MM, Roberto SJ, Silveira JLM. Topical curcumin-loaded hydrogels obtained using galactomannan from Schizolobium parahybae and xanthan original research article. Carbohydr Polym. 2015;116:229–36.CrossRef
8.
Zurück zum Zitat Nichifor M, et al. Aggregation in water of dextran hydrophobically modified with bile acids. Macromolecules. 1999;32:7078–85.CrossRef Nichifor M, et al. Aggregation in water of dextran hydrophobically modified with bile acids. Macromolecules. 1999;32:7078–85.CrossRef
9.
Zurück zum Zitat Walker S, et al. Cationic facial amphiphiles: a promising class of transfection agents. Proc Natl Acad Sci U S A. 1996;93:1585–90.CrossRef Walker S, et al. Cationic facial amphiphiles: a promising class of transfection agents. Proc Natl Acad Sci U S A. 1996;93:1585–90.CrossRef
10.
Zurück zum Zitat Alheim M, Hallensleben ML. Radikalisch polymerisierbaregallensa ¨uren in monoschichten, mizellen and vesikeln. Makromol Chem. 1992;193:779–97.CrossRef Alheim M, Hallensleben ML. Radikalisch polymerisierbaregallensa ¨uren in monoschichten, mizellen and vesikeln. Makromol Chem. 1992;193:779–97.CrossRef
11.
Zurück zum Zitat Denike JK, Zhu XX. Preparation of new polymers from bile acid derivatives. Macromol Rapid Commun. 1994;15:459–65.CrossRef Denike JK, Zhu XX. Preparation of new polymers from bile acid derivatives. Macromol Rapid Commun. 1994;15:459–65.CrossRef
12.
Zurück zum Zitat Harboe E, Larsen C, Johansen M, Olesen HP. Macromolecular prodrugs. XV. Colon-targeted delivery–bioavailability of naproxen from orally administered dextran-naproxen ester prodrugs varying in molecular size in the pig. Pharm Res. 1989;6:919–23. Harboe E, Larsen C, Johansen M, Olesen HP. Macromolecular prodrugs. XV. Colon-targeted delivery–bioavailability of naproxen from orally administered dextran-naproxen ester prodrugs varying in molecular size in the pig. Pharm Res. 1989;6:919–23.
13.
Zurück zum Zitat Cakić M, Glišić S, Nikolić G, Nikolić GM, Cakić K, Cvetinov M. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles. J Mol Struct. 2016;1110:156–61.CrossRef Cakić M, Glišić S, Nikolić G, Nikolić GM, Cakić K, Cvetinov M. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles. J Mol Struct. 2016;1110:156–61.CrossRef
14.
Zurück zum Zitat Wu ZL, Shi G, Ni C. Zwitterionic pH/redox nanoparticles based on dextran as drug carriers for enhancing tumor intercellular uptake of doxorubicin. Mater Sci Eng C. 2016;61:278–85.CrossRef Wu ZL, Shi G, Ni C. Zwitterionic pH/redox nanoparticles based on dextran as drug carriers for enhancing tumor intercellular uptake of doxorubicin. Mater Sci Eng C. 2016;61:278–85.CrossRef
15.
Zurück zum Zitat Kiruthika V, Maya S, Suresh MK, Kumar VA, Jayakumar R, Biswas R. Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections. Colloids Surf B Biointerfaces. 2015;127:33–40.CrossRef Kiruthika V, Maya S, Suresh MK, Kumar VA, Jayakumar R, Biswas R. Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections. Colloids Surf B Biointerfaces. 2015;127:33–40.CrossRef
16.
Zurück zum Zitat Valente JFA, Gaspar VM, Antunes BP, Countinho P, Correia IJ. Microencapsulated chitosan–dextran sulfate nanoparticles for controlled delivery of bioactive molecules and cells in bone regeneration. Polymer. 2013;54(1):5–15. Valente JFA, Gaspar VM, Antunes BP, Countinho P, Correia IJ. Microencapsulated chitosan–dextran sulfate nanoparticles for controlled delivery of bioactive molecules and cells in bone regeneration. Polymer. 2013;54(1):5–15.
17.
Zurück zum Zitat Sharma S, Mukkur TKS, Benson HAE, Chen Y. Enhanced immune response against pertussis toxoid by IgA-loaded Chitosan–Dextran sulfate nanoparticles. J Pharm Sci. 2012;101(1):233–44.CrossRef Sharma S, Mukkur TKS, Benson HAE, Chen Y. Enhanced immune response against pertussis toxoid by IgA-loaded Chitosan–Dextran sulfate nanoparticles. J Pharm Sci. 2012;101(1):233–44.CrossRef
18.
Zurück zum Zitat Jang H, Ryoo SR, Kostarelos K, Han SW, Min DH. The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials. 2013;34(13):3503–10.CrossRef Jang H, Ryoo SR, Kostarelos K, Han SW, Min DH. The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials. 2013;34(13):3503–10.CrossRef
19.
Zurück zum Zitat You DG, et al. Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. Carbohydr Polym. 2014;101:1225–33.CrossRef You DG, et al. Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. Carbohydr Polym. 2014;101:1225–33.CrossRef
20.
Zurück zum Zitat Huang CF, Yao GH, Liang RP, Qiu JD. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosen Bioelectron. 2013;50:305–10.CrossRef Huang CF, Yao GH, Liang RP, Qiu JD. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosen Bioelectron. 2013;50:305–10.CrossRef
21.
Zurück zum Zitat Li M, Tang Z, Zhang Y, Lv S, Li Q, Chen X. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater. 2015;18:132–43.CrossRef Li M, Tang Z, Zhang Y, Lv S, Li Q, Chen X. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater. 2015;18:132–43.CrossRef
22.
Zurück zum Zitat Qi J, Yao P, He F, Yu C, Huang C. Nanoparticles with dextran/chitosan shell and BSA/chitosan core—Doxorubicin loading and delivery. Int J Pharm. 2010;393:1–2. 177-185.CrossRef Qi J, Yao P, He F, Yu C, Huang C. Nanoparticles with dextran/chitosan shell and BSA/chitosan core—Doxorubicin loading and delivery. Int J Pharm. 2010;393:1–2. 177-185.CrossRef
23.
Zurück zum Zitat Choi KC, et al. Antitumor effect of adriamycin-encapsulated nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran. J Pharm Sci. 2009;98(6):2104–12.CrossRef Choi KC, et al. Antitumor effect of adriamycin-encapsulated nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran. J Pharm Sci. 2009;98(6):2104–12.CrossRef
24.
Zurück zum Zitat Prado HJ, Matulewicz MC. Cationization of polysaccharides: a path to greener derivatives with many industrial applications. Eur Polym J. 2014;52:53–75.CrossRef Prado HJ, Matulewicz MC. Cationization of polysaccharides: a path to greener derivatives with many industrial applications. Eur Polym J. 2014;52:53–75.CrossRef
25.
Zurück zum Zitat Zhang P, Zhao SR, Li JX, Hong L, Raja MA, Yu LJ, Liu CG. Nanoparticles based on phenylalanine ethyl ester-alginate conjugate as vitamin B2 delivery system. J Biomater Appl. 2016. Zhang P, Zhao SR, Li JX, Hong L, Raja MA, Yu LJ, Liu CG. Nanoparticles based on phenylalanine ethyl ester-alginate conjugate as vitamin B2 delivery system. J Biomater Appl. 2016.
26.
Zurück zum Zitat Dey S, Sherly MC, Rekha MR, Sreenivasan K. Alginate stabilized gold nanoparticle as multidrug carrier: evaluation of cellular interactions and hemolytic potential. Carbohydr Polym. 2016;136:71–80.CrossRef Dey S, Sherly MC, Rekha MR, Sreenivasan K. Alginate stabilized gold nanoparticle as multidrug carrier: evaluation of cellular interactions and hemolytic potential. Carbohydr Polym. 2016;136:71–80.CrossRef
27.
Zurück zum Zitat Khampieng T, Aramwit P, Supaphol P. Silk sericin loaded alginate nanoparticles: preparation and anti-inflammatory efficacy. Int J Biol Macromol. 2015;80:636–43.CrossRef Khampieng T, Aramwit P, Supaphol P. Silk sericin loaded alginate nanoparticles: preparation and anti-inflammatory efficacy. Int J Biol Macromol. 2015;80:636–43.CrossRef
28.
Zurück zum Zitat Eghbalifam N, Frounchi M, Dadbin S. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation. Int J Biol Macromol. 2015;80:170–6.CrossRef Eghbalifam N, Frounchi M, Dadbin S. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation. Int J Biol Macromol. 2015;80:170–6.CrossRef
29.
Zurück zum Zitat Kolya H, Pal S, Pandey A, Tripathy T. Preparation of gold nanoparticles by a novel biodegradable graft copolymer sodium alginate-g-poly (N, N-dimethylacrylamide-co-acrylic acid) with anti micro bacterial application. Eur Polym J. 2015;66:139–48.CrossRef Kolya H, Pal S, Pandey A, Tripathy T. Preparation of gold nanoparticles by a novel biodegradable graft copolymer sodium alginate-g-poly (N, N-dimethylacrylamide-co-acrylic acid) with anti micro bacterial application. Eur Polym J. 2015;66:139–48.CrossRef
30.
Zurück zum Zitat Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol. 2015;72:640–8.CrossRef Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol. 2015;72:640–8.CrossRef
31.
Zurück zum Zitat Wu JL, Wang CQ, Zhuo RX, Cheng SX. Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids Surf B Biointerfaces. 2014;123:498–505.CrossRef Wu JL, Wang CQ, Zhuo RX, Cheng SX. Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids Surf B Biointerfaces. 2014;123:498–505.CrossRef
32.
Zurück zum Zitat Rahaiee S, Shojaosadati SA, Hashemi M, Moini S, Razavi SH. Improvement of crocin stability by biodegradable nanoparticles of chitosan-alginate. Int J Biol Macromol. 2015;79:423–32. Rahaiee S, Shojaosadati SA, Hashemi M, Moini S, Razavi SH. Improvement of crocin stability by biodegradable nanoparticles of chitosan-alginate. Int J Biol Macromol. 2015;79:423–32.
33.
Zurück zum Zitat Matsumoto T, Numata M, Anada T, Mizu M, Koumoto K, Sakurai K, et al. Chemically modified polysaccharide schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake efficiency. Biochim Biophys Acta. 2004;1670:91–104.CrossRef Matsumoto T, Numata M, Anada T, Mizu M, Koumoto K, Sakurai K, et al. Chemically modified polysaccharide schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake efficiency. Biochim Biophys Acta. 2004;1670:91–104.CrossRef
34.
Zurück zum Zitat Takedatsu H, Mitsuyama K, Mochizuki S, Kobayashi T, Sakurai K, Takeda H, et al. A new therapeutic approach using a schizophyllan-based drug delivery system for inflammatory bowel disease. Mol Ther. 2012;20(6):1234–41.CrossRef Takedatsu H, Mitsuyama K, Mochizuki S, Kobayashi T, Sakurai K, Takeda H, et al. A new therapeutic approach using a schizophyllan-based drug delivery system for inflammatory bowel disease. Mol Ther. 2012;20(6):1234–41.CrossRef
35.
Zurück zum Zitat François NJ, Allo S, Jacobo SE, Daraio ME. Composites of polymeric gels and magnetic nanoparticles: preparation and drug release behavior. J Appl Polym Sci. 2007;105:647–55.CrossRef François NJ, Allo S, Jacobo SE, Daraio ME. Composites of polymeric gels and magnetic nanoparticles: preparation and drug release behavior. J Appl Polym Sci. 2007;105:647–55.CrossRef
36.
Zurück zum Zitat Filpo GD, et al. Gellan gum/titanium dioxide nanoparticle hybrid hydrogels for the cleaning and disinfection of parchment. Int Biodeter Biodegr. 2015;103:51–8.CrossRef Filpo GD, et al. Gellan gum/titanium dioxide nanoparticle hybrid hydrogels for the cleaning and disinfection of parchment. Int Biodeter Biodegr. 2015;103:51–8.CrossRef
37.
Zurück zum Zitat Duan Y, Cai X, Du H, Zhai G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces. 2015;128:322–30.CrossRef Duan Y, Cai X, Du H, Zhai G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces. 2015;128:322–30.CrossRef
38.
Zurück zum Zitat Kundu P, Datta R, Maiti S. Hexadecyl gellan amphiphilic nanoparticles: physicochemical properties and in vivo lipid-lowering potential. J Drug Deliv Sci Technol. 2015;27:9–17.CrossRef Kundu P, Datta R, Maiti S. Hexadecyl gellan amphiphilic nanoparticles: physicochemical properties and in vivo lipid-lowering potential. J Drug Deliv Sci Technol. 2015;27:9–17.CrossRef
39.
Zurück zum Zitat Pacelli S, et al. Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur Polym J. 2016;77:114–23.CrossRef Pacelli S, et al. Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur Polym J. 2016;77:114–23.CrossRef
40.
Zurück zum Zitat Wang X, Zhao C, Zhao P, Dou P, Ding Y, Xu P. Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system. Bioresour Technol. 2009;100(7):2301–4.CrossRef Wang X, Zhao C, Zhao P, Dou P, Ding Y, Xu P. Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system. Bioresour Technol. 2009;100(7):2301–4.CrossRef
41.
Zurück zum Zitat Goyal R, et al. Gellan gum blended PEI nanocomposites as gene delivery agents: evidences from in vitro and in vivo studies. Eur J Pharm Biopharm. 2011;79(1):3–14.CrossRef Goyal R, et al. Gellan gum blended PEI nanocomposites as gene delivery agents: evidences from in vitro and in vivo studies. Eur J Pharm Biopharm. 2011;79(1):3–14.CrossRef
42.
Zurück zum Zitat Kang D, Zhang F, Zhang H. Fabrication of stable aqueous dispersions of graphene using gellan gum as a reducing and stabilizing agent and its nanohybrids. Mater Chem Phys. 2015;149–150:129–39.CrossRef Kang D, Zhang F, Zhang H. Fabrication of stable aqueous dispersions of graphene using gellan gum as a reducing and stabilizing agent and its nanohybrids. Mater Chem Phys. 2015;149–150:129–39.CrossRef
43.
Zurück zum Zitat Novac O, Lisa G, Profire L, Tuchilus C, Popa MI. Antibacterial quaternized gellan gum based particles for controlled release of ciprofloxacin with potential dermal applications. Mater Sci Eng C. 2014;35:291–9.CrossRef Novac O, Lisa G, Profire L, Tuchilus C, Popa MI. Antibacterial quaternized gellan gum based particles for controlled release of ciprofloxacin with potential dermal applications. Mater Sci Eng C. 2014;35:291–9.CrossRef
44.
Zurück zum Zitat Akiyoshi K, et al. Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules. 1993;26:3062–8.CrossRef Akiyoshi K, et al. Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules. 1993;26:3062–8.CrossRef
45.
Zurück zum Zitat Akiyoshi K, et al. Supramolecular assembly of hydrophobized polysaccharides. Supramol Sci. 1996;3:157–63.CrossRef Akiyoshi K, et al. Supramolecular assembly of hydrophobized polysaccharides. Supramol Sci. 1996;3:157–63.CrossRef
46.
Zurück zum Zitat Akiyoshi K, et al. Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules. 1997;30:857–61.CrossRef Akiyoshi K, et al. Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules. 1997;30:857–61.CrossRef
47.
Zurück zum Zitat Eslaminejad T, Nematollahi-Mahani SN, Ansari M. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan–spermine magnetic nanoparticles. J Magnetism Magnetic Mater. 2016;402:34–43.CrossRef Eslaminejad T, Nematollahi-Mahani SN, Ansari M. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan–spermine magnetic nanoparticles. J Magnetism Magnetic Mater. 2016;402:34–43.CrossRef
48.
Zurück zum Zitat Zhang C, et al. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J Control Release. 2016;226:193–204.CrossRef Zhang C, et al. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J Control Release. 2016;226:193–204.CrossRef
49.
Zurück zum Zitat Dionísio M, Cordeiro C, Remuñán-López C, Seijo B, Rosa CAM, Grenha A. Pullulan-based nanoparticles as carriers for transmucosal protein delivery. Eur J Pharm Sci. 2013;50(1):102–13.CrossRef Dionísio M, Cordeiro C, Remuñán-López C, Seijo B, Rosa CAM, Grenha A. Pullulan-based nanoparticles as carriers for transmucosal protein delivery. Eur J Pharm Sci. 2013;50(1):102–13.CrossRef
50.
Zurück zum Zitat Kanmani P, Lim ST. Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr Polym. 2013;97(2):421–8.CrossRef Kanmani P, Lim ST. Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr Polym. 2013;97(2):421–8.CrossRef
51.
Zurück zum Zitat Ganeshkumar M, Ponrasu T, Raja MD, Subamekala MK, Suguna L. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochim Acta A Mol Biomol Spectrosc. 2014;130:64–71.CrossRef Ganeshkumar M, Ponrasu T, Raja MD, Subamekala MK, Suguna L. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochim Acta A Mol Biomol Spectrosc. 2014;130:64–71.CrossRef
52.
Zurück zum Zitat Guo H, Liu Y, Wang Y, Wu J, Yang X, Li R, Wang Y, Zhang N. pH-sensitive pullulan-based nanoparticle carrier for adriamycin to overcome drug-resistance of cancer cells. Carbohydr Polym. 2014;111:908–17.CrossRef Guo H, Liu Y, Wang Y, Wu J, Yang X, Li R, Wang Y, Zhang N. pH-sensitive pullulan-based nanoparticle carrier for adriamycin to overcome drug-resistance of cancer cells. Carbohydr Polym. 2014;111:908–17.CrossRef
53.
Zurück zum Zitat Wang Y, Chen H, Liu Y, Wu J, Zhou P, Wang Y, Li R, Yang X, Zhang N. pH-sensitive pullulan-based nanoparticle carrier of methotrexate and combretastatin A4 for the combination therapy against hepatocellular carcinoma. Biomaterials. 2013;34(29):7181–90.CrossRef Wang Y, Chen H, Liu Y, Wu J, Zhou P, Wang Y, Li R, Yang X, Zhang N. pH-sensitive pullulan-based nanoparticle carrier of methotrexate and combretastatin A4 for the combination therapy against hepatocellular carcinoma. Biomaterials. 2013;34(29):7181–90.CrossRef
54.
Zurück zum Zitat Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y. Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J Control Release. 2002;83:287–302.CrossRef Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y. Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J Control Release. 2002;83:287–302.CrossRef
55.
Zurück zum Zitat Constantin M, Oanea I, Harabagiu V, Ascenzi P, Fundueanu G. DNA complexation by cationic pullulan possessing thermo-sensitive units. Digest J Nanomater Biostruct. 2011;6:849–61. Constantin M, Oanea I, Harabagiu V, Ascenzi P, Fundueanu G. DNA complexation by cationic pullulan possessing thermo-sensitive units. Digest J Nanomater Biostruct. 2011;6:849–61.
56.
Zurück zum Zitat Thomsen LB, Lichota J, Kim KS, Moos T. Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. J Control Release. 2011;151:45–50.CrossRef Thomsen LB, Lichota J, Kim KS, Moos T. Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. J Control Release. 2011;151:45–50.CrossRef
57.
Zurück zum Zitat Thakor DK, Teng YD, Tabata Y. Neuronal gene delivery by negatively charged –spermine pullulan–spermine/DNA anioplexes. Biomaterials. 2009;30:1815–26.CrossRef Thakor DK, Teng YD, Tabata Y. Neuronal gene delivery by negatively charged –spermine pullulan–spermine/DNA anioplexes. Biomaterials. 2009;30:1815–26.CrossRef
58.
Zurück zum Zitat Rekha MR, Sharma CP. Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery. Biomaterials. 2009;30:6655–64.CrossRef Rekha MR, Sharma CP. Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery. Biomaterials. 2009;30:6655–64.CrossRef
59.
Zurück zum Zitat Rekha MR, Sharma CP. Hemocompatible pullulan–polyethylene imine conjugates for liver cell gene delivery: in vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency. Acta Biomater. 2011;7:370–9.CrossRef Rekha MR, Sharma CP. Hemocompatible pullulan–polyethylene imine conjugates for liver cell gene delivery: in vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency. Acta Biomater. 2011;7:370–9.CrossRef
60.
Zurück zum Zitat Wu Y, Cai J, Han J, Baigude H. Cell type-specific delivery of RNAi by ligand-functionalized Curdlan nanoparticles: balancing the receptor mediation and the charge motivation. ACS Appl Mater Interfaces. 2015;7(38):21521–8.CrossRef Wu Y, Cai J, Han J, Baigude H. Cell type-specific delivery of RNAi by ligand-functionalized Curdlan nanoparticles: balancing the receptor mediation and the charge motivation. ACS Appl Mater Interfaces. 2015;7(38):21521–8.CrossRef
61.
Zurück zum Zitat Tukulula M, Hayeshi R, Fonteh P, Meyer D, Ndamase A, Madziva MT, Khumalo V, Labuschagne P, Naicker B, Swai H, Dube A. Erratum to: Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities. Pharm Res. 2015;32(8):2713–26. Tukulula M, Hayeshi R, Fonteh P, Meyer D, Ndamase A, Madziva MT, Khumalo V, Labuschagne P, Naicker B, Swai H, Dube A. Erratum to: Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities. Pharm Res. 2015;32(8):2713–26.
62.
Zurück zum Zitat Yan JK, Liu JL, Sun YJ, Tang S, Mo ZY, Liu YS. Green synthesis of biocompatible carboxylic curdlan-capped gold nanoparticles and its interaction with protein. Carbohydr Polym. 2015;6(117):771–7.CrossRef Yan JK, Liu JL, Sun YJ, Tang S, Mo ZY, Liu YS. Green synthesis of biocompatible carboxylic curdlan-capped gold nanoparticles and its interaction with protein. Carbohydr Polym. 2015;6(117):771–7.CrossRef
63.
Zurück zum Zitat Yan JK, Ma HL, Chen X, Pei JJ, Wang ZB, Wu JY. Self-aggregated nanoparticles of carboxylic curdlan-deoxycholic acid conjugates as a carrier of doxorubicin. Int J Biol Macromol. 2015;72:333–40.CrossRef Yan JK, Ma HL, Chen X, Pei JJ, Wang ZB, Wu JY. Self-aggregated nanoparticles of carboxylic curdlan-deoxycholic acid conjugates as a carrier of doxorubicin. Int J Biol Macromol. 2015;72:333–40.CrossRef
64.
Zurück zum Zitat Han J, Cai J, Borjihan W, Ganbold T, Rana TM, Baigude H. Preparation of novel curdlan nanoparticles for intracellular siRNA delivery. Carbohydr Polym. 2015;117:324–30.CrossRef Han J, Cai J, Borjihan W, Ganbold T, Rana TM, Baigude H. Preparation of novel curdlan nanoparticles for intracellular siRNA delivery. Carbohydr Polym. 2015;117:324–30.CrossRef
65.
Zurück zum Zitat Wu J, Zhang F, Zhang H. Facile synthesis of carboxymethyl curdlan-capped silver nanoparticles and their application in SERS. Carbohydr Polym. 2012;90(1):261–9.CrossRef Wu J, Zhang F, Zhang H. Facile synthesis of carboxymethyl curdlan-capped silver nanoparticles and their application in SERS. Carbohydr Polym. 2012;90(1):261–9.CrossRef
66.
Zurück zum Zitat Li L, Gao FP, Tang HB, Bai YG, Li RF, Li XM, Liu LR, Wang YS, Zhang QQ. Self-assembled nanoparticles of cholesterol-conjugated carboxymethyl curdlan as a novel carrier of epirubicin. Nanotechnology. 2010;21(26):265601.CrossRef Li L, Gao FP, Tang HB, Bai YG, Li RF, Li XM, Liu LR, Wang YS, Zhang QQ. Self-assembled nanoparticles of cholesterol-conjugated carboxymethyl curdlan as a novel carrier of epirubicin. Nanotechnology. 2010;21(26):265601.CrossRef
67.
Zurück zum Zitat Na K, Park KH, Kim SW, Bae YH. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release. 2000;69(2):225–36.CrossRef Na K, Park KH, Kim SW, Bae YH. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release. 2000;69(2):225–36.CrossRef
68.
Zurück zum Zitat Bondarenkoa OM, et al. Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nanoparticles. Carbohydr Polym. 2016;136:710–20.CrossRef Bondarenkoa OM, et al. Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nanoparticles. Carbohydr Polym. 2016;136:710–20.CrossRef
69.
Zurück zum Zitat Baird JK, Sandford PA, Cottrell IW. Industrial applications of some new microbial polysaccharides. Nat Biotech. 1983;1:778–83.CrossRef Baird JK, Sandford PA, Cottrell IW. Industrial applications of some new microbial polysaccharides. Nat Biotech. 1983;1:778–83.CrossRef
70.
Zurück zum Zitat Matricardi P, Cencetti C, Ria R, Alhaique F, Coviello T. Preparation and characterization of novel gellan gum hydrogels suitable for modified drug release. Molecules. 2009;14:3376–91.CrossRef Matricardi P, Cencetti C, Ria R, Alhaique F, Coviello T. Preparation and characterization of novel gellan gum hydrogels suitable for modified drug release. Molecules. 2009;14:3376–91.CrossRef
71.
Zurück zum Zitat Maiti S, Ranjit S, Mondol R, Ray S, Sa B. Al3+ ion cross-linked and acetylated gellan hydrogel network beads for prolonged release of glipizide. Carbohydr Polym. 2011;85:164–72. Maiti S, Ranjit S, Mondol R, Ray S, Sa B. Al3+ ion cross-linked and acetylated gellan hydrogel network beads for prolonged release of glipizide. Carbohydr Polym. 2011;85:164–72.
72.
Zurück zum Zitat Patil S, Sharma S, Nimbalka A, Pawar A. Study of formulation variables on properties of drug-gellan beads by factorial design. Drug Dev Ind Pharm. 2006;32:315–26.CrossRef Patil S, Sharma S, Nimbalka A, Pawar A. Study of formulation variables on properties of drug-gellan beads by factorial design. Drug Dev Ind Pharm. 2006;32:315–26.CrossRef
73.
Zurück zum Zitat Coviello T, Dentini M, Rambone G, Desideri P, Carafa M, Murtas E, Riccieri FM, Alhaique F. A novel co-crosslinked polysaccharide: studies for a controlled delivery. J Control Release. 1998;55:57–66.CrossRef Coviello T, Dentini M, Rambone G, Desideri P, Carafa M, Murtas E, Riccieri FM, Alhaique F. A novel co-crosslinked polysaccharide: studies for a controlled delivery. J Control Release. 1998;55:57–66.CrossRef
74.
Zurück zum Zitat Coviello T, Grassi M, Rambone G, Alhaique F. A crosslinked system from scleroglucan derivate: preparation and characterization. Biomaterials. 2001;22:1899–909.CrossRef Coviello T, Grassi M, Rambone G, Alhaique F. A crosslinked system from scleroglucan derivate: preparation and characterization. Biomaterials. 2001;22:1899–909.CrossRef
75.
Zurück zum Zitat Coviello T, Grassi M, Rambone G, Santucci E, Carafa M, Murtas E, Riccieri FM, Alhaique F. Novel hydrogels system from scleroglucan: synthesis and characterization. J Control Release. 1999;60:367–78.CrossRef Coviello T, Grassi M, Rambone G, Santucci E, Carafa M, Murtas E, Riccieri FM, Alhaique F. Novel hydrogels system from scleroglucan: synthesis and characterization. J Control Release. 1999;60:367–78.CrossRef
76.
Zurück zum Zitat Thimma RT, Tammishetti S. Barium chloride cross-linked carboxymethyl guar gum beads for gastrointestinal drug delivery. J Appl Polym Sci. 2001;82:3084–90.CrossRef Thimma RT, Tammishetti S. Barium chloride cross-linked carboxymethyl guar gum beads for gastrointestinal drug delivery. J Appl Polym Sci. 2001;82:3084–90.CrossRef
77.
Zurück zum Zitat Bejenariu A, Popa M, Dulong V, Picton L, Cerf D. Trisodium trimetaphosphate cross-linked xanthan networks: synthesis, swelling, loading and releasing behavior. Polym Bull. 2009;62:525–38.CrossRef Bejenariu A, Popa M, Dulong V, Picton L, Cerf D. Trisodium trimetaphosphate cross-linked xanthan networks: synthesis, swelling, loading and releasing behavior. Polym Bull. 2009;62:525–38.CrossRef
78.
Zurück zum Zitat Reddy T, Tammishetti S. Gastric resistant microbeads of metal ion cross-linked carboxymethyl guar gum for oral drug delivery. J Microencapsul. 2002;19:311–8.CrossRef Reddy T, Tammishetti S. Gastric resistant microbeads of metal ion cross-linked carboxymethyl guar gum for oral drug delivery. J Microencapsul. 2002;19:311–8.CrossRef
79.
Zurück zum Zitat Taba MO, Nasser W, Ardakani A, Alkhatib HS. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles. Int J Pharm. 2008;250:291–300. Taba MO, Nasser W, Ardakani A, Alkhatib HS. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles. Int J Pharm. 2008;250:291–300.
80.
Zurück zum Zitat Singh V, Kumar P, Sanghi R. Use of microwave irradiation in the grafting modification of the polysaccharides—a review. Prog Polym Sci. 2012;37:340–64.CrossRef Singh V, Kumar P, Sanghi R. Use of microwave irradiation in the grafting modification of the polysaccharides—a review. Prog Polym Sci. 2012;37:340–64.CrossRef
Metadaten
Titel
Microbial Polysaccharides as Advance Nanomaterials
verfasst von
Saurabh Bhatia
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-41926-8_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.