Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 6/2022

06.04.2022 | Original Research Article

Microstructure and Crystallography of a Carbide-Free Bainite Steel Under the Effect of Stress

verfasst von: Mingxing Zhou, Gang Liu, Junyu Tian, Hao Zhang, Feng Cai, Guang Xu

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stress-affected bainite transformations were conducted on a Gleeble 3800 simulator, and the effects of different stress states (compressive, tensile, elastic, and plastic stresses) on the microstructural evolution and crystallography of a carbide-free bainite steel were investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), and electron backscattering diffraction (EBSD). The results show that both compressive and tensile elastic stresses increase the thickness of bainite plates due to the additional mechanical driving force induced by the applied stress, and there is no significant difference between the effects of the two types of stress. Although prior deformation was reported to refine the bainite plates, the plastic stress, which induced prior deformation, coarsens the bainite plates because the effect of mechanical driving is more significant. The size of blocky martensite is refined and the length of bainite sheaves increases under the effect of stress, while the size of blocky RA is almost unaffected. In addition, EBSD results show that the orientation relationship between austenite and bainite ferrite is closer to the Nishiyama–Wassermann (N–W) relationship than to the Kurdjumov–Sachs (K–S) relationship for the stress-affected specimens. Strong variant selection occurs when a stress is applied during bainite transformation. Moreover, the elastic stress slightly decreases the hardness, while the plastic stress increased the hardness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F.G. Caballero and H.K.D.H. Bhadeshia: Curr. Opin. Solid. State Mater., 2004, vol. 8, pp. 251–57.CrossRef F.G. Caballero and H.K.D.H. Bhadeshia: Curr. Opin. Solid. State Mater., 2004, vol. 8, pp. 251–57.CrossRef
2.
Zurück zum Zitat X.X. Zhang, G. Xu, X. Wang, D. Embury, O. Bouaziz, G.R. Purdy, and H.S. Zurob: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 1352–61.CrossRef X.X. Zhang, G. Xu, X. Wang, D. Embury, O. Bouaziz, G.R. Purdy, and H.S. Zurob: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 1352–61.CrossRef
3.
Zurück zum Zitat H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, and G.H. Liu: Mater. Des., 2015, vol. 84, pp. 95–99.CrossRef H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, and G.H. Liu: Mater. Des., 2015, vol. 84, pp. 95–99.CrossRef
4.
Zurück zum Zitat H.D. Wu, G. Miyamoto, Z.G. Yang, C. Zhang, H. Chen, and T. Furuhara: Acta Mater., 2017, vol. 133, pp. 1–9.CrossRef H.D. Wu, G. Miyamoto, Z.G. Yang, C. Zhang, H. Chen, and T. Furuhara: Acta Mater., 2017, vol. 133, pp. 1–9.CrossRef
5.
Zurück zum Zitat P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 1995, vol. 201, pp. 143–49.CrossRef P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 1995, vol. 201, pp. 143–49.CrossRef
6.
Zurück zum Zitat K. Hase, C. Garcia-Mateo, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2004, vol. 20, pp. 1499–1505.CrossRef K. Hase, C. Garcia-Mateo, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2004, vol. 20, pp. 1499–1505.CrossRef
7.
Zurück zum Zitat M.C. Uslu, D. Canadinc, H.-G. Lambers, S. Tschumak, and H.J. Maier: Model. Simul. Mater. Sci. Eng., 2011, vol. 19, pp. 45007–23.CrossRef M.C. Uslu, D. Canadinc, H.-G. Lambers, S. Tschumak, and H.J. Maier: Model. Simul. Mater. Sci. Eng., 2011, vol. 19, pp. 45007–23.CrossRef
8.
Zurück zum Zitat M.J. Holzweissig, D. Canadinc, and H.J. Maier: Mater. Charact., 2012, vol. 65, pp. 100–08.CrossRef M.J. Holzweissig, D. Canadinc, and H.J. Maier: Mater. Charact., 2012, vol. 65, pp. 100–08.CrossRef
9.
Zurück zum Zitat C.C. Liu, K.F. Yao, and Z. Liu: Mater. Sci. Technol., 2000, vol. 16, pp. 643–47.CrossRef C.C. Liu, K.F. Yao, and Z. Liu: Mater. Sci. Technol., 2000, vol. 16, pp. 643–47.CrossRef
10.
Zurück zum Zitat M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, and J.Y. Tian: Steel Res. Int., 2017, vol. 88, p. 1600377.CrossRef M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, and J.Y. Tian: Steel Res. Int., 2017, vol. 88, p. 1600377.CrossRef
11.
Zurück zum Zitat M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, and J.Y. Tian: Mater. Sci. Eng. A., 2017, vol. 704, pp. 427–33.CrossRef M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, and J.Y. Tian: Mater. Sci. Eng. A., 2017, vol. 704, pp. 427–33.CrossRef
12.
Zurück zum Zitat C.C. Liu, D.Y. Ju, K.F. Yao, Z. Liu, and X.J. Xu: Mater. Sci. Technol., 2001, vol. 17, pp. 1229–37.CrossRef C.C. Liu, D.Y. Ju, K.F. Yao, Z. Liu, and X.J. Xu: Mater. Sci. Technol., 2001, vol. 17, pp. 1229–37.CrossRef
13.
Zurück zum Zitat M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, and J.Y. Tian: Met. Mater. Int., 2018, vol. 4, pp. 28–34.CrossRef M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, and J.Y. Tian: Met. Mater. Int., 2018, vol. 4, pp. 28–34.CrossRef
14.
Zurück zum Zitat T.J. Su, E. Aeby-Gautier, and S. Denis: Scripta Mater., 2006, vol. 54, pp. 2185–89.CrossRef T.J. Su, E. Aeby-Gautier, and S. Denis: Scripta Mater., 2006, vol. 54, pp. 2185–89.CrossRef
15.
Zurück zum Zitat S.B. Zhang and W.J. Li: Adv. Mater. Res., 2001, vol. 194–196, pp. 341–46. S.B. Zhang and W.J. Li: Adv. Mater. Res., 2001, vol. 194–196, pp. 341–46.
16.
Zurück zum Zitat H. Beladi, V. Tari, I.B. Timokhina, P. Cizek, G.S. Rohrer, A.D. Rollett, and P.D. Hodgson: Acta Mater., 2017, vol. 127, pp. 426–37.CrossRef H. Beladi, V. Tari, I.B. Timokhina, P. Cizek, G.S. Rohrer, A.D. Rollett, and P.D. Hodgson: Acta Mater., 2017, vol. 127, pp. 426–37.CrossRef
17.
Zurück zum Zitat V. Tari, A.D. Rollett, and H. Beladi: J. Appl. Crystallogr., 2013, vol. 46, pp. 210–15.CrossRef V. Tari, A.D. Rollett, and H. Beladi: J. Appl. Crystallogr., 2013, vol. 46, pp. 210–15.CrossRef
18.
Zurück zum Zitat T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, and T. Maki: Metall. Mater. Trans. A., 2008, vol. 39A, pp. 1003–13.CrossRef T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, and T. Maki: Metall. Mater. Trans. A., 2008, vol. 39A, pp. 1003–13.CrossRef
19.
Zurück zum Zitat N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387–96.CrossRef N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387–96.CrossRef
20.
Zurück zum Zitat V. Pancholi, M. Krishnan, I.S. Samajdar, V. Yadav, and N.B. Ballal: Acta Mater., 2008, vol. 56, pp. 2037–50.CrossRef V. Pancholi, M. Krishnan, I.S. Samajdar, V. Yadav, and N.B. Ballal: Acta Mater., 2008, vol. 56, pp. 2037–50.CrossRef
21.
Zurück zum Zitat J.Y. Tian, G. Xu, Z.Y. Jiang, Q. Yuan, G.H. Chen, and H.J. Hu: Mater. Sci. Technol., 2019, vol. 35, pp. 1539–50.CrossRef J.Y. Tian, G. Xu, Z.Y. Jiang, Q. Yuan, G.H. Chen, and H.J. Hu: Mater. Sci. Technol., 2019, vol. 35, pp. 1539–50.CrossRef
22.
Zurück zum Zitat Y.S. Wu, X.Z. Qin, C.S. Wang, and L.Z. Zhou: Mater. Sci. Eng. A., 2019, vol. 768, p. 138454.CrossRef Y.S. Wu, X.Z. Qin, C.S. Wang, and L.Z. Zhou: Mater. Sci. Eng. A., 2019, vol. 768, p. 138454.CrossRef
23.
Zurück zum Zitat Y.S. Wu, Z. Liu, X.Z. Qin, C.S. Wang, and L.Z. Zhou: J. Alloys Compd., 2019, vol. 795, pp. 370–84.CrossRef Y.S. Wu, Z. Liu, X.Z. Qin, C.S. Wang, and L.Z. Zhou: J. Alloys Compd., 2019, vol. 795, pp. 370–84.CrossRef
24.
Zurück zum Zitat H.K.D.H. Bhadeshia: Bainite in Steels, 3rd ed. Institute of Materials, Minerals & Mining, London, 2015, pp. 21–23. H.K.D.H. Bhadeshia: Bainite in Steels, 3rd ed. Institute of Materials, Minerals & Mining, London, 2015, pp. 21–23.
25.
Zurück zum Zitat M. Azuma, N. Fujita, M. Takahashi, T. Senuma, D. Quidort, and T. Lung: ISIJ Int., 2004, vol. 45, pp. 1405–12. M. Azuma, N. Fujita, M. Takahashi, T. Senuma, D. Quidort, and T. Lung: ISIJ Int., 2004, vol. 45, pp. 1405–12.
26.
Zurück zum Zitat S.B. Singh and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 1998, vol. 245, pp. 72–79.CrossRef S.B. Singh and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 1998, vol. 245, pp. 72–79.CrossRef
27.
29.
Zurück zum Zitat K. Maryam, A. Behzad, and Y. Sasan: Mater. Chem. Phys., 2016, vol. 184, pp. 306–17.CrossRef K. Maryam, A. Behzad, and Y. Sasan: Mater. Chem. Phys., 2016, vol. 184, pp. 306–17.CrossRef
30.
Zurück zum Zitat W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, and S.Y. Zhang: Acta Mater., 2013, vol. 61, pp. 4142–54.CrossRef W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, and S.Y. Zhang: Acta Mater., 2013, vol. 61, pp. 4142–54.CrossRef
31.
Zurück zum Zitat H.J. Hu, H.S. Zurob, G. Xu, D. Embury, and G.R. Purdy: Mater. Sci. Eng. A., 2015, vol. 626, pp. 34–40.CrossRef H.J. Hu, H.S. Zurob, G. Xu, D. Embury, and G.R. Purdy: Mater. Sci. Eng. A., 2015, vol. 626, pp. 34–40.CrossRef
32.
Zurück zum Zitat H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 1999, vol. 273–275, pp. 58–66.CrossRef H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 1999, vol. 273–275, pp. 58–66.CrossRef
33.
Zurück zum Zitat H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, and Y. Minamino: Mater. Charact., 2005, vol. 54, pp. 378–86.CrossRef H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, and Y. Minamino: Mater. Charact., 2005, vol. 54, pp. 378–86.CrossRef
34.
Zurück zum Zitat H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed: Mater. Sci. Technol., 1991, vol. 7, pp. 686–98.CrossRef H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed: Mater. Sci. Technol., 1991, vol. 7, pp. 686–98.CrossRef
Metadaten
Titel
Microstructure and Crystallography of a Carbide-Free Bainite Steel Under the Effect of Stress
verfasst von
Mingxing Zhou
Gang Liu
Junyu Tian
Hao Zhang
Feng Cai
Guang Xu
Publikationsdatum
06.04.2022
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 6/2022
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-022-06664-8

Weitere Artikel der Ausgabe 6/2022

Metallurgical and Materials Transactions A 6/2022 Zur Ausgabe

Topical Collection: 2021 Metallurgical Processes Workshop for Young Scholars

Computational Design of Novel Ni Superalloys with Low Crack Susceptibility for Additive Manufacturing

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.