Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2020

16.10.2020

Microstructure and Cyclic Oxidation of Yttria-Stabilized Zirconia/Nanostructured ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 Thermal Barrier Coating at 1373 K

verfasst von: M. Bahamirian, S. M. M. Hadavi, M. Farvizi, A. Keyvani, M. R. Rahimipour

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study is intended to improve the high-temperature oxidation of nano-ZGYbY: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 in order to apply it in the new generation of defect cluster thermal barrier coatings (TBCs) through the employment of an intermediate conventional yttria-stabilized zirconia (micro-YSZ) layer between the bond coat (CoNiCrAlY) and top coat. The specimens were deposited with an atmospheric plasma spray (APS) process on IN738LC superalloy. The cyclic oxidation test was performed in air at 1373 K with 4 h in each cycle. The microstructure of the nano-ZGYbY was studied by field emission scanning electron microscopy, revealing the formation of a bimodal microstructure consisted of nanosized particles retained from the initial APS-processed nanopowder and columnar grains, whereas the microstructure of intermediate micro-YSZ layer consisted of columnar grain splats only. X-ray diffraction of TBCs confirmed the formation of non-transformable (t′) ZrO2 phase (\( \frac{c}{a\sqrt 2 } \) < 1.01) as well as the stability of this phase after oxidation. Also, applying an intermediate conventional YSZ layer with a higher CTE and KIC than that of nano-ZGYbY between the bond and top coats improved mechanical properties in new TBCs and it increased the oxidation life.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205, p 938–942 R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205, p 938–942
2.
Zurück zum Zitat R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier And Biomedical Applications: A Review, J. Therm. Spray Technol., 2007, 16, p 40–63 R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier And Biomedical Applications: A Review, J. Therm. Spray Technol., 2007, 16, p 40–63
3.
Zurück zum Zitat X. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1–10 X. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1–10
4.
Zurück zum Zitat Y. Pan, Y. Lin, G. Liu, and J. Zhang, Influence of Transition Metal on the Mechanical and Thermodynamic Properties of IrAl Thermal Barrier Coating, Vacuum, 2020, 174, p 109203 Y. Pan, Y. Lin, G. Liu, and J. Zhang, Influence of Transition Metal on the Mechanical and Thermodynamic Properties of IrAl Thermal Barrier Coating, Vacuum, 2020, 174, p 109203
5.
Zurück zum Zitat N. Eliaz, G. Shemesh, and R. Latanision, Hot corrosion in Gas Turbine Components, Eng. Fail. Anal., 2002, 9, p 31–43 N. Eliaz, G. Shemesh, and R. Latanision, Hot corrosion in Gas Turbine Components, Eng. Fail. Anal., 2002, 9, p 31–43
6.
Zurück zum Zitat M. Stiger, N. Yanar, M. Topping, F. Pettit, and G. Meier, Thermal Barrier Coatings for the 21st Century, Z. Metall., 1999, 90, p 1069–1078 M. Stiger, N. Yanar, M. Topping, F. Pettit, and G. Meier, Thermal Barrier Coatings for the 21st Century, Z. Metall., 1999, 90, p 1069–1078
7.
Zurück zum Zitat M. Bahamirian and Sh Khameneh Asl, An Investigation on Effect of Bond Coat Replacement on Hot Corrosion Properties of Thermal Barrier Coatings, Iran. J. Mater. Sci. Eng., 2013, 10, p 12–21 M. Bahamirian and Sh Khameneh Asl, An Investigation on Effect of Bond Coat Replacement on Hot Corrosion Properties of Thermal Barrier Coatings, Iran. J. Mater. Sci. Eng., 2013, 10, p 12–21
8.
Zurück zum Zitat R. Lima and B. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effects, Mater. Sci. Eng., A, 2008, 485, p 182–193 R. Lima and B. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effects, Mater. Sci. Eng., A, 2008, 485, p 182–193
9.
Zurück zum Zitat A. Keyvani, M. Bahamirian, and A. Kobayashi, Effect of Sintering Rate on the Porous Microstructural, Mechanical and Thermomechanical Properties of YSZ and CSZ TBC Coatings Undergoing Thermal Cycling, J. Alloys Compd., 2017, 727, p 1057–1066 A. Keyvani, M. Bahamirian, and A. Kobayashi, Effect of Sintering Rate on the Porous Microstructural, Mechanical and Thermomechanical Properties of YSZ and CSZ TBC Coatings Undergoing Thermal Cycling, J. Alloys Compd., 2017, 727, p 1057–1066
10.
Zurück zum Zitat M. Loghman-Estarki, R.S. Razavi, and H. Jamali, Thermal Stability and Sintering Behavior of Plasma Sprayed Nanostructured 7YSZ, 15YSZ and 5.5 SYSZ Coatings at Elevated Temperatures, Ceram. Int., 2016, 42, p 14374–14383 M. Loghman-Estarki, R.S. Razavi, and H. Jamali, Thermal Stability and Sintering Behavior of Plasma Sprayed Nanostructured 7YSZ, 15YSZ and 5.5 SYSZ Coatings at Elevated Temperatures, Ceram. Int., 2016, 42, p 14374–14383
11.
Zurück zum Zitat S. Paul, A. Cipitria, S. Tsipas, and T. Clyne, Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilisers, Surf. Coat. Technol., 2009, 203, p 1069–1074 S. Paul, A. Cipitria, S. Tsipas, and T. Clyne, Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilisers, Surf. Coat. Technol., 2009, 203, p 1069–1074
12.
Zurück zum Zitat A. Keyvani and M. Bahamirian, Hot Corrosion and Mechanical Properties of Nanostructured Al2O3/CSZ Composite TBCs, Surf. Eng., 2017, 33, p 433–443 A. Keyvani and M. Bahamirian, Hot Corrosion and Mechanical Properties of Nanostructured Al2O3/CSZ Composite TBCs, Surf. Eng., 2017, 33, p 433–443
13.
Zurück zum Zitat M. Bahamirian, S. Hadavi, M. Farvizi, M. Rahimipour, and A. Keyvani, Enhancement of Hot Corrosion Resistance of Thermal Barrier Coatings by Using Nanostructured Gd2Zr2O7 Coating, Surf. Coat. Technol., 2019, 360, p 1–12 M. Bahamirian, S. Hadavi, M. Farvizi, M. Rahimipour, and A. Keyvani, Enhancement of Hot Corrosion Resistance of Thermal Barrier Coatings by Using Nanostructured Gd2Zr2O7 Coating, Surf. Coat. Technol., 2019, 360, p 1–12
14.
Zurück zum Zitat M.R. Loghman-Estark, R.S. Razavi, and H. Edris, Synthesis and Thermal Stability of Nontransformable Tetragonal (ZrO2)0.96(REO1.5)0.04(Re = Sc3+, Y3+) Nanocrystals, Defect Diffus. Forum, 2013, 334, p 60–64 M.R. Loghman-Estark, R.S. Razavi, and H. Edris, Synthesis and Thermal Stability of Nontransformable Tetragonal (ZrO2)0.96(REO1.5)0.04(Re = Sc3+, Y3+) Nanocrystals, Defect Diffus. Forum, 2013, 334, p 60–64
15.
Zurück zum Zitat C. Viazzi, J.-P. Bonino, F. Ansart, and A. Barnabé, Structural Study of Metastable Tetragonal YSZ Powders Produced Via a Sol–Gel Route, J. Alloys Compd., 2008, 452, p 377–383 C. Viazzi, J.-P. Bonino, F. Ansart, and A. Barnabé, Structural Study of Metastable Tetragonal YSZ Powders Produced Via a Sol–Gel Route, J. Alloys Compd., 2008, 452, p 377–383
16.
Zurück zum Zitat M. Shahid and M. Abbas, Investigation of Failure Mechanism of Thermal Barrier Coatings (TBCs) Deposited by EB-PVD Technique, J. Phys: Conf. Ser., 2013, 439, p 012021 M. Shahid and M. Abbas, Investigation of Failure Mechanism of Thermal Barrier Coatings (TBCs) Deposited by EB-PVD Technique, J. Phys: Conf. Ser., 2013, 439, p 012021
17.
Zurück zum Zitat Y. Tang, Failure Analysis of Thermal Barrier Coatings. Ph.D. Thesis, Tulane University, Tulane, USA (2007) Y. Tang, Failure Analysis of Thermal Barrier Coatings. Ph.D. Thesis, Tulane University, Tulane, USA (2007)
18.
Zurück zum Zitat K. Carlsson, A Study of Failure Development in Thick Thermal Barrier Coatings. Independent Thesis Advanced Level (degree of Magister), Linköping University (2007) K. Carlsson, A Study of Failure Development in Thick Thermal Barrier Coatings. Independent Thesis Advanced Level (degree of Magister), Linköping University (2007)
19.
Zurück zum Zitat K.W. Schlichting, N. Padture, E. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng., A, 2003, 342, p 120–130 K.W. Schlichting, N. Padture, E. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng., A, 2003, 342, p 120–130
20.
Zurück zum Zitat N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15, p 804–809 N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15, p 804–809
21.
Zurück zum Zitat T. Narita, T. Izumi, T. Nishimoto, Y. Shibata, K.Z. Thosin, and S. Hayashi, Advanced Coatings on High Temperature Applications, Mater. Sci. Forum, 2006, 522, p 1–14 T. Narita, T. Izumi, T. Nishimoto, Y. Shibata, K.Z. Thosin, and S. Hayashi, Advanced Coatings on High Temperature Applications, Mater. Sci. Forum, 2006, 522, p 1–14
22.
Zurück zum Zitat U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne et al., Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7, p 73–80 U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne et al., Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7, p 73–80
23.
Zurück zum Zitat Y. Pan, D. Pu, and Y. Jia, Adjusting the Correlation Between the Oxidation Resistance and Mechanical Properties of Pt-Based Thermal Barrier Coating, Vacuum, 2020, 172, p 109067 Y. Pan, D. Pu, and Y. Jia, Adjusting the Correlation Between the Oxidation Resistance and Mechanical Properties of Pt-Based Thermal Barrier Coating, Vacuum, 2020, 172, p 109067
24.
Zurück zum Zitat A. Keyvani, N. Mostafavi, M. Bahamirian, H. Sina, and A. Rabiezadeh, Synthesis and Phase Stability of Zirconia-Lanthania-Ytterbia-Yttria Nanoparticles; a Promising Advanced TBC Material, Asian Ceram. Soc., 2020, 8, p 336–344 A. Keyvani, N. Mostafavi, M. Bahamirian, H. Sina, and A. Rabiezadeh, Synthesis and Phase Stability of Zirconia-Lanthania-Ytterbia-Yttria Nanoparticles; a Promising Advanced TBC Material, Asian Ceram. Soc., 2020, 8, p 336–344
25.
Zurück zum Zitat M.B.A. Keyvani and B. Esmaeili, Sol-Gel Synthesis and Characterization of ZrO2-25wt.%CeO2-2.5wt.%Y2O3 (CYSZ) Nanoparticles, Ceram. Int., 2020, 20, p 30 M.B.A. Keyvani and B. Esmaeili, Sol-Gel Synthesis and Characterization of ZrO2-25wt.%CeO2-2.5wt.%Y2O3 (CYSZ) Nanoparticles, Ceram. Int., 2020, 20, p 30
26.
Zurück zum Zitat A. Keyvani, P. Mahmoudinezhad, A. Jahangiri, and M. Bahamirian, Synthesis and Characterization of ((La1-xGdx)2Zr2O7; x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1) Nanoparticles for Advanced TBCs, J. Aust. Ceram. Soc., 2020, 20, p 30 A. Keyvani, P. Mahmoudinezhad, A. Jahangiri, and M. Bahamirian, Synthesis and Characterization of ((La1-xGdx)2Zr2O7; x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1) Nanoparticles for Advanced TBCs, J. Aust. Ceram. Soc., 2020, 20, p 30
27.
Zurück zum Zitat S. Metco, Material Product Data Sheet: Zirconia Gadolinia Ytterbia Yttria Agglomerated and Sintered Thermal Spray Powder. DSMTS-0099.4 (2015) S. Metco, Material Product Data Sheet: Zirconia Gadolinia Ytterbia Yttria Agglomerated and Sintered Thermal Spray Powder. DSMTS-0099.4 (2015)
28.
Zurück zum Zitat D. Zhu and R.A. Miller, Development of Advanced Low Conductivity Thermal Barrier Coatings, Int. J. Appl. Ceram. Technol., 2004, 1, p 86–94 D. Zhu and R.A. Miller, Development of Advanced Low Conductivity Thermal Barrier Coatings, Int. J. Appl. Ceram. Technol., 2004, 1, p 86–94
29.
Zurück zum Zitat S.M.M.H.M. Bahamirian, M. Farvizi, A. Keyvani, and M.R. Rahimipour, ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3; a Promising TBC Material with High Resistance to Hot Corrosion, J. Asian Ceram. Soc., 2020, 20, p 30 S.M.M.H.M. Bahamirian, M. Farvizi, A. Keyvani, and M.R. Rahimipour, ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3; a Promising TBC Material with High Resistance to Hot Corrosion, J. Asian Ceram. Soc., 2020, 20, p 30
30.
Zurück zum Zitat M. Bahamirian, S. Hadavi, M. Farvizi, M. Rahimipour, and A. Keyvani, Phase Stability of ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3 Compound at 1100 C and 1300 C for Advanced TBC Applications, Ceram. Int., 2019, 45, p 7344–7350 M. Bahamirian, S. Hadavi, M. Farvizi, M. Rahimipour, and A. Keyvani, Phase Stability of ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3 Compound at 1100 C and 1300 C for Advanced TBC Applications, Ceram. Int., 2019, 45, p 7344–7350
31.
Zurück zum Zitat S.-H. Jung, Z. Lu, Y.-G. Jung, D. Song, U. Paik, B.-G. Choi et al., Thermal Durability and Fracture Behavior of Layered Yb-Gd-Y-Based Thermal Barrier Coatings in Thermal Cyclic Exposure, Surf. Coat. Technol., 2017, 323, p 39–48 S.-H. Jung, Z. Lu, Y.-G. Jung, D. Song, U. Paik, B.-G. Choi et al., Thermal Durability and Fracture Behavior of Layered Yb-Gd-Y-Based Thermal Barrier Coatings in Thermal Cyclic Exposure, Surf. Coat. Technol., 2017, 323, p 39–48
32.
Zurück zum Zitat Z.-G. Liu, W.-H. Zhang, J.-H. Ouyang, and Y. Zhou, Novel Double-Ceramic-Layer (La0.8Eu0.2)2Zr2O7/YSZ Thermal Barrier Coatings Deposited by Plasma Spraying, Ceram. Int., 2014, 40, p 11277–11282 Z.-G. Liu, W.-H. Zhang, J.-H. Ouyang, and Y. Zhou, Novel Double-Ceramic-Layer (La0.8Eu0.2)2Zr2O7/YSZ Thermal Barrier Coatings Deposited by Plasma Spraying, Ceram. Int., 2014, 40, p 11277–11282
33.
Zurück zum Zitat X. Xiaoyun, G. Hongbo, G. Shengkai, and X. Huibin, Hot Corrosion Behavior of Double-Ceramic-Layer LaTi2Al9O19/YSZ Thermal Barrier Coatings, Chin. J. Aeronaut., 2012, 25, p 137–142 X. Xiaoyun, G. Hongbo, G. Shengkai, and X. Huibin, Hot Corrosion Behavior of Double-Ceramic-Layer LaTi2Al9O19/YSZ Thermal Barrier Coatings, Chin. J. Aeronaut., 2012, 25, p 137–142
34.
Zurück zum Zitat L. Wang, Y. Wang, X. Sun, J. He, Z. Pan, and C. Wang, Finite Element Simulation of Residual Stress of Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Using Birth and Death Element Technique, Comput. Mater. Sci., 2012, 53, p 117–127 L. Wang, Y. Wang, X. Sun, J. He, Z. Pan, and C. Wang, Finite Element Simulation of Residual Stress of Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Using Birth and Death Element Technique, Comput. Mater. Sci., 2012, 53, p 117–127
35.
Zurück zum Zitat R. Vassen, F. Traeger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1, p 351–361 R. Vassen, F. Traeger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1, p 351–361
36.
Zurück zum Zitat M. Gell, Application Opportunities for Nanostructured Materials and Coatings, Mater. Sci. Eng., A, 1995, 204, p 246–251 M. Gell, Application Opportunities for Nanostructured Materials and Coatings, Mater. Sci. Eng., A, 1995, 204, p 246–251
37.
Zurück zum Zitat C.-B. Liu, Z.-M. Zhang, X.-L. Jiang, L. Min, and Z.-H. Zhu, Comparison of Thermal Shock Behaviors Between Plasma-Sprayed Nanostructured and Conventional Zirconia Thermal Barrier Coatings, Trans. Nonferrous Met. Soc. China, 2009, 19, p 99–107 C.-B. Liu, Z.-M. Zhang, X.-L. Jiang, L. Min, and Z.-H. Zhu, Comparison of Thermal Shock Behaviors Between Plasma-Sprayed Nanostructured and Conventional Zirconia Thermal Barrier Coatings, Trans. Nonferrous Met. Soc. China, 2009, 19, p 99–107
38.
Zurück zum Zitat C. Zhou, N. Wang, and H. Xu, Comparison of Thermal Cycling Behavior of Plasma-Sprayed Nanostructured and Traditional Thermal Barrier Coatings, Mater. Sci. Eng., A, 2007, 452, p 569–574 C. Zhou, N. Wang, and H. Xu, Comparison of Thermal Cycling Behavior of Plasma-Sprayed Nanostructured and Traditional Thermal Barrier Coatings, Mater. Sci. Eng., A, 2007, 452, p 569–574
39.
Zurück zum Zitat H. Chen, X. Zhou, and C. Ding, Investigation of the Thermomechanical Properties of a Plasma-Sprayed Nanostructured Zirconia Coating, J. Eur. Ceram. Soc., 2003, 23, p 1449–1455 H. Chen, X. Zhou, and C. Ding, Investigation of the Thermomechanical Properties of a Plasma-Sprayed Nanostructured Zirconia Coating, J. Eur. Ceram. Soc., 2003, 23, p 1449–1455
40.
Zurück zum Zitat R. Lima, A. Kucuk, and C. Berndt, Evaluation of Microhardness and Elastic Modulus of Thermally Sprayed Nanostructured Zirconia Coatings, Surf. Coat. Technol., 2001, 135, p 166–172 R. Lima, A. Kucuk, and C. Berndt, Evaluation of Microhardness and Elastic Modulus of Thermally Sprayed Nanostructured Zirconia Coatings, Surf. Coat. Technol., 2001, 135, p 166–172
41.
Zurück zum Zitat M. Bahamirian, S. Hadavi, M. Rahimipour, M. Farvizi, and A. Keyvani, Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3, Metall. Mater. Trans. A, 2018, 49, p 2523–2532 M. Bahamirian, S. Hadavi, M. Rahimipour, M. Farvizi, and A. Keyvani, Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3, Metall. Mater. Trans. A, 2018, 49, p 2523–2532
42.
Zurück zum Zitat M.R. Loghman-Estarki, H. Edris, H. Jamali, R. Ghasemi, M. Pourbafrany, M. Erfanmanesh et al., Spray Drying of Nanometric SYSZ Powders to Obtain Plasma Sprayable Nanostructured Granules, Ceram. Int., 2013, 39, p 9447–9457 M.R. Loghman-Estarki, H. Edris, H. Jamali, R. Ghasemi, M. Pourbafrany, M. Erfanmanesh et al., Spray Drying of Nanometric SYSZ Powders to Obtain Plasma Sprayable Nanostructured Granules, Ceram. Int., 2013, 39, p 9447–9457
43.
Zurück zum Zitat R. Aminov, A. Moskalenko, and A. Kozhevnikov, Optimal Gas Turbine Inlet Temperature for Cyclic Operation, J. Phys: Conf. Ser., 2018, 1111, p 012046 R. Aminov, A. Moskalenko, and A. Kozhevnikov, Optimal Gas Turbine Inlet Temperature for Cyclic Operation, J. Phys: Conf. Ser., 2018, 1111, p 012046
44.
Zurück zum Zitat ASTM standard-E228, Standard Test Method for Linear Thermal Expansion of Solid Materials with a Push-Rod Dilatometer (1995) ASTM standard-E228, Standard Test Method for Linear Thermal Expansion of Solid Materials with a Push-Rod Dilatometer (1995)
45.
Zurück zum Zitat T. Samani, M. Kermani, M. Razavi, M. Farvizi, and I. Mobasherpour, A Comparative Study on the Microstructure, Hot Corrosion Behavior and Mechanical Properties of Duplex and Functionally Graded Nanostructured/Conventional YSZ Thermal Barrier Coatings, Mater. Res. Exp., 2019, 6, p 115063 T. Samani, M. Kermani, M. Razavi, M. Farvizi, and I. Mobasherpour, A Comparative Study on the Microstructure, Hot Corrosion Behavior and Mechanical Properties of Duplex and Functionally Graded Nanostructured/Conventional YSZ Thermal Barrier Coatings, Mater. Res. Exp., 2019, 6, p 115063
46.
Zurück zum Zitat S. Bose, Chapter 7—Thermal Barrier Coatings (TBCs), High Temperature Coatings, Elsevier, Amsterdam, 2007, p 155–232 S. Bose, Chapter 7—Thermal Barrier Coatings (TBCs), High Temperature Coatings, Elsevier, Amsterdam, 2007, p 155–232
47.
Zurück zum Zitat F.-W. Bach, K. Möhwald, A. Laarmann, and T. Wenz, Modern Surface Technology, Wiley, New York, 2006 F.-W. Bach, K. Möhwald, A. Laarmann, and T. Wenz, Modern Surface Technology, Wiley, New York, 2006
48.
Zurück zum Zitat A. Kucuk, C. Berndt, U. Senturk, R. Lima, and C. Lima, Influence of Plasma Spray Parameters on Mechanical Properties of Yttria Stabilized Zirconia Coatings. I: Four Point Bend Test, Mater. Sci. Eng., A, 2000, 284, p 29–40 A. Kucuk, C. Berndt, U. Senturk, R. Lima, and C. Lima, Influence of Plasma Spray Parameters on Mechanical Properties of Yttria Stabilized Zirconia Coatings. I: Four Point Bend Test, Mater. Sci. Eng., A, 2000, 284, p 29–40
49.
Zurück zum Zitat J. Ilavsky and J.K. Stalick, Phase Composition and Its Changes During Annealing of Plasma-Sprayed YSZ, Surf. Coat. Technol., 2000, 127, p 120–129 J. Ilavsky and J.K. Stalick, Phase Composition and Its Changes During Annealing of Plasma-Sprayed YSZ, Surf. Coat. Technol., 2000, 127, p 120–129
50.
Zurück zum Zitat H. Grünling and W. Mannsmann, Plasma Sprayed Thermal Barrier Coatings for Industrial Gas Turbines: Morphology, Processing and Properties, Le J. Phys. IV, 1993, 3, p C7-903–C7-912 H. Grünling and W. Mannsmann, Plasma Sprayed Thermal Barrier Coatings for Industrial Gas Turbines: Morphology, Processing and Properties, Le J. Phys. IV, 1993, 3, p C7-903–C7-912
51.
Zurück zum Zitat L. Wang, Y. Wang, X. Sun, J. He, Z. Pan, Y. Zhou et al., Influence of Pores on the Thermal Insulation Behavior of Thermal Barrier Coatings Prepared by Atmospheric Plasma Spray, Mater. Des., 2011, 32, p 36–47 L. Wang, Y. Wang, X. Sun, J. He, Z. Pan, Y. Zhou et al., Influence of Pores on the Thermal Insulation Behavior of Thermal Barrier Coatings Prepared by Atmospheric Plasma Spray, Mater. Des., 2011, 32, p 36–47
52.
Zurück zum Zitat I. Golosnoy, A. Cipitria, and T. Clyne, Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work, J. Therm. Spray Technol., 2009, 18, p 809–821 I. Golosnoy, A. Cipitria, and T. Clyne, Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work, J. Therm. Spray Technol., 2009, 18, p 809–821
53.
Zurück zum Zitat A. Cipitria, I. Golosnoy, and T. Clyne, A Sintering Model for Plasma-Sprayed Zirconia TBCs. Part I: Free-Standing Coatings, Acta Mater., 2009, 57, p 980–992 A. Cipitria, I. Golosnoy, and T. Clyne, A Sintering Model for Plasma-Sprayed Zirconia TBCs. Part I: Free-Standing Coatings, Acta Mater., 2009, 57, p 980–992
54.
Zurück zum Zitat O. Racek and C. Berndt, Mechanical Property Variations Within Thermal Barrier Coatings, Surf. Coat. Technol., 2007, 202, p 362–369 O. Racek and C. Berndt, Mechanical Property Variations Within Thermal Barrier Coatings, Surf. Coat. Technol., 2007, 202, p 362–369
55.
Zurück zum Zitat R. Lima, A. Kucuk, and C. Berndt, Integrity of Nanostructured Partially Stabilized Zirconia After Plasma Spray Processing, Mater. Sci. Eng., A, 2001, 313, p 75–82 R. Lima, A. Kucuk, and C. Berndt, Integrity of Nanostructured Partially Stabilized Zirconia After Plasma Spray Processing, Mater. Sci. Eng., A, 2001, 313, p 75–82
56.
Zurück zum Zitat R. Ghasemi, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, Comparison of Microstructure and Mechanical Properties of Plasma-Sprayed Nanostructured and Conventional Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2013, 39, p 8805–8813 R. Ghasemi, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, Comparison of Microstructure and Mechanical Properties of Plasma-Sprayed Nanostructured and Conventional Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2013, 39, p 8805–8813
57.
Zurück zum Zitat E.H. Kisi and C. Howard, Crystal Structures of Zirconia Phases and Their Inter-relation, Key Eng. Mater., 1998, 153, p 1–36 E.H. Kisi and C. Howard, Crystal Structures of Zirconia Phases and Their Inter-relation, Key Eng. Mater., 1998, 153, p 1–36
58.
Zurück zum Zitat T. Sakuma, Microstructural Aspects on the Cubic-Tetragonal Transformation in Zirconia, Key Eng. Mater., 1998, 153, p 75–96 T. Sakuma, Microstructural Aspects on the Cubic-Tetragonal Transformation in Zirconia, Key Eng. Mater., 1998, 153, p 75–96
59.
Zurück zum Zitat A. Keyvani, M. Saremi, M.H. Sohi, and Z. Valefi, A Comparison on Thermomechanical Properties of Plasma-Sprayed Conventional and Nanostructured YSZ TBC Coatings in Thermal Cycling, J. Alloys Compd., 2012, 541, p 488–494 A. Keyvani, M. Saremi, M.H. Sohi, and Z. Valefi, A Comparison on Thermomechanical Properties of Plasma-Sprayed Conventional and Nanostructured YSZ TBC Coatings in Thermal Cycling, J. Alloys Compd., 2012, 541, p 488–494
60.
Zurück zum Zitat H. Xu and H. Guo, Thermal Barrier Coatings, Woodhead Publishing Limited, Singapore, 2011, p 193–197 H. Xu and H. Guo, Thermal Barrier Coatings, Woodhead Publishing Limited, Singapore, 2011, p 193–197
61.
Zurück zum Zitat A. Keyvani and M. Bahamirian, Oxidation Resistance of Al2O3-Nanostructured/CSZ Composite Compared to Conventional CSZ and YSZ Thermal Barrier Coatings, Mater. Res. Exp., 2016, 3, p 105047 A. Keyvani and M. Bahamirian, Oxidation Resistance of Al2O3-Nanostructured/CSZ Composite Compared to Conventional CSZ and YSZ Thermal Barrier Coatings, Mater. Res. Exp., 2016, 3, p 105047
62.
Zurück zum Zitat Z. Zou, L. Jia, L. Yang, X. Shan, L. Luo, F. Guo et al., Role of Internal Oxidation on the Failure of Air Plasma Sprayed Thermal Barrier Coatings with a Double-Layered Bond Coat, Surf. Coat. Technol., 2017, 319, p 370–377 Z. Zou, L. Jia, L. Yang, X. Shan, L. Luo, F. Guo et al., Role of Internal Oxidation on the Failure of Air Plasma Sprayed Thermal Barrier Coatings with a Double-Layered Bond Coat, Surf. Coat. Technol., 2017, 319, p 370–377
63.
Zurück zum Zitat M. Bahamirian, S. Hadavi, M. Farvizi, A. Keyvani, and M. Rahimipour, Thermal Durability of YSZ/Nanostructured Gd2Zr2O7 TBC Undergoing Thermal Cycling, Oxid. Met., 2019, 92, p 401–421 M. Bahamirian, S. Hadavi, M. Farvizi, A. Keyvani, and M. Rahimipour, Thermal Durability of YSZ/Nanostructured Gd2Zr2O7 TBC Undergoing Thermal Cycling, Oxid. Met., 2019, 92, p 401–421
64.
Zurück zum Zitat H.-J. Jang, D.-H. Park, Y.-G. Jung, J.-C. Jang, S.-C. Choi, and U. Paik, Mechanical Characterization and Thermal Behavior of HVOF-Sprayed Bond Coat in Thermal Barrier Coatings (TBCs), Surf. Coat. Technol., 2006, 200, p 4355–4362 H.-J. Jang, D.-H. Park, Y.-G. Jung, J.-C. Jang, S.-C. Choi, and U. Paik, Mechanical Characterization and Thermal Behavior of HVOF-Sprayed Bond Coat in Thermal Barrier Coatings (TBCs), Surf. Coat. Technol., 2006, 200, p 4355–4362
65.
Zurück zum Zitat Y.-S. Song, I.-G. Lee, D.Y. Lee, D.-J. Kim, S. Kim, and K. Lee, High-Temperature Properties of Plasma-Sprayed Coatings of YSZ/NiCrAlY on Inconel Substrate, Mater. Sci. Eng., A, 2002, 332, p 129–133 Y.-S. Song, I.-G. Lee, D.Y. Lee, D.-J. Kim, S. Kim, and K. Lee, High-Temperature Properties of Plasma-Sprayed Coatings of YSZ/NiCrAlY on Inconel Substrate, Mater. Sci. Eng., A, 2002, 332, p 129–133
66.
Zurück zum Zitat J.S. Wallace and J. Ilavsky, Elastic Modulus Measurements in Plasma Sprayed Deposits, J. Therm. Spray Technol., 1998, 7, p 521–526 J.S. Wallace and J. Ilavsky, Elastic Modulus Measurements in Plasma Sprayed Deposits, J. Therm. Spray Technol., 1998, 7, p 521–526
67.
Zurück zum Zitat F. Tang and J.M. Schoenung, Evolution of Young’s Modulus of Air Plasma Sprayed Yttria-Stabilized Zirconia in Thermally Cycled Thermal Barrier Coatings, Scr. Mater., 2006, 54, p 1587–1592 F. Tang and J.M. Schoenung, Evolution of Young’s Modulus of Air Plasma Sprayed Yttria-Stabilized Zirconia in Thermally Cycled Thermal Barrier Coatings, Scr. Mater., 2006, 54, p 1587–1592
68.
Zurück zum Zitat Z. Wu, L. Ni, Q. Yu, and C. Zhou, Effect of Thermal Exposure on Mechanical Properties of a Plasma-Sprayed Nanostructured Thermal Barrier Coating, J. Therm. Spray Technol., 2012, 21, p 169–175 Z. Wu, L. Ni, Q. Yu, and C. Zhou, Effect of Thermal Exposure on Mechanical Properties of a Plasma-Sprayed Nanostructured Thermal Barrier Coating, J. Therm. Spray Technol., 2012, 21, p 169–175
69.
Zurück zum Zitat H. Chen, S.W. Lee, H. Du, C.X. Ding, and C.H. Choi, Influence of Feedstock and Spraying Parameters on the Depositing Efficiency and Microhardness of Plasma-Sprayed Zirconia Coatings, Mater. Lett., 2004, 58, p 1241–1245 H. Chen, S.W. Lee, H. Du, C.X. Ding, and C.H. Choi, Influence of Feedstock and Spraying Parameters on the Depositing Efficiency and Microhardness of Plasma-Sprayed Zirconia Coatings, Mater. Lett., 2004, 58, p 1241–1245
70.
Zurück zum Zitat M. Bacos, J. Dorvaux, O. Lavigne, R. Mévrel, R. Poulain, C. Rio et al., Performance and Degradation Mechanisms of Thermal Barrier Coatings for Turbine Blades: A Review of Onera Activities, AerospaceLab, 2011, 3, p 1–11 M. Bacos, J. Dorvaux, O. Lavigne, R. Mévrel, R. Poulain, C. Rio et al., Performance and Degradation Mechanisms of Thermal Barrier Coatings for Turbine Blades: A Review of Onera Activities, AerospaceLab, 2011, 3, p 1–11
71.
Zurück zum Zitat T. Beck, R. Herzog, O. Trunova, M. Offermann, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma-Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part II: Modeling, Surf. Coat. Technol., 2008, 202, p 5901–5908 T. Beck, R. Herzog, O. Trunova, M. Offermann, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma-Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part II: Modeling, Surf. Coat. Technol., 2008, 202, p 5901–5908
72.
Zurück zum Zitat A.G. Evans, D. Mumm, J. Hutchinson, G. Meier, and F. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46, p 505–553 A.G. Evans, D. Mumm, J. Hutchinson, G. Meier, and F. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46, p 505–553
73.
Zurück zum Zitat K. Ogawa, High Temperature Oxidation Behavior of Thermal Barrier Coatings, Gas Turbines-Materials, Modeling and Performance, IntechOpen, London, 2015 K. Ogawa, High Temperature Oxidation Behavior of Thermal Barrier Coatings, Gas Turbines-Materials, Modeling and Performance, IntechOpen, London, 2015
74.
Zurück zum Zitat E. Busso, J. Lin, S. Sakurai, and M. Nakayama, A Mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System: Part I: Model Formulation, Acta Mater., 2001, 49, p 1515–1528 E. Busso, J. Lin, S. Sakurai, and M. Nakayama, A Mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System: Part I: Model Formulation, Acta Mater., 2001, 49, p 1515–1528
75.
Zurück zum Zitat A. Reddy, D. Hovis, A. Heuer, A. Paulikas, and B. Veal, In Situ Study of Oxidation-Induced Growth Strains in a Model NiCrAlY Bond-Coat Alloy, Oxid. Met., 2007, 67, p 153–177 A. Reddy, D. Hovis, A. Heuer, A. Paulikas, and B. Veal, In Situ Study of Oxidation-Induced Growth Strains in a Model NiCrAlY Bond-Coat Alloy, Oxid. Met., 2007, 67, p 153–177
76.
Zurück zum Zitat M. Abbas, H. Guo, and M.R. Shahid, Comparative Study on Effect of Oxide Thickness on Stress Distribution of Traditional and Nanostructured Zirconia Coating Systems, Ceram. Int., 2013, 39, p 475–481 M. Abbas, H. Guo, and M.R. Shahid, Comparative Study on Effect of Oxide Thickness on Stress Distribution of Traditional and Nanostructured Zirconia Coating Systems, Ceram. Int., 2013, 39, p 475–481
77.
Zurück zum Zitat M. Ali, S. Nusier, and G. Newaz, Mechanics of Damage Initiation and Growth in a TBC/Superalloy System, Int. J. Solids Struct., 2001, 38, p 3329–3340 M. Ali, S. Nusier, and G. Newaz, Mechanics of Damage Initiation and Growth in a TBC/Superalloy System, Int. J. Solids Struct., 2001, 38, p 3329–3340
78.
Zurück zum Zitat D. Chicot and A. Tricoteaux, Mechanical Properties of Ceramic by Indentation: Principle and Applications, Ceramic Materials, InTech, London, 2010 D. Chicot and A. Tricoteaux, Mechanical Properties of Ceramic by Indentation: Principle and Applications, Ceramic Materials, InTech, London, 2010
Metadaten
Titel
Microstructure and Cyclic Oxidation of Yttria-Stabilized Zirconia/Nanostructured ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 Thermal Barrier Coating at 1373 K
verfasst von
M. Bahamirian
S. M. M. Hadavi
M. Farvizi
A. Keyvani
M. R. Rahimipour
Publikationsdatum
16.10.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05174-1

Weitere Artikel der Ausgabe 11/2020

Journal of Materials Engineering and Performance 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.