Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2022

25.04.2022 | Technical Article

Microstructure and Mechanical Properties of In Situ TiB2/2024 Composites Fabricated by Powder Metallurgy

verfasst von: Nan Li, Fengguo Zhang, Qing Yang, Yi Wu, Mingliang Wang, Jun Liu, Lei Wang, Zhe Chen, Haowei Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, a uniform distribution of nanosized TiB2 particles in the metal matrix was achieved by powder metallurgy using the composite powders with pre-embedded particles. The composite powders were consolidated into compacts via spark plasma sintering without additional treatment such as mechanical milling or mixing. The concentrated shear stress around the uniformly distributed TiB2 particles with size similar to the width of the elongated grains during hot extrusion leads into grain fragmentation and refinement. The T4-treated TiB2/2024 composites had a better combination of yield strength of 385 MPa, ultimate tensile strength of 568 MPa and uniform elongation of 14.6% compared to the Al-Cu-Mg alloys and Al-Cu-Mg based composites in the published work. The longer uniform elongation of the composites in the present work was analyzed in respects of dislocation accumulation rate k1 and dislocation recovery rate k2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Yi, N. Ma, Y. Zhang, X. Li, and H. Wang, Effective Elastic Moduli of Al–Si Composites Reinforced In Situ with TiB2 Particles, Scr. Mater., 2006, 54(6), p 1093–1097. H. Yi, N. Ma, Y. Zhang, X. Li, and H. Wang, Effective Elastic Moduli of Al–Si Composites Reinforced In Situ with TiB2 Particles, Scr. Mater., 2006, 54(6), p 1093–1097.
2.
Zurück zum Zitat M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang, Mechanical Properties of In-Situ TiB2/A356 Composites, Mater. Sci. Eng. A, 2014, 590, p 246–254. M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang, Mechanical Properties of In-Situ TiB2/A356 Composites, Mater. Sci. Eng. A, 2014, 590, p 246–254.
3.
Zurück zum Zitat I. Dinaharan and N. Murugan, Effect of Friction Stir Welding on Microstructure, Mechanical and Wear Properties of AA6061/ZrB2 In Situ Cast Composites, Mater. Sci. Eng. A, 2012, 543, p 257–266. I. Dinaharan and N. Murugan, Effect of Friction Stir Welding on Microstructure, Mechanical and Wear Properties of AA6061/ZrB2 In Situ Cast Composites, Mater. Sci. Eng. A, 2012, 543, p 257–266.
4.
Zurück zum Zitat Y. Zhang, N. Ma, H. Wang, Y. Le, and S. Li, Effect of Ti on the Damping Behavior of Aluminum Composite Reinforced with In Situ TiB2 Particulate, Scr. Mater., 2005, 53(10), p 1171–1174. Y. Zhang, N. Ma, H. Wang, Y. Le, and S. Li, Effect of Ti on the Damping Behavior of Aluminum Composite Reinforced with In Situ TiB2 Particulate, Scr. Mater., 2005, 53(10), p 1171–1174.
5.
Zurück zum Zitat Y. Ma, Z. Chen, M. Wang, D. Chen, N. Ma, and H. Wang, High Cycle Fatigue Behavior of the In-Situ TiB2/7050 Composite, Mater. Sci. Eng. A, 2015, 640, p 350–356. Y. Ma, Z. Chen, M. Wang, D. Chen, N. Ma, and H. Wang, High Cycle Fatigue Behavior of the In-Situ TiB2/7050 Composite, Mater. Sci. Eng. A, 2015, 640, p 350–356.
6.
Zurück zum Zitat G. Chen, X. Song, N. Hu, H. Wang, and Y. Tian, Effect of Initial Ti Powders Size on the Microstructures and Mechanical Properties of Al3Ti/2024 Al Composites Prepared by Ultrasonic Assisted In-Situ Casting, J. Alloys Compd., 2017, 694, p 539–548. G. Chen, X. Song, N. Hu, H. Wang, and Y. Tian, Effect of Initial Ti Powders Size on the Microstructures and Mechanical Properties of Al3Ti/2024 Al Composites Prepared by Ultrasonic Assisted In-Situ Casting, J. Alloys Compd., 2017, 694, p 539–548.
7.
Zurück zum Zitat L. Ceschini, G. Minak, A. Morri, and F. Tarterini, Forging of the AA6061/23vol.%Al2O3p Composite: Effects on Microstructure and Tensile Properties, Mater. Sci. Eng. A, 2009, 513, p 176–184. L. Ceschini, G. Minak, A. Morri, and F. Tarterini, Forging of the AA6061/23vol.%Al2O3p Composite: Effects on Microstructure and Tensile Properties, Mater. Sci. Eng. A, 2009, 513, p 176–184.
8.
Zurück zum Zitat W.L. Zhang, M.Y. Gu, D.Z. Wang, and Z.K. Yao, Rolling and Annealing Textures of a SiCw/Al Composite, Mater. Lett., 2004, 58(27), p 3414–3418. W.L. Zhang, M.Y. Gu, D.Z. Wang, and Z.K. Yao, Rolling and Annealing Textures of a SiCw/Al Composite, Mater. Lett., 2004, 58(27), p 3414–3418.
9.
Zurück zum Zitat L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, Microstructure, Tensile and Fatigue Properties of AA6061/20vol%Al2O3p Friction Stir Welded Joints, Compos. A, 2007, 38(4), p 1200–1210. L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, Microstructure, Tensile and Fatigue Properties of AA6061/20vol%Al2O3p Friction Stir Welded Joints, Compos. A, 2007, 38(4), p 1200–1210.
10.
Zurück zum Zitat T. Kobayashi, Metal matrix composites, Strength and Toughness of Materials. T. Kobayashi Ed., Springer Japan, Tokyo, 2004, p 163–187 T. Kobayashi, Metal matrix composites, Strength and Toughness of Materials. T. Kobayashi Ed., Springer Japan, Tokyo, 2004, p 163–187
11.
Zurück zum Zitat L. Babout, E. Maire, and R. Fougères, Damage Initiation in Model Metallic Materials: X-Ray Tomography and Modelling, Acta Mater., 2004, 52(8), p 2475–2487. L. Babout, E. Maire, and R. Fougères, Damage Initiation in Model Metallic Materials: X-Ray Tomography and Modelling, Acta Mater., 2004, 52(8), p 2475–2487.
12.
Zurück zum Zitat G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12(4), p 344–350. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12(4), p 344–350.
13.
Zurück zum Zitat J. Liu, Z. Chen, F.G. Zhang, G. Ji, M.L. Wang, Y. Ma, V. Ji, S.Y. Zhong, Y. Wu, and H.W. Wang, Simultaneously Increasing Strength and Ductility of Nanoparticles Reinforced Al Composites via Accumulative Orthogonal Extrusion Process, Mater. Res. Lett., 2018, 6(8), p 406–412. J. Liu, Z. Chen, F.G. Zhang, G. Ji, M.L. Wang, Y. Ma, V. Ji, S.Y. Zhong, Y. Wu, and H.W. Wang, Simultaneously Increasing Strength and Ductility of Nanoparticles Reinforced Al Composites via Accumulative Orthogonal Extrusion Process, Mater. Res. Lett., 2018, 6(8), p 406–412.
14.
Zurück zum Zitat C.F. Feng and L. Froyen, Microstructures of In Situ Al/TiB2 MMCs Prepared by a Casting Route, J. Mater. Sci., 2000, 35(4), p 837–850. C.F. Feng and L. Froyen, Microstructures of In Situ Al/TiB2 MMCs Prepared by a Casting Route, J. Mater. Sci., 2000, 35(4), p 837–850.
15.
Zurück zum Zitat L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.-C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 2015, 528(7583), p 539–543. L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.-C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 2015, 528(7583), p 539–543.
16.
Zurück zum Zitat Z. Chen, J. Li, A. Borbely, G. Ji, S.Y. Zhong, Y. Wu, M.L. Wang, and H.W. Wang, The Effects of Nanosized Particles on Microstructural Evolution of an In-Situ TiB2/6063Al Composite Produced by Friction Stir Processing, Mater. Des., 2015, 88, p 999–1007. Z. Chen, J. Li, A. Borbely, G. Ji, S.Y. Zhong, Y. Wu, M.L. Wang, and H.W. Wang, The Effects of Nanosized Particles on Microstructural Evolution of an In-Situ TiB2/6063Al Composite Produced by Friction Stir Processing, Mater. Des., 2015, 88, p 999–1007.
17.
Zurück zum Zitat S.M. Ma, P. Zhang, G. Ji, Z. Chen, G.A. Sun, S.Y. Zhong, V. Ji, and H.W. Wang, Microstructure and Mechanical Properties of Friction Stir Processed Al–Mg–Si Alloys Dispersion-Strengthened by Nanosized TiB2 Particles, J. Alloys Compd., 2014, 616, p 128–136. S.M. Ma, P. Zhang, G. Ji, Z. Chen, G.A. Sun, S.Y. Zhong, V. Ji, and H.W. Wang, Microstructure and Mechanical Properties of Friction Stir Processed Al–Mg–Si Alloys Dispersion-Strengthened by Nanosized TiB2 Particles, J. Alloys Compd., 2014, 616, p 128–136.
18.
Zurück zum Zitat X. Ju, F. Zhang, Z. Chen, G. Ji, M. Wang, V. Wu, S. Zhong, and H.W. Wang, Microstructure of Multi-Pass Friction-Stir-Processed Al-Zn-Mg-Cu Alloys Reinforced by Nano-Sized TiB2 Particles and the Effect of T6 Heat Treatment, Metals, 2017, 7(12), p 530. X. Ju, F. Zhang, Z. Chen, G. Ji, M. Wang, V. Wu, S. Zhong, and H.W. Wang, Microstructure of Multi-Pass Friction-Stir-Processed Al-Zn-Mg-Cu Alloys Reinforced by Nano-Sized TiB2 Particles and the Effect of T6 Heat Treatment, Metals, 2017, 7(12), p 530.
19.
Zurück zum Zitat J. Liu, Z. Chen, F.G. Zhang, J. Gang, M. Yu, M.L. Wang, S.Y. Zhong, J. Li, H. Wang, and H.W. Wang, Improved Structural Homogeneity and Mechanical Properties of Nanoparticles Reinforced Al Composites After Orthogonal Thermomechanical Processes, J. Alloys Compd., 2018, 767, p 293–301. J. Liu, Z. Chen, F.G. Zhang, J. Gang, M. Yu, M.L. Wang, S.Y. Zhong, J. Li, H. Wang, and H.W. Wang, Improved Structural Homogeneity and Mechanical Properties of Nanoparticles Reinforced Al Composites After Orthogonal Thermomechanical Processes, J. Alloys Compd., 2018, 767, p 293–301.
20.
Zurück zum Zitat F.M. Heim, Y. Zhang, and X. Li, Uniting Strength and Toughness of Al Matrix Composites with Coordinated Al3Ni and Al3Ti Reinforcements, Adv. Eng. Mater., 2018, 20, p 1700605. F.M. Heim, Y. Zhang, and X. Li, Uniting Strength and Toughness of Al Matrix Composites with Coordinated Al3Ni and Al3Ti Reinforcements, Adv. Eng. Mater., 2018, 20, p 1700605.
21.
Zurück zum Zitat S.C. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Adv. Eng. Mater., 2007, 9(8), p 639–652. S.C. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Adv. Eng. Mater., 2007, 9(8), p 639–652.
22.
Zurück zum Zitat C. Suryanarayana and N. Al-Aqeeli, Mechanically Alloyed Nanocomposites, Prog. Mater. Sci., 2013, 58(4), p 383–502. C. Suryanarayana and N. Al-Aqeeli, Mechanically Alloyed Nanocomposites, Prog. Mater. Sci., 2013, 58(4), p 383–502.
23.
Zurück zum Zitat H.M. John, D.Y. Brennan, M.H. Jacob, A.M. Justin, A.S. Tobias, and M.P. Tresa, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549, p 365–369. H.M. John, D.Y. Brennan, M.H. Jacob, A.M. Justin, A.S. Tobias, and M.P. Tresa, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549, p 365–369.
24.
Zurück zum Zitat C.D. Wu, K.K. Ma, J.L. Wu, P. Fang, G.Q. Luo, F. Chen, Q. Shen, L.M. Zhang, J.M. Schoenung, and E.J. Lavernia, Influence of Particle Size and Spatial Distribution of B4C Reinforcement on the Microstructure and Mechanical Behavior of Precipitation Strengthened Al Alloy Matrix Composites, Mater. Sci. Eng. A, 2016, 675, p 421–430. C.D. Wu, K.K. Ma, J.L. Wu, P. Fang, G.Q. Luo, F. Chen, Q. Shen, L.M. Zhang, J.M. Schoenung, and E.J. Lavernia, Influence of Particle Size and Spatial Distribution of B4C Reinforcement on the Microstructure and Mechanical Behavior of Precipitation Strengthened Al Alloy Matrix Composites, Mater. Sci. Eng. A, 2016, 675, p 421–430.
25.
Zurück zum Zitat D.B. Witkin and E.J. Lavernia, Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling, Prog. Mater. Sci., 2006, 51(1), p 1–60. D.B. Witkin and E.J. Lavernia, Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling, Prog. Mater. Sci., 2006, 51(1), p 1–60.
26.
Zurück zum Zitat H. Yang, E.J. Lavernia, and J.M. Schoenung, Novel Fabrication of Bulk Al with Gradient Grain Size Distributions via Powder Metallurgy, Philos. Mag. Lett., 2015, 95, p 177–186. H. Yang, E.J. Lavernia, and J.M. Schoenung, Novel Fabrication of Bulk Al with Gradient Grain Size Distributions via Powder Metallurgy, Philos. Mag. Lett., 2015, 95, p 177–186.
27.
Zurück zum Zitat M. Chen, X. Li, G. Ji, Y. Wu, Z. Chen, W. Baekelant, K. Vanmeensel, H. Wang, and J.-P. Kruth, Novel Composite Powders with Uniform TiB2 Nano-Particle Distribution for 3D Printing, Appl. Sci. 7(3) (2017) M. Chen, X. Li, G. Ji, Y. Wu, Z. Chen, W. Baekelant, K. Vanmeensel, H. Wang, and J.-P. Kruth, Novel Composite Powders with Uniform TiB2 Nano-Particle Distribution for 3D Printing, Appl. Sci. 7(3) (2017)
28.
Zurück zum Zitat X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, and J.P. Kruth, Selective Laser Melting of Nano-TiB2 Decorated AlSi10Mg Alloy with High Fracture Strength and Ductility, Acta Mater., 2017, 129, p 183–193. X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, and J.P. Kruth, Selective Laser Melting of Nano-TiB2 Decorated AlSi10Mg Alloy with High Fracture Strength and Ductility, Acta Mater., 2017, 129, p 183–193.
29.
Zurück zum Zitat Q. Yang, Y. Ma, Z. Chen, G. Ji, M.L. Wang, S.Y. Zhong, Y. Wu, V. Ji, and H.W. Wang, A New Powder Metallurgy Routine to Fabricate TiB2/Al–Zn–Mg–Cu Nanocomposites based on Composite Powders with Pre-Embedded Nanoparticles, Materialia, 2019, 8, p 100458. Q. Yang, Y. Ma, Z. Chen, G. Ji, M.L. Wang, S.Y. Zhong, Y. Wu, V. Ji, and H.W. Wang, A New Powder Metallurgy Routine to Fabricate TiB2/Al–Zn–Mg–Cu Nanocomposites based on Composite Powders with Pre-Embedded Nanoparticles, Materialia, 2019, 8, p 100458.
30.
Zurück zum Zitat Y. Tang, Z. Chen, A. Borbely, G. Ji, S.Y. Zhong, D. Schryvers, V. Ji, and H.W. Wang, Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy Mater, Charact, 2015, 102, p 131–136. Y. Tang, Z. Chen, A. Borbely, G. Ji, S.Y. Zhong, D. Schryvers, V. Ji, and H.W. Wang, Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy Mater, Charact, 2015, 102, p 131–136.
31.
Zurück zum Zitat Q. Yang, Y.T. Liu, J. Liu, L. Wang, Z. Chen, M.L. Wang, S.Y. Zhong, Y. Wu, and H.W. Wang, Microstructure Evolution of the Rapidly Solidified Alloy Powders and Composite Powders, Mater. Des., 2019, 182, p 108045. Q. Yang, Y.T. Liu, J. Liu, L. Wang, Z. Chen, M.L. Wang, S.Y. Zhong, Y. Wu, and H.W. Wang, Microstructure Evolution of the Rapidly Solidified Alloy Powders and Composite Powders, Mater. Des., 2019, 182, p 108045.
32.
Zurück zum Zitat B. Derby, The Dependece of Grain Size on Stress During Dynamic Recrystallisation, Acta Metall. Mater., 1990, 39, p 955–962. B. Derby, The Dependece of Grain Size on Stress During Dynamic Recrystallisation, Acta Metall. Mater., 1990, 39, p 955–962.
33.
Zurück zum Zitat R.E.D. Mann, R.L. Hexemer, I.W. Donaldson, and D.P. Bishop, Hot Deformation of an Al–Cu–Mg Powder Metallurgy Alloy, Mater. Sci. Eng. A, 2011, 528(16), p 5476–5483. R.E.D. Mann, R.L. Hexemer, I.W. Donaldson, and D.P. Bishop, Hot Deformation of an Al–Cu–Mg Powder Metallurgy Alloy, Mater. Sci. Eng. A, 2011, 528(16), p 5476–5483.
34.
Zurück zum Zitat L. Hu, Z. Liu, and E. Wang, Microstructure and Mechanical Properties of 2024 Aluminum Alloy Consolidated from Rapidly Solidified Alloy Powders, Mater. Sci. Eng. A, 2002, 323(1), p 213–217. L. Hu, Z. Liu, and E. Wang, Microstructure and Mechanical Properties of 2024 Aluminum Alloy Consolidated from Rapidly Solidified Alloy Powders, Mater. Sci. Eng. A, 2002, 323(1), p 213–217.
35.
Zurück zum Zitat Y. Lian, Z. Yang, J. Yang, and C. Mao, Processing and Mechanical Properties of 2024 Aluminum Matrix Composites Containing Tungsten and Tantalum Prepared by PM, Rare Met., 2006, 25(6), p 136–140. Y. Lian, Z. Yang, J. Yang, and C. Mao, Processing and Mechanical Properties of 2024 Aluminum Matrix Composites Containing Tungsten and Tantalum Prepared by PM, Rare Met., 2006, 25(6), p 136–140.
36.
Zurück zum Zitat S.E. Shin, H.J. Choi, J.H. Shin, and D.H. Bae, Strengthening Behavior of Few-Layered Graphene/Aluminum Composites, Carbon, 2015, 82, p 143–151. S.E. Shin, H.J. Choi, J.H. Shin, and D.H. Bae, Strengthening Behavior of Few-Layered Graphene/Aluminum Composites, Carbon, 2015, 82, p 143–151.
37.
Zurück zum Zitat Y.S. Su, Q.B. Ouyang, W.L. Zhang, Z.Q. Li, Q. Guo, G.L. Fan, and D. Zhang, Composite Structure Modeling and Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Mater. Sci. Eng. A, 2014, 597, p 359–369. Y.S. Su, Q.B. Ouyang, W.L. Zhang, Z.Q. Li, Q. Guo, G.L. Fan, and D. Zhang, Composite Structure Modeling and Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Mater. Sci. Eng. A, 2014, 597, p 359–369.
38.
Zurück zum Zitat L. Wang, F. Qiu, J.Y. Liu, H.Y. Wang, J.G. Wang, L. Zhu, and Q.C. Jiang, Microstructure and Tensile Properties of In Situ Synthesized Nano-Sized TiCx/2009Al Composites, Mater. Des., 2015, 79, p 68–72. L. Wang, F. Qiu, J.Y. Liu, H.Y. Wang, J.G. Wang, L. Zhu, and Q.C. Jiang, Microstructure and Tensile Properties of In Situ Synthesized Nano-Sized TiCx/2009Al Composites, Mater. Des., 2015, 79, p 68–72.
39.
Zurück zum Zitat M. Alizadeh, Comparison of Nanostructured Al/B4C Composite Produced by ARB and Al/B4C Composite Produced by RRB Process, Mater. Sci. Eng. A, 2010, 528, p 578–582. M. Alizadeh, Comparison of Nanostructured Al/B4C Composite Produced by ARB and Al/B4C Composite Produced by RRB Process, Mater. Sci. Eng. A, 2010, 528, p 578–582.
40.
Zurück zum Zitat H. Wei, Z.Q. Li, D.B. Xiong, Z.Q. Tan, G.L. Fan, Z. Qin, and D. Zhang, Towards Strong and Stiff Carbon Nanotube-Reinforced High-Strength Aluminum Alloy Composites Through a Microlaminated Architecture Design, Scr. Mater., 2014, 75, p 30–33. H. Wei, Z.Q. Li, D.B. Xiong, Z.Q. Tan, G.L. Fan, Z. Qin, and D. Zhang, Towards Strong and Stiff Carbon Nanotube-Reinforced High-Strength Aluminum Alloy Composites Through a Microlaminated Architecture Design, Scr. Mater., 2014, 75, p 30–33.
41.
Zurück zum Zitat J. Lin, Y. Hanry, K.Y. Joshua, M. Xuan, T. Troy, E.J. Lavernia, and J.M. Schoenung, Toughening of Aluminum Matrix Nanocomposites via Spatial Arrays of Boron Carbide Spherical Nanoparticles, Acta Mater., 2016, 103, p 128–140. J. Lin, Y. Hanry, K.Y. Joshua, M. Xuan, T. Troy, E.J. Lavernia, and J.M. Schoenung, Toughening of Aluminum Matrix Nanocomposites via Spatial Arrays of Boron Carbide Spherical Nanoparticles, Acta Mater., 2016, 103, p 128–140.
42.
Zurück zum Zitat O.N. Senkov, M.R. Shagiev, S.V. Senkova, and D.B. Miracle, Precipitation of Al3(Sc, Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr Alloy During Conventional Solution Heat Treatment and its Effect on Tensile Properties, Acta Mater., 2008, 56, p 3723–3738. O.N. Senkov, M.R. Shagiev, S.V. Senkova, and D.B. Miracle, Precipitation of Al3(Sc, Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr Alloy During Conventional Solution Heat Treatment and its Effect on Tensile Properties, Acta Mater., 2008, 56, p 3723–3738.
43.
Zurück zum Zitat X.Z. Kai, Z.Q. Li, G.L. Fan, Q. Guo, Z.Q. Tan, W.L. Zhang, Y.S. Su, W.J. Lu, W.J. Moon, and D. Zhang, Strong and Ductile Particulate Reinforced Ultrafine-Grained Metallic Composites Fabricated by Flake Powder Metallurgy, Scr. Mater., 2013, 68, p 555–558. X.Z. Kai, Z.Q. Li, G.L. Fan, Q. Guo, Z.Q. Tan, W.L. Zhang, Y.S. Su, W.J. Lu, W.J. Moon, and D. Zhang, Strong and Ductile Particulate Reinforced Ultrafine-Grained Metallic Composites Fabricated by Flake Powder Metallurgy, Scr. Mater., 2013, 68, p 555–558.
44.
Zurück zum Zitat H.N. Dong, I.C. Seung, K.L. Byung, M.P. Hoon, S.H. Do, and H. Hong, Soon Synergistic Strengthening by Load Transfer Mechanism and Grain Refinement of CNT/Al–Cu Composites, Carbon, 2012, 50, p 2417–2423. H.N. Dong, I.C. Seung, K.L. Byung, M.P. Hoon, S.H. Do, and H. Hong, Soon Synergistic Strengthening by Load Transfer Mechanism and Grain Refinement of CNT/Al–Cu Composites, Carbon, 2012, 50, p 2417–2423.
45.
Zurück zum Zitat M. Li, K.K. Ma, L. Jiang, H. Yang, E.J. Lavernia, L.M. Zhang, and J.M. Schoenung, Synthesis and Mechanical Behavior of Nanostructured Al 5083/n-TiB2 Metal Matrix Composites, Mater. Sci. Eng. A, 2016, 656, p 241–248. M. Li, K.K. Ma, L. Jiang, H. Yang, E.J. Lavernia, L.M. Zhang, and J.M. Schoenung, Synthesis and Mechanical Behavior of Nanostructured Al 5083/n-TiB2 Metal Matrix Composites, Mater. Sci. Eng. A, 2016, 656, p 241–248.
46.
Zurück zum Zitat T. Gladman, Precipitation Hardening in Metals, Mater. Sci. Technol., 2013, 15(1), p 30–36. T. Gladman, Precipitation Hardening in Metals, Mater. Sci. Technol., 2013, 15(1), p 30–36.
47.
Zurück zum Zitat J.C. Fisher, E.W. Hart, and R.H. Pry, The Hardening of Metal Crystals by Precipitate Particles, Acta Metall., 1953, 1, p 336–339. J.C. Fisher, E.W. Hart, and R.H. Pry, The Hardening of Metal Crystals by Precipitate Particles, Acta Metall., 1953, 1, p 336–339.
48.
Zurück zum Zitat Y. Zhang, D. Juul Jensen, Y. Zhang, F. Lin, Z. Zhang, and Q. Liu, Three-Dimensional Investigation of Recrystallization Nucleation in a Particle-Containing Al Alloy, Scr. Mater., 2012, 67(4), p 320–323. Y. Zhang, D. Juul Jensen, Y. Zhang, F. Lin, Z. Zhang, and Q. Liu, Three-Dimensional Investigation of Recrystallization Nucleation in a Particle-Containing Al Alloy, Scr. Mater., 2012, 67(4), p 320–323.
49.
Zurück zum Zitat T.A. Bennett, R.H. Petrov, L.A.I. Kestens, L.Z. Zhuang, and P. de Smet, The Effect of Particle-Stimulated Nucleation on Texture Banding in an Aluminium Alloy, Scr. Mater., 2010, 63(5), p 461–464. T.A. Bennett, R.H. Petrov, L.A.I. Kestens, L.Z. Zhuang, and P. de Smet, The Effect of Particle-Stimulated Nucleation on Texture Banding in an Aluminium Alloy, Scr. Mater., 2010, 63(5), p 461–464.
50.
Zurück zum Zitat K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé, The Double-Edge Effect of Second-Phase Particles on the Recrystallization Behaviour and Associated Mechanical Properties of Metallic Materials, Prog. Mater Sci., 2018, 92, p 284–359. K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé, The Double-Edge Effect of Second-Phase Particles on the Recrystallization Behaviour and Associated Mechanical Properties of Metallic Materials, Prog. Mater Sci., 2018, 92, p 284–359.
51.
Zurück zum Zitat J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57(9), p 2739–2747. J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57(9), p 2739–2747.
52.
Zurück zum Zitat T. Mayama, M. Noda, R. Chiba, and M. Kuroda, Crystal Plasticity Analysis of Texture Development in Magnesium Alloy During Extrusion, Int. J. Plast, 2011, 27(12), p 1916–1935. T. Mayama, M. Noda, R. Chiba, and M. Kuroda, Crystal Plasticity Analysis of Texture Development in Magnesium Alloy During Extrusion, Int. J. Plast, 2011, 27(12), p 1916–1935.
53.
Zurück zum Zitat W. Wu, Y. Wang, J. Wang, and S. Wei, Effect of Electrical Pulse on the Precipitates and Material Strength of 2024 Aluminum Alloy, Mater. Sci. Eng. A, 2014, 608, p 190–198. W. Wu, Y. Wang, J. Wang, and S. Wei, Effect of Electrical Pulse on the Precipitates and Material Strength of 2024 Aluminum Alloy, Mater. Sci. Eng. A, 2014, 608, p 190–198.
54.
Zurück zum Zitat D.R. Ni, D.L. Chen, D. Wang, B.L. Xiao, and Z.Y. Ma, Tensile properties and Strain-Hardening Behaviour of Friction Stir Welded SiCp/AA2009 Composite Joints, Mater. Sci. Eng. A, 2014, 608, p 1–10. D.R. Ni, D.L. Chen, D. Wang, B.L. Xiao, and Z.Y. Ma, Tensile properties and Strain-Hardening Behaviour of Friction Stir Welded SiCp/AA2009 Composite Joints, Mater. Sci. Eng. A, 2014, 608, p 1–10.
55.
Zurück zum Zitat H. Mecking and U.F. Kocks, Kinetics of Flow and Strain Hardening, Acta Metall., 1981, 29, p 1865–1875. H. Mecking and U.F. Kocks, Kinetics of Flow and Strain Hardening, Acta Metall., 1981, 29, p 1865–1875.
56.
Zurück zum Zitat I.S. Yasnikov, Y. Estrin, and A. Vinogradov, What Governs Ductility of Ultrafine-Grained Metals? A Microstructure Based Approach to Necking Instability, Acta Mater., 2017, 141, p 18–28. I.S. Yasnikov, Y. Estrin, and A. Vinogradov, What Governs Ductility of Ultrafine-Grained Metals? A Microstructure Based Approach to Necking Instability, Acta Mater., 2017, 141, p 18–28.
57.
Zurück zum Zitat C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay, Tensile Flow and Work Hardening Behavior of Hot Cross-Rolled AA7010 Aluminum Alloy Sheets, Mater. Sci. Eng. A, 2013, 577, p 87–100. C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay, Tensile Flow and Work Hardening Behavior of Hot Cross-Rolled AA7010 Aluminum Alloy Sheets, Mater. Sci. Eng. A, 2013, 577, p 87–100.
58.
Zurück zum Zitat M.F. Ashby, The Deformation of Plastically Non-Homogeneous Materials, Phil. Mag., 1970, 21(170), p 399–424. M.F. Ashby, The Deformation of Plastically Non-Homogeneous Materials, Phil. Mag., 1970, 21(170), p 399–424.
Metadaten
Titel
Microstructure and Mechanical Properties of In Situ TiB2/2024 Composites Fabricated by Powder Metallurgy
verfasst von
Nan Li
Fengguo Zhang
Qing Yang
Yi Wu
Mingliang Wang
Jun Liu
Lei Wang
Zhe Chen
Haowei Wang
Publikationsdatum
25.04.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06900-7

Weitere Artikel der Ausgabe 11/2022

Journal of Materials Engineering and Performance 11/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.