Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2018

15.03.2018

Microstructure and Mechanical Properties of W-ZrC Composites Synthesized by Reactive Melt Infiltration of Zr2Cu into Porous Preforms from Partially Carburized W Powders

verfasst von: Dong Wang, Yu-Jin Wang, Si-Jia Huo, Yan-Wei Zhao, Jia-Hu Ouyang, Gui-Ming Song, Yu Zhou

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

W-ZrC composites with different W contents from 48 to 73 vol.% have been synthesized by reactive melt infiltration of Zr2Cu melt into porous preforms from partially carburized W powders at 1300 °C for 1 h in vacuum. The influences of carbon content and porosity in the preforms on microstructure and mechanical properties of W-ZrC composites are investigated. Cold isostatic pressing followed by pre-sintering process is used to produce porous preforms with suitable porosities of 53.6-47% under a pressure of 100 MPa to allow sufficient penetration of Zr2Cu melt into the preforms. Small amounts of Cu-rich phases form in the synthesized W-ZrC composites after a complete reaction of y/2xZr2Cu(l) + WC y (s) = y/xZrC x (s) + W(s) + y/2xCu(l). These Cu-rich phases are distributed not only at the phase boundaries of W matrix and ZrC grains, but also in the interior of ZrC x grains. With decreasing W content from 73 to 48 vol.% in the W-ZrC composites, the flexural strength and fracture toughness increase from 519 to 657 MPa and from 9.1 to 10.6 MPa m1/2, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Upadhya, J.-M. Yang, and W.P. Hoffman, Materials for Ultrahigh Temperature Structural Applications, Am. Ceram. Soc. Bull., 1997, 76(12), p 51–56 K. Upadhya, J.-M. Yang, and W.P. Hoffman, Materials for Ultrahigh Temperature Structural Applications, Am. Ceram. Soc. Bull., 1997, 76(12), p 51–56
2.
Zurück zum Zitat J.D. Walton, Jr, and C. Mason, Jr., Materials Problems Associated with Uncooled Rocket Nozzles, Corrosion, 1960, 16(8), p 371t–374tCrossRef J.D. Walton, Jr, and C. Mason, Jr., Materials Problems Associated with Uncooled Rocket Nozzles, Corrosion, 1960, 16(8), p 371t–374tCrossRef
3.
Zurück zum Zitat T. Jackson, D. Eklund, and A. Fink, High Speed Propulsion: Performance Advantage of Advanced Materials, J. Mater. Sci., 2004, 39(19), p 5905–5913CrossRef T. Jackson, D. Eklund, and A. Fink, High Speed Propulsion: Performance Advantage of Advanced Materials, J. Mater. Sci., 2004, 39(19), p 5905–5913CrossRef
4.
Zurück zum Zitat G.-M. Song, Y.-J. Wang, and Y. Zhou, The Mechanical and Thermophysical Properties of ZrC/W Composites at Elevated Temperature, Mater. Sci. Eng. A, 2002, 334(1), p 223–232CrossRef G.-M. Song, Y.-J. Wang, and Y. Zhou, The Mechanical and Thermophysical Properties of ZrC/W Composites at Elevated Temperature, Mater. Sci. Eng. A, 2002, 334(1), p 223–232CrossRef
5.
Zurück zum Zitat E. Lassner and W.-D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, Berlin, 2012 E. Lassner and W.-D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, Berlin, 2012
6.
Zurück zum Zitat G. Song, Y. Wang, and Y. Zhou, Elevated Temperature Ablation Resistance and Thermophysical Properties of Tungsten Matrix Composites Reinforced with ZrC Particles, J. Mater. Sci., 2001, 36(19), p 4625–4631CrossRef G. Song, Y. Wang, and Y. Zhou, Elevated Temperature Ablation Resistance and Thermophysical Properties of Tungsten Matrix Composites Reinforced with ZrC Particles, J. Mater. Sci., 2001, 36(19), p 4625–4631CrossRef
7.
Zurück zum Zitat H. Yun, Effect of Composition and Microstructure on the Creep and Stress-Rupture Behavior of Tungsten Alloy Wires at 1366–1500 K, Mater. Sci. Eng. A, 1993, 165(1), p 65–74CrossRef H. Yun, Effect of Composition and Microstructure on the Creep and Stress-Rupture Behavior of Tungsten Alloy Wires at 1366–1500 K, Mater. Sci. Eng. A, 1993, 165(1), p 65–74CrossRef
8.
Zurück zum Zitat A. Luo, K.S. Shin, and D.L. Jacobson, High Temperature Tensile Properties of W-Re-ThO2 Alloys, Mater. Sci. Eng. A, 1991, 148(2), p 219–229CrossRef A. Luo, K.S. Shin, and D.L. Jacobson, High Temperature Tensile Properties of W-Re-ThO2 Alloys, Mater. Sci. Eng. A, 1991, 148(2), p 219–229CrossRef
9.
Zurück zum Zitat M. Mabuchi, K. Okamoto, N. Saito, M. Nakanishi, Y. Yamada, T. Asahina, and T. Igarashi, Tensile Properties at Elevated Temperature of W-1% La2O3, Mater. Sci. Eng. A, 1996, 214(1–2), p 174–176CrossRef M. Mabuchi, K. Okamoto, N. Saito, M. Nakanishi, Y. Yamada, T. Asahina, and T. Igarashi, Tensile Properties at Elevated Temperature of W-1% La2O3, Mater. Sci. Eng. A, 1996, 214(1–2), p 174–176CrossRef
10.
Zurück zum Zitat G. Song, Y. Zhou, and Y. Wang, The Microstructure and Elevated Temperature Strength of Tungsten-Titanium Carbide Composite, J. Mater. Sci., 2002, 37(16), p 3541–3548CrossRef G. Song, Y. Zhou, and Y. Wang, The Microstructure and Elevated Temperature Strength of Tungsten-Titanium Carbide Composite, J. Mater. Sci., 2002, 37(16), p 3541–3548CrossRef
11.
Zurück zum Zitat D. Lee, M.A. Umer, H.J. Ryu, and S.H. Hong, Elevated Temperature Ablation Resistance of HfC Particle-Reinforced Tungsten Composites, Int. J. Refract. Met. Hard Mater., 2014, 43, p 89–93CrossRef D. Lee, M.A. Umer, H.J. Ryu, and S.H. Hong, Elevated Temperature Ablation Resistance of HfC Particle-Reinforced Tungsten Composites, Int. J. Refract. Met. Hard Mater., 2014, 43, p 89–93CrossRef
12.
Zurück zum Zitat S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy, and S.G. DiPietro, Microstructure and Mechanical Characterization of ZrC-Mo Cermets Produced by Hot Isostatic Pressing, Mater. Sci. Eng. A, 2008, 497(1), p 79–86CrossRef S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy, and S.G. DiPietro, Microstructure and Mechanical Characterization of ZrC-Mo Cermets Produced by Hot Isostatic Pressing, Mater. Sci. Eng. A, 2008, 497(1), p 79–86CrossRef
13.
Zurück zum Zitat B. Metals, Ceramics Information Center, Engineering Data on Selected Ceramics, Vol II, Carbides Battelle Columbus Laboratories, Columbus, 1979 B. Metals, Ceramics Information Center, Engineering Data on Selected Ceramics, Vol II, Carbides Battelle Columbus Laboratories, Columbus, 1979
14.
Zurück zum Zitat A.E. Mchale, Phase Equilibria Diagrams, American Ceramic Society, Westerville, 1994 A.E. Mchale, Phase Equilibria Diagrams, American Ceramic Society, Westerville, 1994
15.
Zurück zum Zitat Y. Touloukian, R. Kirby, R. Taylor, and P. Desai, Thermophysical Properties of Matter-the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys, Plenum Press, New York, 1975, p 354 Y. Touloukian, R. Kirby, R. Taylor, and P. Desai, Thermophysical Properties of Matter-the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys, Plenum Press, New York, 1975, p 354
16.
Zurück zum Zitat Y.S. Touloukian, R. Kirby, E. Taylor, and T. Lee, Thermophysical Properties of Matter-the TPRC Data Series. Volume 13. Thermal Expansion-Nonmetallic Solids, Plenum Press, New York, 1977, p 926 Y.S. Touloukian, R. Kirby, E. Taylor, and T. Lee, Thermophysical Properties of Matter-the TPRC Data Series. Volume 13. Thermal Expansion-Nonmetallic Solids, Plenum Press, New York, 1977, p 926
17.
Zurück zum Zitat I. Barin and G. Platzki, Thermochemical Data of Pure Substances, Wiley Online Library, Weinheim, 1989, p 1788 I. Barin and G. Platzki, Thermochemical Data of Pure Substances, Wiley Online Library, Weinheim, 1989, p 1788
18.
Zurück zum Zitat P. Zhou, Y. Peng, Y. Du, S. Wang, and G. Wen, Thermodynamic Modeling of the C-W-Zr System, Int. J. Refract. Met. Hard Mater., 2015, 50, p 274–281CrossRef P. Zhou, Y. Peng, Y. Du, S. Wang, and G. Wen, Thermodynamic Modeling of the C-W-Zr System, Int. J. Refract. Met. Hard Mater., 2015, 50, p 274–281CrossRef
19.
Zurück zum Zitat S.C. Zhang, G. Hilmas, and W. Fahrenholtz, Zirconium Carbide-Tungsten Cermets Prepared by in Situ Reaction Sintering, J. Am. Ceram. Soc., 2007, 90(6), p 1930–1933CrossRef S.C. Zhang, G. Hilmas, and W. Fahrenholtz, Zirconium Carbide-Tungsten Cermets Prepared by in Situ Reaction Sintering, J. Am. Ceram. Soc., 2007, 90(6), p 1930–1933CrossRef
20.
Zurück zum Zitat M.B. Dickerson, R.L. Snyder, and K.H. Sandhage, Dense, Near Net-Shaped, Carbide/Refractory Metal Composites at Modest Temperatures by the Displacive Compensation of Porosity (DCP) Method, J. Am. Ceram. Soc., 2002, 85(3), p 730–732CrossRef M.B. Dickerson, R.L. Snyder, and K.H. Sandhage, Dense, Near Net-Shaped, Carbide/Refractory Metal Composites at Modest Temperatures by the Displacive Compensation of Porosity (DCP) Method, J. Am. Ceram. Soc., 2002, 85(3), p 730–732CrossRef
21.
Zurück zum Zitat M. Dickerson, P. Wurm, J. Schorr, W. Hoffman, P. Wapner, and K. Sandhage, Near Net-Shape, Ultra-High Melting, Recession-Resistant ZrC/W-Based Rocket Nozzle Liners via the Displacive Compensation of Porosity (DCP) Method, J. Mater. Sci., 2004, 39(19), p 6005–6015CrossRef M. Dickerson, P. Wurm, J. Schorr, W. Hoffman, P. Wapner, and K. Sandhage, Near Net-Shape, Ultra-High Melting, Recession-Resistant ZrC/W-Based Rocket Nozzle Liners via the Displacive Compensation of Porosity (DCP) Method, J. Mater. Sci., 2004, 39(19), p 6005–6015CrossRef
22.
Zurück zum Zitat A. Zaitsev, N. Zaitseva, Y.P. Alekseeva, E. Kuril’chenko, and S. Dunaev, Thermodynamic Properties of Melts and Phase Equilibria in the Copper-zirconium System, Inorg. Mater., 2003, 39(8), p 816–825CrossRef A. Zaitsev, N. Zaitseva, Y.P. Alekseeva, E. Kuril’chenko, and S. Dunaev, Thermodynamic Properties of Melts and Phase Equilibria in the Copper-zirconium System, Inorg. Mater., 2003, 39(8), p 816–825CrossRef
23.
Zurück zum Zitat D. Ye and J. Hu, Practical Handbook of Energetic Data for Inorganic Compounds, Metallurgical industry press, Beijing, 2002, p 1204 D. Ye and J. Hu, Practical Handbook of Energetic Data for Inorganic Compounds, Metallurgical industry press, Beijing, 2002, p 1204
24.
Zurück zum Zitat S.-E. Hsu, C.-I. Chen, S. Yue, and F.K.-W. Li, Mechanical and Thermal Properties of Cu-Infiltrated P/M Tungsten Nozzles, J. Spacecr. Rockets, 1977, 14(4), p 207–211CrossRef S.-E. Hsu, C.-I. Chen, S. Yue, and F.K.-W. Li, Mechanical and Thermal Properties of Cu-Infiltrated P/M Tungsten Nozzles, J. Spacecr. Rockets, 1977, 14(4), p 207–211CrossRef
25.
Zurück zum Zitat M. Ahangarkani, K. Zangeneh-Madar, S. Borji, and Z. Valefi, Microstructural Study on Ultra-High Temperature Erosion Mechanism of Infiltrated W-10wt% Cu Composite, Int. J. Refract. Met. Hard Mater., 2017, 67(6), p 115–124CrossRef M. Ahangarkani, K. Zangeneh-Madar, S. Borji, and Z. Valefi, Microstructural Study on Ultra-High Temperature Erosion Mechanism of Infiltrated W-10wt% Cu Composite, Int. J. Refract. Met. Hard Mater., 2017, 67(6), p 115–124CrossRef
26.
Zurück zum Zitat D.W. Lipke, Y. Zhang, Y. Liu, B.C. Church, and K.H. Sandhage, Near Net-Shape/Net-Dimension ZrC/W-Based Composites with Complex Geometries via Rapid Prototyping and Displacive Compensation of Porosity, J. Eur. Ceram. Soc., 2010, 30(11), p 2265–2277CrossRef D.W. Lipke, Y. Zhang, Y. Liu, B.C. Church, and K.H. Sandhage, Near Net-Shape/Net-Dimension ZrC/W-Based Composites with Complex Geometries via Rapid Prototyping and Displacive Compensation of Porosity, J. Eur. Ceram. Soc., 2010, 30(11), p 2265–2277CrossRef
27.
Zurück zum Zitat M. Adabi and A. Amadeh, Effect of Infiltration Parameters on Composition of W-ZrC Composites Produced by Displacive Compensation of Porosity (DCP) Method, Int. J. Refract. Met. Hard Mater., 2011, 29(1), p 31–37CrossRef M. Adabi and A. Amadeh, Effect of Infiltration Parameters on Composition of W-ZrC Composites Produced by Displacive Compensation of Porosity (DCP) Method, Int. J. Refract. Met. Hard Mater., 2011, 29(1), p 31–37CrossRef
28.
Zurück zum Zitat Y.-W. Zhao, Y.-J. Wang, H.-X. Peng, and Y. Zhou, Dense Sub-Micron-Sized ZrC-W Composite Produced by Reactive Melt Infiltration at 1200 °C, Int. J. Refract. Met. Hard Mater., 2012, 30(1), p 196–199CrossRef Y.-W. Zhao, Y.-J. Wang, H.-X. Peng, and Y. Zhou, Dense Sub-Micron-Sized ZrC-W Composite Produced by Reactive Melt Infiltration at 1200 °C, Int. J. Refract. Met. Hard Mater., 2012, 30(1), p 196–199CrossRef
29.
Zurück zum Zitat S. Zhang, S. Wang, W. Li, Y. Zhu, and Z. Chen, Microstructure and Properties of W-ZrC Composites Prepared by the Displacive Compensation of Porosity (DCP) Method, J. Alloys Compd., 2011, 509(33), p 8327–8332CrossRef S. Zhang, S. Wang, W. Li, Y. Zhu, and Z. Chen, Microstructure and Properties of W-ZrC Composites Prepared by the Displacive Compensation of Porosity (DCP) Method, J. Alloys Compd., 2011, 509(33), p 8327–8332CrossRef
30.
Zurück zum Zitat M.B. Dickerson, R.R. Unocic, K.T. Guerra, M.J. Timberlake, and K.H. Sandhage, Fabrication of Dense Carbide/Refractory Metal Composites of Near Net Shape at Modest Temperatures by the Prima-DCP Process, Ceram. Trans., 2000, 115, p 25–31 M.B. Dickerson, R.R. Unocic, K.T. Guerra, M.J. Timberlake, and K.H. Sandhage, Fabrication of Dense Carbide/Refractory Metal Composites of Near Net Shape at Modest Temperatures by the Prima-DCP Process, Ceram. Trans., 2000, 115, p 25–31
31.
Zurück zum Zitat Y.-W. Zhao, Y.-J. Wang, X.-Y. Jin, P. Jia, L. Chen, Y. Zhou, G.-M. Song, J.-P. Li, and Z.-H. Feng, Microstructure and Properties of ZrC-W Composite Fabricated by Reactive Infiltration of Zr2Cu into WC/W Preform, Mater. Chem. Phys., 2015, 153, p 17–22CrossRef Y.-W. Zhao, Y.-J. Wang, X.-Y. Jin, P. Jia, L. Chen, Y. Zhou, G.-M. Song, J.-P. Li, and Z.-H. Feng, Microstructure and Properties of ZrC-W Composite Fabricated by Reactive Infiltration of Zr2Cu into WC/W Preform, Mater. Chem. Phys., 2015, 153, p 17–22CrossRef
32.
Zurück zum Zitat D. Wang, L. Chen, Y.-J. Wang, S.-J. Huo, J.-H. Ouyang, and Y. Zhou, W-ZrC Composites Prepared by Reactive Melt Infiltration of Zr2Cu Alloy into Partially Carburized W Preforms, Int. J. Refract. Met. Hard Mater., 2017, 67, p 125–128CrossRef D. Wang, L. Chen, Y.-J. Wang, S.-J. Huo, J.-H. Ouyang, and Y. Zhou, W-ZrC Composites Prepared by Reactive Melt Infiltration of Zr2Cu Alloy into Partially Carburized W Preforms, Int. J. Refract. Met. Hard Mater., 2017, 67, p 125–128CrossRef
33.
Zurück zum Zitat H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Elsevier, Amsterdam, 1996, p 106 H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Elsevier, Amsterdam, 1996, p 106
34.
Zurück zum Zitat H. Taimatsu, S. Sugiyama, and Y. Kodaira, Synthesis of W2C by Reactive Hot Pressing and Its Mechanical Properties, Mater. Trans., 2008, 49(6), p 1256–1261CrossRef H. Taimatsu, S. Sugiyama, and Y. Kodaira, Synthesis of W2C by Reactive Hot Pressing and Its Mechanical Properties, Mater. Trans., 2008, 49(6), p 1256–1261CrossRef
35.
Zurück zum Zitat S.W. Yih and C.T. Wang, Tungsten: Sources, Metallurgy, Properties, and Applications, Plenum Publishing Corporation, New York, 1979, p 11CrossRef S.W. Yih and C.T. Wang, Tungsten: Sources, Metallurgy, Properties, and Applications, Plenum Publishing Corporation, New York, 1979, p 11CrossRef
36.
Zurück zum Zitat D.W. Lipke, Y. Zhang, Y. Cai, and K.H. Sandhage, Intragranular Tungsten/Zirconium Carbide Nanocomposites via a Selective Liquid/Solid Displacement Reaction, J. Am. Ceram. Soc., 2012, 95(9), p 2769–2772CrossRef D.W. Lipke, Y. Zhang, Y. Cai, and K.H. Sandhage, Intragranular Tungsten/Zirconium Carbide Nanocomposites via a Selective Liquid/Solid Displacement Reaction, J. Am. Ceram. Soc., 2012, 95(9), p 2769–2772CrossRef
37.
Zurück zum Zitat Y.-W. Zhao, Y.-J. Wang, Y. Zhou, H.-X. Peng, and G.-M. Song, Ternary Phase ZrxCuyCz in Reactively Infiltrated ZrC/W Composite, J. Am. Ceram. Soc., 2011, 94(10), p 3178–3180CrossRef Y.-W. Zhao, Y.-J. Wang, Y. Zhou, H.-X. Peng, and G.-M. Song, Ternary Phase ZrxCuyCz in Reactively Infiltrated ZrC/W Composite, J. Am. Ceram. Soc., 2011, 94(10), p 3178–3180CrossRef
38.
Zurück zum Zitat A. Jarfors, Solubility of Copper in Titanium Carbide, Mater. Sci. Technol., 1996, 12(12), p 990–994CrossRef A. Jarfors, Solubility of Copper in Titanium Carbide, Mater. Sci. Technol., 1996, 12(12), p 990–994CrossRef
39.
Zurück zum Zitat R. Kerans, K. Mazdiyasni, R. Ruh, and H. Lipsitt, Solubility of Metals in Substoichiometric TiC1−x, J. Am. Ceram. Soc., 1984, 67(1), p 34–38CrossRef R. Kerans, K. Mazdiyasni, R. Ruh, and H. Lipsitt, Solubility of Metals in Substoichiometric TiC1−x, J. Am. Ceram. Soc., 1984, 67(1), p 34–38CrossRef
40.
Zurück zum Zitat M. Greger, L. Čížek, and M. Widomská, Structure and Mechanical Properties of Formed Tungsten Based Materials, J. Mater. Process. Technol., 2004, 157, p 683–687CrossRef M. Greger, L. Čížek, and M. Widomská, Structure and Mechanical Properties of Formed Tungsten Based Materials, J. Mater. Process. Technol., 2004, 157, p 683–687CrossRef
41.
Zurück zum Zitat W.D. Klopp, and W.R. Witzke, Mechanical Properties and Recrystallization Behavior of Electron-Beam-Melted Tungsten Compared with Arc-Melted Tungsten, NASA TN D-3232, Lewis Research Center, Cleveland, Ohio, 1966, p 1–34 W.D. Klopp, and W.R. Witzke, Mechanical Properties and Recrystallization Behavior of Electron-Beam-Melted Tungsten Compared with Arc-Melted Tungsten, NASA TN D-3232, Lewis Research Center, Cleveland, Ohio, 1966, p 1–34
42.
Zurück zum Zitat P.R.F. Bunshah, Mechanical Properties of Refractory Compound Films, AIP Conf. Proc., 1986, 149(1), p 130–156CrossRef P.R.F. Bunshah, Mechanical Properties of Refractory Compound Films, AIP Conf. Proc., 1986, 149(1), p 130–156CrossRef
Metadaten
Titel
Microstructure and Mechanical Properties of W-ZrC Composites Synthesized by Reactive Melt Infiltration of Zr2Cu into Porous Preforms from Partially Carburized W Powders
verfasst von
Dong Wang
Yu-Jin Wang
Si-Jia Huo
Yan-Wei Zhao
Jia-Hu Ouyang
Gui-Ming Song
Yu Zhou
Publikationsdatum
15.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3287-9

Weitere Artikel der Ausgabe 4/2018

Journal of Materials Engineering and Performance 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.