Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 18/2023

08.12.2022 | Technical Article

Microstructure and Properties of Pulse Tungsten Inert Gas Welded Joint for Different Thickness CR22MnB5/DH1050 Dissimilar High-Strength Steel

verfasst von: Hongju Fan, Peng Liu, Kang Xiao, Chengge Wu, Chuanwei Shi, Yongbin Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 18/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The CR22MnB5/DH1050 dissimilar high-strength steel in automotive crash beams was welded by the direct current pulse TIG welding method. The microstructure and mechanical properties of the joints under different post-weld tempering treatments were tested and analyzed. The present results had a certain effect on further improving the performance of high-strength welded joints to use in the auto structure. The result showed that the weld zone (WZ) of the as-weld joint basically consisted of lath martensite. With the increasing tempering temperature, the original lath martensite gradually transformed into tempered martensite and tempered sorbite, and the C-containing solid solution in α-Fe gradually decreases, increasing carbides and grain growth. The WZ had the highest hardness, and a soft zone existed in the heat-affected zone of all steels. After tempering treatments, the microhardness of welded joint decreased, and the hardness decreased obviously after tempering at 550 °C. After tempering at 250 °C, the tensile strength of the joint was reduced (about 7 MPa) compared with the base material (BM), and the elongation was increased by 0.27%. After tempering at 550 °C, the tensile strength of the joint decreased by 166 MPa compared with the BM, while the elongation increased by 4.8%. After tempering at 250 °C, the maximum bending load applied to the joint (516 N) decreased insignificantly compared to the as-weld joint (558 N), while the bending resistance of the specimen (438 N) decreased significantly after the high temperature at 550 °C. In addition, the electrochemical corrosion potential of the welded joint by tempering treatments was positively shifted and the corrosion resistance was improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Rissman, C. Bataille, E. Masanet, N. Aden, W.R. Morrow, N. Zhou, N. Elliott, R. Dell, N. Heeren, and H. Brigitta, Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers through 2070, Appl. Energy, 2020, 266, p 114848.CrossRef J. Rissman, C. Bataille, E. Masanet, N. Aden, W.R. Morrow, N. Zhou, N. Elliott, R. Dell, N. Heeren, and H. Brigitta, Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers through 2070, Appl. Energy, 2020, 266, p 114848.CrossRef
2.
Zurück zum Zitat J.M. Allwood, M.F. Ashby, T.G. Gutowski, and E. Worrell, Material Efficiency: Providing Material Services with Less Material Production, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2013, 371, p 20120496.CrossRef J.M. Allwood, M.F. Ashby, T.G. Gutowski, and E. Worrell, Material Efficiency: Providing Material Services with Less Material Production, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2013, 371, p 20120496.CrossRef
3.
Zurück zum Zitat F.N. Bayock, P. Kah, A. Salminen, B. Mvola, and X.C. Yang, Feasibility study of welding dissimilar Advanced and Ultra High Strength Steels, Rev. Adv. Mater. Sci., 2020, 59, p 54–66.CrossRef F.N. Bayock, P. Kah, A. Salminen, B. Mvola, and X.C. Yang, Feasibility study of welding dissimilar Advanced and Ultra High Strength Steels, Rev. Adv. Mater. Sci., 2020, 59, p 54–66.CrossRef
4.
Zurück zum Zitat T. Mega, K. Hasewak, and H. Kawabe, Ultra High-Strength Steel Sheets for Bodies, Reinforcement Parts, and Seat Frame Parts of Automobile: Ultra High-Strength Steel Sheets Leading to Great Improvement in Crashworthiness, JFe Technical Report, 2004, 4, p 38–43. T. Mega, K. Hasewak, and H. Kawabe, Ultra High-Strength Steel Sheets for Bodies, Reinforcement Parts, and Seat Frame Parts of Automobile: Ultra High-Strength Steel Sheets Leading to Great Improvement in Crashworthiness, JFe Technical Report, 2004, 4, p 38–43.
5.
Zurück zum Zitat J. Galan, L. Samek, P. Verleysen, K. Verbeken, and Y. Houbaert, Advanced High Strength Steels for Automotive Industry, Rev. Metal., 2012, 48, p 118–131.CrossRef J. Galan, L. Samek, P. Verleysen, K. Verbeken, and Y. Houbaert, Advanced High Strength Steels for Automotive Industry, Rev. Metal., 2012, 48, p 118–131.CrossRef
6.
Zurück zum Zitat O. Bouaziz, H. Zurob, and M. Huang, Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications, Steel Res. Int., 2013, 84, p 937–947. O. Bouaziz, H. Zurob, and M. Huang, Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications, Steel Res. Int., 2013, 84, p 937–947.
7.
Zurück zum Zitat J.H. Schmitt and T. Iung, New Developments of Advanced High-Strength Steels for Automotive Applications, C R Phys., 2018, 19, p 641–656.CrossRef J.H. Schmitt and T. Iung, New Developments of Advanced High-Strength Steels for Automotive Applications, C R Phys., 2018, 19, p 641–656.CrossRef
8.
Zurück zum Zitat M.S. Khan, M.H. Razmpoosh, E. Biro, and Y. Zhou, A Review on the Laser Welding of Coated 22MnB5 Press-Hardened Steel and Its Impact on the Production of Tailor-Welded Blanks, Sci. Technol. Weld. Joining, 2020, 25, p 1–21.CrossRef M.S. Khan, M.H. Razmpoosh, E. Biro, and Y. Zhou, A Review on the Laser Welding of Coated 22MnB5 Press-Hardened Steel and Its Impact on the Production of Tailor-Welded Blanks, Sci. Technol. Weld. Joining, 2020, 25, p 1–21.CrossRef
9.
Zurück zum Zitat S.S. Li and H.W. Luo, Medium-Mn Steels for Hot Forming Application in the Automotive Industry, Int. J. Miner. Metall. Mater., 2021, 28, p 741–753.CrossRef S.S. Li and H.W. Luo, Medium-Mn Steels for Hot Forming Application in the Automotive Industry, Int. J. Miner. Metall. Mater., 2021, 28, p 741–753.CrossRef
10.
Zurück zum Zitat M.D. Taylor, K.S. Choi, X. Sun, D.K. Matlock, C.E. Packard, L. Xu, and F. Barlat, Correlations Between Nanoindentation Hardness and Macroscopic Mechanical Properties in DP980 Steels, Mater. Sci. Eng., A, 2014, 597, p 431–439.CrossRef M.D. Taylor, K.S. Choi, X. Sun, D.K. Matlock, C.E. Packard, L. Xu, and F. Barlat, Correlations Between Nanoindentation Hardness and Macroscopic Mechanical Properties in DP980 Steels, Mater. Sci. Eng., A, 2014, 597, p 431–439.CrossRef
11.
Zurück zum Zitat G. Cheng, F. Zhang, A. Ruimi, D.P. Field, and X. Sun, Quantifying the Effects of Tempering on Individual Phase Properties of DP980 Steel with Nanoindentation, Mater. Sci. Eng., A, 2016, 667, p 240–249.CrossRef G. Cheng, F. Zhang, A. Ruimi, D.P. Field, and X. Sun, Quantifying the Effects of Tempering on Individual Phase Properties of DP980 Steel with Nanoindentation, Mater. Sci. Eng., A, 2016, 667, p 240–249.CrossRef
12.
Zurück zum Zitat R.G. Davies, Influence of Martensite Composition and Content on the Properties of Dual Phase Steels, Metall. and Mater. Trans. A., 1978, 9, p 671–679.CrossRef R.G. Davies, Influence of Martensite Composition and Content on the Properties of Dual Phase Steels, Metall. and Mater. Trans. A., 1978, 9, p 671–679.CrossRef
13.
Zurück zum Zitat H. Wang, L. Liu, H. Wang, and J. Zhou, Control of Defects in the Deep Drawing of Tailor-Welded Blanks for Complex-Shape Automotive Panel, Int. J. Adv. Manuf. Technol., 2022, 119, p 3235–3245.CrossRef H. Wang, L. Liu, H. Wang, and J. Zhou, Control of Defects in the Deep Drawing of Tailor-Welded Blanks for Complex-Shape Automotive Panel, Int. J. Adv. Manuf. Technol., 2022, 119, p 3235–3245.CrossRef
14.
Zurück zum Zitat H. Kong, Q. Chao, B. Rolfe, and H. Beladi, One-Step Quenching and Partitioning Treatment of a Tailor Welded Blank of Boron and TRIP Steels for Automotive Applications, Mater. Des., 2019, 174, p 107799.CrossRef H. Kong, Q. Chao, B. Rolfe, and H. Beladi, One-Step Quenching and Partitioning Treatment of a Tailor Welded Blank of Boron and TRIP Steels for Automotive Applications, Mater. Des., 2019, 174, p 107799.CrossRef
15.
Zurück zum Zitat M. Rossini, P.R. Spena, L. Cortese, P. Matteis, and D. Firrao, Investigation on Dissimilar Laser Welding of Advanced High Strength Steel Sheets for the Automotive Industry, Mater. Sci. Eng., A, 2015, 628, p 288–296.CrossRef M. Rossini, P.R. Spena, L. Cortese, P. Matteis, and D. Firrao, Investigation on Dissimilar Laser Welding of Advanced High Strength Steel Sheets for the Automotive Industry, Mater. Sci. Eng., A, 2015, 628, p 288–296.CrossRef
16.
Zurück zum Zitat M.P. Miles, T.W. Nelson, R. Steel, E. Olsen, and M. Gallagher, Effect of Friction Stir Welding Conditions on Properties and Microstructures of High Strength Automotive Steel, Sci. Technol. Weld. Joining, 2013, 14, p 228–232.CrossRef M.P. Miles, T.W. Nelson, R. Steel, E. Olsen, and M. Gallagher, Effect of Friction Stir Welding Conditions on Properties and Microstructures of High Strength Automotive Steel, Sci. Technol. Weld. Joining, 2013, 14, p 228–232.CrossRef
17.
Zurück zum Zitat J. Zhang, Q.S. Wu, J.P. Zheng, and Z.J. Huang, Microstructure and Mechanical Properties of Resistance Spot Welded Joint of DP780 Duplex Stainless Steel, Mater. Mech. Eng., 2015, 10, p 29–31. (Chinese) J. Zhang, Q.S. Wu, J.P. Zheng, and Z.J. Huang, Microstructure and Mechanical Properties of Resistance Spot Welded Joint of DP780 Duplex Stainless Steel, Mater. Mech. Eng., 2015, 10, p 29–31. (Chinese)
18.
Zurück zum Zitat F. Hayat and B. Sevim, The Effect of Welding Parameters on Fracture Toughness of Resistance Spot-Welded Galvanized DP600 Automotive Steel Sheets, Int. J. Adv. Manuf. Technol., 2012, 58, p 1043–1050.CrossRef F. Hayat and B. Sevim, The Effect of Welding Parameters on Fracture Toughness of Resistance Spot-Welded Galvanized DP600 Automotive Steel Sheets, Int. J. Adv. Manuf. Technol., 2012, 58, p 1043–1050.CrossRef
19.
Zurück zum Zitat H. Hoffmann, H. So, and H. Steinbeiss, Design of Hot Stamping Tools with Cooling System, CIRP Ann. Manuf. Technol., 2007, 56, p 269–272.CrossRef H. Hoffmann, H. So, and H. Steinbeiss, Design of Hot Stamping Tools with Cooling System, CIRP Ann. Manuf. Technol., 2007, 56, p 269–272.CrossRef
20.
Zurück zum Zitat N. Farabi, D.L. Chen, J. Li, Y. Zhou, and S.J. Dong, Microstructure and Mechanical Properties of Laser Welded DP600 Steel Joints, Mater. Sci. Eng., A, 2010, 527, p 1215–1222.CrossRef N. Farabi, D.L. Chen, J. Li, Y. Zhou, and S.J. Dong, Microstructure and Mechanical Properties of Laser Welded DP600 Steel Joints, Mater. Sci. Eng., A, 2010, 527, p 1215–1222.CrossRef
21.
Zurück zum Zitat L. Liu, J. Wang, and G. Song, Hybrid Laser-TIG Welding, Laser Beam Welding and Gas Tungsten Arc Welding of AZ31B Magnesium Alloy, Mater. Sci. Eng., A, 2004, 381, p 129–133.CrossRef L. Liu, J. Wang, and G. Song, Hybrid Laser-TIG Welding, Laser Beam Welding and Gas Tungsten Arc Welding of AZ31B Magnesium Alloy, Mater. Sci. Eng., A, 2004, 381, p 129–133.CrossRef
22.
Zurück zum Zitat S.T. Wei, J. Sun, J.W. Liu, and S.P. Lu, Effect of V Content and Tempering Process on Microstructure and Properties of Deposited Metal in TIG Welding of High Strength Steel, Trans. the China Weld. Instit., 2020, 41, p 1–6. (Chinese) S.T. Wei, J. Sun, J.W. Liu, and S.P. Lu, Effect of V Content and Tempering Process on Microstructure and Properties of Deposited Metal in TIG Welding of High Strength Steel, Trans. the China Weld. Instit., 2020, 41, p 1–6. (Chinese)
23.
Zurück zum Zitat T. Schaupp, D. Schroepfer, A. Kromm, and T. Kannengiesser, Welding Residual Stresses in 960 MPa Grade QT and TMCP High-Strength Steels, J. Manuf. Process., 2017, 27, p 226–232.CrossRef T. Schaupp, D. Schroepfer, A. Kromm, and T. Kannengiesser, Welding Residual Stresses in 960 MPa Grade QT and TMCP High-Strength Steels, J. Manuf. Process., 2017, 27, p 226–232.CrossRef
24.
Zurück zum Zitat X.B. Zhang, R. Cao, W. Feng, Y. Peng, J. Fen, and J.H. Chen, Fracture Mechanism of In-Situ Tensile of TIG Welding Joints for 980MPa High Strength Steel, China Mech. Eng., 2010, 21, p 2746–2750. (Chinese) X.B. Zhang, R. Cao, W. Feng, Y. Peng, J. Fen, and J.H. Chen, Fracture Mechanism of In-Situ Tensile of TIG Welding Joints for 980MPa High Strength Steel, China Mech. Eng., 2010, 21, p 2746–2750. (Chinese)
25.
Zurück zum Zitat H.J. Zhang, G.J. Zhang, J.H. Wang, and L. Wu, Effect of Thermal Cycle of Double Side Double Arc Welding on Microstructure and Properties of Low Alloy High Strength Steel, Trans. China Weld. Instit., 2007, 10, p 81–84. (Chinese) H.J. Zhang, G.J. Zhang, J.H. Wang, and L. Wu, Effect of Thermal Cycle of Double Side Double Arc Welding on Microstructure and Properties of Low Alloy High Strength Steel, Trans. China Weld. Instit., 2007, 10, p 81–84. (Chinese)
26.
Zurück zum Zitat E. Kalácska, K. Májlinger, E.R. Fábián, and P.R. Spena, MIG-Welding of Dissimilar Advanced High Strength Steel Sheets, Mater. Sci. Forum, 2017, 885, p 80–85.CrossRef E. Kalácska, K. Májlinger, E.R. Fábián, and P.R. Spena, MIG-Welding of Dissimilar Advanced High Strength Steel Sheets, Mater. Sci. Forum, 2017, 885, p 80–85.CrossRef
27.
Zurück zum Zitat J. Jia, S.L. Yang, W.Y. Ni, J.Y. Bai, and Y.S.L. Lin, Microstructure and Properties of Fiber Laser Welded Joints of Ultrahigh-strength Steel 22MnB5 and its Dissimilar Combination with Q235 Steel, ISIJ Int., 2014, 54, p 2881–2889.CrossRef J. Jia, S.L. Yang, W.Y. Ni, J.Y. Bai, and Y.S.L. Lin, Microstructure and Properties of Fiber Laser Welded Joints of Ultrahigh-strength Steel 22MnB5 and its Dissimilar Combination with Q235 Steel, ISIJ Int., 2014, 54, p 2881–2889.CrossRef
28.
Zurück zum Zitat F. Li, M. Fu, and J. Lin, Effect of Cooling Path on Phase Transformation of Boron Steel, Proced. Eng., 2014, 81, p 1707–1712.CrossRef F. Li, M. Fu, and J. Lin, Effect of Cooling Path on Phase Transformation of Boron Steel, Proced. Eng., 2014, 81, p 1707–1712.CrossRef
29.
Zurück zum Zitat K.I. Yaakob, M. Ishak, S. Idris, M.H. Aiman, and M.M. Quazi, Characterization of Heat-Treated Gas Metal Arc-Welded Boron Steel Sheets, Int. J. Adv. Manuf. Technol., 2018, 94, p 827–834.CrossRef K.I. Yaakob, M. Ishak, S. Idris, M.H. Aiman, and M.M. Quazi, Characterization of Heat-Treated Gas Metal Arc-Welded Boron Steel Sheets, Int. J. Adv. Manuf. Technol., 2018, 94, p 827–834.CrossRef
30.
Zurück zum Zitat S. Son, Y.H. Lee, D.W. Choi, K.R. Cho, S.M. Shin, Y. Lee, S.H. Kang, and Z. Lee, Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel, JOM, 2018, 70, p 1548–1553.CrossRef S. Son, Y.H. Lee, D.W. Choi, K.R. Cho, S.M. Shin, Y. Lee, S.H. Kang, and Z. Lee, Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel, JOM, 2018, 70, p 1548–1553.CrossRef
31.
Zurück zum Zitat J. Jia, S.L. Yang, W.Y. Ni, and J.Y. Bai, Microstructure and Mechanical Properties of Fiber Laser Welded Joints of Ultrahigh-Strength Steel 22MnB5 and Dual-Phase Steels, J. Mater. Res., 2014, 29, p 2565–2575.CrossRef J. Jia, S.L. Yang, W.Y. Ni, and J.Y. Bai, Microstructure and Mechanical Properties of Fiber Laser Welded Joints of Ultrahigh-Strength Steel 22MnB5 and Dual-Phase Steels, J. Mater. Res., 2014, 29, p 2565–2575.CrossRef
32.
Zurück zum Zitat S. Gao, Y. Li, L. Yang, and W. Qiu, Microstructure and Mechanical Properties of Laser-Welded Dissimilar DP780 and DP980 High-Strength Steel Joints, Mater. Sci. Eng., A, 2018, 720, p 117–129.CrossRef S. Gao, Y. Li, L. Yang, and W. Qiu, Microstructure and Mechanical Properties of Laser-Welded Dissimilar DP780 and DP980 High-Strength Steel Joints, Mater. Sci. Eng., A, 2018, 720, p 117–129.CrossRef
33.
Zurück zum Zitat H. Di, Q. Sun, X. Wang, and J. Li, Microstructure and Properties in Dissimilar/Similar Weld Joints Between DP780 and DP980 Steels Processed by Fiber Laser Welding, J. Mater. Sci. Technol., 2017, 33, p 1561–1571.CrossRef H. Di, Q. Sun, X. Wang, and J. Li, Microstructure and Properties in Dissimilar/Similar Weld Joints Between DP780 and DP980 Steels Processed by Fiber Laser Welding, J. Mater. Sci. Technol., 2017, 33, p 1561–1571.CrossRef
34.
Zurück zum Zitat H. Zhao, R. Huang, Y. Sun, C. Tan, and G. Li, Microstructure and Mechanical Properties of Fiber Laser Welded QP980/Press-Hardened 22MnB5 Steel Joint, J. Market. Res., 2020, 9, p 10079–10090. H. Zhao, R. Huang, Y. Sun, C. Tan, and G. Li, Microstructure and Mechanical Properties of Fiber Laser Welded QP980/Press-Hardened 22MnB5 Steel Joint, J. Market. Res., 2020, 9, p 10079–10090.
35.
Zurück zum Zitat O. Çavuşoğlu, O. Çavuşoğlu, A.G. Yılmazoğlu, U. Üzel, H. Aydın, and A. Güral, Microstructural Features and Mechanical Properties of 22MnB5 Hot Stamping Steel in Different Heat Treatment Conditions, J. Market. Res., 2020, 9, p 10901–10908. O. Çavuşoğlu, O. Çavuşoğlu, A.G. Yılmazoğlu, U. Üzel, H. Aydın, and A. Güral, Microstructural Features and Mechanical Properties of 22MnB5 Hot Stamping Steel in Different Heat Treatment Conditions, J. Market. Res., 2020, 9, p 10901–10908.
36.
Zurück zum Zitat J. Jeong, S.C. Park, G.Y. Shin, C.W. Lee, T.J. Kim, and M.S. Choi, Effects of Tempering Condition on the Microstructure and Mechanical Properties of 30MnB5 Hot-Stamping steel, Korean J. Metals Mater., 2018, 56, p 787–795.CrossRef J. Jeong, S.C. Park, G.Y. Shin, C.W. Lee, T.J. Kim, and M.S. Choi, Effects of Tempering Condition on the Microstructure and Mechanical Properties of 30MnB5 Hot-Stamping steel, Korean J. Metals Mater., 2018, 56, p 787–795.CrossRef
37.
Zurück zum Zitat Z.J. Zhai, Y. Cao, L. Zhao, Y. Peng, Z.L. Tian, and J. Zhu, Effect of Heat Input on Microstructure and Mechanical Properties of DP980 Laser Welded Steel, J. Iron Steel Res., 2020, 32, p 66–73. (Chinese) Z.J. Zhai, Y. Cao, L. Zhao, Y. Peng, Z.L. Tian, and J. Zhu, Effect of Heat Input on Microstructure and Mechanical Properties of DP980 Laser Welded Steel, J. Iron Steel Res., 2020, 32, p 66–73. (Chinese)
38.
Zurück zum Zitat Z. Zhou, W.J. Zheng, D. Feng, T. Xu, and J. Yang, Mechanical Properties and Corrosion Resistance of Cold Metal Transfer Small-Bore Thin-Walled Tube Butt Welded Joints of UNS S32205 Duplex Stainless Steel, J. Mater. Eng. Perform., 2022, 31, p 4531–4544.CrossRef Z. Zhou, W.J. Zheng, D. Feng, T. Xu, and J. Yang, Mechanical Properties and Corrosion Resistance of Cold Metal Transfer Small-Bore Thin-Walled Tube Butt Welded Joints of UNS S32205 Duplex Stainless Steel, J. Mater. Eng. Perform., 2022, 31, p 4531–4544.CrossRef
Metadaten
Titel
Microstructure and Properties of Pulse Tungsten Inert Gas Welded Joint for Different Thickness CR22MnB5/DH1050 Dissimilar High-Strength Steel
verfasst von
Hongju Fan
Peng Liu
Kang Xiao
Chengge Wu
Chuanwei Shi
Yongbin Wang
Publikationsdatum
08.12.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 18/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07716-1

Weitere Artikel der Ausgabe 18/2023

Journal of Materials Engineering and Performance 18/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.