Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2022

02.03.2022 | Technical Article

Microstructure-Based MultiStage Fatigue Modeling of NiTi Alloy Fabricated via Direct Energy Deposition (DED)

verfasst von: Allen Bagheri, Aref Yadollahi, Mohammad J. Mahtabi, Yubraj Paudel, Ethan Vance, Nima Shamsaei, Mark F. Horstemeyer

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A microstructure-based multistage fatigue (MSF) model was employed to study the process–structure–property relations for cyclic damage and fatigue life of NiTi alloy fabricated via an additive manufacturing (AM) technique. Various defect characteristics (i.e., level of porosity, pore size, and their spacing) and microstructural features (i.e., grain size, mean grain orientation, and misorientation angles), dictated by the manufacturing and post-manufacturing heat treatment processes, were used to predict the fatigue life of AM and wrought NiTi specimens. The specimens fabricated via AM underwent two different heat treatment conditions (i.e., aging followed by air cooling and annealing followed by water quenching). Using the process-dependent parameters, the MSF model could capture the differences in fatigue behavior of each condition. The predicted lower and upper bounds of fatigue life based on the range observed for microstructural features and defect characteristics were able to account for the scatter observed in experimental fatigue data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.I. Stephens, A. Fatemi, R.R. Stephens and H.O. Fuchs, Metal Fatigue in Engineering, 2nd ed. Wiley, Hoboken, 2000. R.I. Stephens, A. Fatemi, R.R. Stephens and H.O. Fuchs, Metal Fatigue in Engineering, 2nd ed. Wiley, Hoboken, 2000.
2.
Zurück zum Zitat A. Yadollahi, M.J. Mahtabi, A. Khalili, H.R. Doude, and J.C. Newman, Fatigue Life Prediction of Additively Manufactured Material: Effects of Surface Roughness, Defect Size, and Shape, Fatigue Fract. Eng. Mater. Struct., 2018. A. Yadollahi, M.J. Mahtabi, A. Khalili, H.R. Doude, and J.C. Newman, Fatigue Life Prediction of Additively Manufactured Material: Effects of Surface Roughness, Defect Size, and Shape, Fatigue Fract. Eng. Mater. Struct., 2018.
3.
Zurück zum Zitat A. Yadollahi, M. Mahmoudi, A. Elwany, H. Doude, L. Bian and J.C. Newman, Fatigue-Life Prediction of Additively Manufactured Material: Effects of Heat Treatment and Build Orientation, Fatigue Fract. Eng. Mater. Struct., 2020, 43(4), p 831–844. CrossRef A. Yadollahi, M. Mahmoudi, A. Elwany, H. Doude, L. Bian and J.C. Newman, Fatigue-Life Prediction of Additively Manufactured Material: Effects of Heat Treatment and Build Orientation, Fatigue Fract. Eng. Mater. Struct., 2020, 43(4), p 831–844. CrossRef
4.
Zurück zum Zitat D.L. McDowell, K. Gall, M.F. Horstemeyer and J. Fan, Microstructure-Based Fatigue Modeling of Cast A356–T6 Alloy, Eng. Fract. Mech., 2003, 70(1), p 49–80. CrossRef D.L. McDowell, K. Gall, M.F. Horstemeyer and J. Fan, Microstructure-Based Fatigue Modeling of Cast A356–T6 Alloy, Eng. Fract. Mech., 2003, 70(1), p 49–80. CrossRef
5.
Zurück zum Zitat S.H. Seifi, A. Yadollahi, W. Tian, H. Doude, V.H. Hammond and L. Bian, In Situ Nondestructive Fatigue‐Life Prediction of Additive Manufactured Parts by Establishing a Process–Defect–Property Relationship, Advanced Intelligent Systems, 2021, 2000268. S.H. Seifi, A. Yadollahi, W. Tian, H. Doude, V.H. Hammond and L. Bian, In Situ Nondestructive Fatigue‐Life Prediction of Additive Manufactured Parts by Establishing a Process–Defect–Property Relationship, Advanced Intelligent Systems, 2021, 2000268.
6.
Zurück zum Zitat T. Duerig, A. Pelton, and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, Elsevier, 1999, 273, p 149–160. T. Duerig, A. Pelton, and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, Elsevier, 1999, 273, p 149–160.
7.
Zurück zum Zitat A.R. Pelton, J. Dicello, and S. Miyazaki, Optimisation of Processing and Properties of Medical Grade Nitinol Wire, Minim. Invasive Ther. Allied Technol., Taylor & Francis, 2000, 9(2), p 107–118. A.R. Pelton, J. Dicello, and S. Miyazaki, Optimisation of Processing and Properties of Medical Grade Nitinol Wire, Minim. Invasive Ther. Allied Technol., Taylor & Francis, 2000, 9(2), p 107–118.
8.
Zurück zum Zitat K. Gall, H. Sehitoglu, Y.I. Chumlyakov, Y.L. Zuev, and I. Karaman, The Role of Coherent Precipitates in Martensitic Transformations in Single Crystal and Polycrystalline Ti-50.8 At% Ni, Scr. Mater., Pergamon, 1998, 39(6), p 699–705. K. Gall, H. Sehitoglu, Y.I. Chumlyakov, Y.L. Zuev, and I. Karaman, The Role of Coherent Precipitates in Martensitic Transformations in Single Crystal and Polycrystalline Ti-50.8 At% Ni, Scr. Mater., Pergamon, 1998, 39(6), p 699–705.
9.
Zurück zum Zitat S. Saedi, A.S. Turabi, M.T. Andani, C. Haberland, M. Elahinia, and H. Karaca, Thermomechanical Characterization of Ni-Rich NiTi Fabricated by Selective Laser Melting, Smart Mater. Struct., IOP Publishing, 2016, 25(3), p 035005. S. Saedi, A.S. Turabi, M.T. Andani, C. Haberland, M. Elahinia, and H. Karaca, Thermomechanical Characterization of Ni-Rich NiTi Fabricated by Selective Laser Melting, Smart Mater. Struct., IOP Publishing, 2016, 25(3), p 035005.
10.
Zurück zum Zitat M. Nishida, C.M. Wayman, and T. Honma, Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys, Metall. Trans. A, Springer, 1986, 17(9), p 1505–1515. M. Nishida, C.M. Wayman, and T. Honma, Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys, Metall. Trans. A, Springer, 1986, 17(9), p 1505–1515.
11.
Zurück zum Zitat H.E. Karaca, S.M. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, and Y.I. Chumlyakov, Effects of Nanoprecipitation on the Shape Memory and Material Properties of an Ni-Rich NiTiHf High Temperature Shape Memory Alloy, Acta Mater., Elsevier, 2013, 61(19), p 7422–7431. H.E. Karaca, S.M. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, and Y.I. Chumlyakov, Effects of Nanoprecipitation on the Shape Memory and Material Properties of an Ni-Rich NiTiHf High Temperature Shape Memory Alloy, Acta Mater., Elsevier, 2013, 61(19), p 7422–7431.
12.
Zurück zum Zitat D.M. Keicher and J.E. Smugeresky, The Laser Forming of Metallic Components Using Particulate Materials, 1982, p 51–54. D.M. Keicher and J.E. Smugeresky, The Laser Forming of Metallic Components Using Particulate Materials, 1982, p 51–54.
13.
Zurück zum Zitat C. Atwood, M. Griffith, L. Harwell, E. Schlienger, M. Ensz, J. Smugeresky, T. Romero, D. Greene, and D. Reckaway, Laser Engineered Net Shaping (LENSTM): A Tool for Direct Fabrication of Metal Parts, International Congress on Applications of Lasers and Electro-Optics, Laser Institute of America, 1998, p E1–E7. C. Atwood, M. Griffith, L. Harwell, E. Schlienger, M. Ensz, J. Smugeresky, T. Romero, D. Greene, and D. Reckaway, Laser Engineered Net Shaping (LENSTM): A Tool for Direct Fabrication of Metal Parts, International Congress on Applications of Lasers and Electro-Optics, Laser Institute of America, 1998, p E1–E7.
14.
Zurück zum Zitat A. Bagheri, N. Shamsaei, and S.M. Thompson, Microstructure and Mechanical Properties of Ti-6Al-4V Parts Fabricated by Laser Engineered Net Shaping, ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2015, p V02AT02A005 A. Bagheri, N. Shamsaei, and S.M. Thompson, Microstructure and Mechanical Properties of Ti-6Al-4V Parts Fabricated by Laser Engineered Net Shaping, ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2015, p V02AT02A005
15.
Zurück zum Zitat A. Yadollahi and N. Shamsaei, Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities, Int. J. Fatigue, 2017, 98. A. Yadollahi and N. Shamsaei, Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities, Int. J. Fatigue, 2017, 98.
16.
Zurück zum Zitat N. Shamsaei, A. Yadollahi, L. Bian and S.M. Thompson, An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control, Addit. Manuf., 2015, 8, p 12–35. N. Shamsaei, A. Yadollahi, L. Bian and S.M. Thompson, An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control, Addit. Manuf., 2015, 8, p 12–35.
17.
Zurück zum Zitat J.T. Sehrt and G. Witt, Dynamic Strength and Fracture Toughness Analysis of Beam Melted Parts, Proceedings of the 36th International MATADOR Conference. (Springer, London, 2010), p. 385–388. J.T. Sehrt and G. Witt, Dynamic Strength and Fracture Toughness Analysis of Beam Melted Parts, Proceedings of the 36th International MATADOR Conference. (Springer, London, 2010), p. 385–388.
18.
Zurück zum Zitat H.A. Stoffregen, K. Butterweck, and Eberhard Abele, Fatigue Analysis in Selective Laser Melting: Review and Investigation of Thin-Walled Actuator Housings, Solid Freeform Fabrication Symposium, 2013, p 635–650. H.A. Stoffregen, K. Butterweck, and Eberhard Abele, Fatigue Analysis in Selective Laser Melting: Review and Investigation of Thin-Walled Actuator Housings, Solid Freeform Fabrication Symposium, 2013, p 635–650.
19.
Zurück zum Zitat A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, and L. Bian, Effects of Building Orientation and Heat Treatment on Fatigue Behavior of Selective Laser Melted 17-4 PH Stainless Steel, Int. J. Fatigue, 2017, 94. A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, and L. Bian, Effects of Building Orientation and Heat Treatment on Fatigue Behavior of Selective Laser Melted 17-4 PH Stainless Steel, Int. J. Fatigue, 2017, 94.
20.
Zurück zum Zitat J. Lee and Y.C. Shin, Effects of Composition and Post Heat Treatment on Shape Memory Characteristics and Mechanical Properties for Laser Direct Deposited Nitinol, Lasers Manuf. Mater. Process., Springer, 2019, 6(1), p 41–58. J. Lee and Y.C. Shin, Effects of Composition and Post Heat Treatment on Shape Memory Characteristics and Mechanical Properties for Laser Direct Deposited Nitinol, Lasers Manuf. Mater. Process., Springer, 2019, 6(1), p 41–58.
21.
Zurück zum Zitat M.J. Mahtabi, N. Shamsaei and M. Mitchell, Fatigue of Nitinol: The State-of-the-Art and Ongoing Challenges, J. Mech. Behav. Biomed. Mater., 2015, 50, p 228–254. CrossRef M.J. Mahtabi, N. Shamsaei and M. Mitchell, Fatigue of Nitinol: The State-of-the-Art and Ongoing Challenges, J. Mech. Behav. Biomed. Mater., 2015, 50, p 228–254. CrossRef
22.
Zurück zum Zitat S.W. Robertson, A.R. Pelton, and R.O. Ritchie, Mechanical Fatigue and Fracture of Nitinol, Int. Mater. Rev., Taylor & Francis, 2012, 57(1), p 1–37. S.W. Robertson, A.R. Pelton, and R.O. Ritchie, Mechanical Fatigue and Fracture of Nitinol, Int. Mater. Rev., Taylor & Francis, 2012, 57(1), p 1–37.
23.
Zurück zum Zitat ASTM Standard, B 214-16—Standard Test Method for Sieve Analysis of Metal Powders, 2016. ASTM Standard, B 214-16—Standard Test Method for Sieve Analysis of Metal Powders, 2016.
24.
Zurück zum Zitat A. Bagheri, M.J. Mahtabi and N. Shamsaei, Fatigue Behavior and Cyclic Deformation of Additive Manufactured NiTi, J. Mech. Behav. Biomed. Mater., 2018, 1(252), p 440–453. A. Bagheri, M.J. Mahtabi and N. Shamsaei, Fatigue Behavior and Cyclic Deformation of Additive Manufactured NiTi, J. Mech. Behav. Biomed. Mater., 2018, 1(252), p 440–453.
25.
Zurück zum Zitat ASTM Standard, E 606-12—Standard Practice for Strain-Controlled Fatigue Testing, 2012. ASTM Standard, E 606-12—Standard Practice for Strain-Controlled Fatigue Testing, 2012.
26.
Zurück zum Zitat A.L. McKelvey and R.O. Ritchie, Fatigue-Crack Propagation in Nitinol, a Shape-Memory and Superelastic Endovascular Stent Material, J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., Wiley Online Library, 1999, 47(3), p 301–308. A.L. McKelvey and R.O. Ritchie, Fatigue-Crack Propagation in Nitinol, a Shape-Memory and Superelastic Endovascular Stent Material, J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., Wiley Online Library, 1999, 47(3), p 301–308.
27.
Zurück zum Zitat K.E. Wilkes and P.K. Liaw, The Fatigue Behavior of Shape-Memory Alloys, Jom, Springer, 2000, 52(10), p 45–51 K.E. Wilkes and P.K. Liaw, The Fatigue Behavior of Shape-Memory Alloys, Jom, Springer, 2000, 52(10), p 45–51
28.
Zurück zum Zitat P. Zhou, J. Zhou, Z. Ye, X. Hong, H. Huang, and W. Xu, Effect of Grain Size and Misorientation Angle on Fatigue Crack Growth of Nanocrystalline Materials, Mater. Sci. Eng. A, Elsevier, 2016, 663, p 1–7. P. Zhou, J. Zhou, Z. Ye, X. Hong, H. Huang, and W. Xu, Effect of Grain Size and Misorientation Angle on Fatigue Crack Growth of Nanocrystalline Materials, Mater. Sci. Eng. A, Elsevier, 2016, 663, p 1–7.
29.
Zurück zum Zitat C. Blochwitz, R. Richter, W. Tirschler, and K. Obrtlik, The Effect of Local Textures on Microcrack Propagation in Fatigued Fcc Metals, Mater. Sci. Eng. A, Elsevier, 1997, 234, p 563–566. C. Blochwitz, R. Richter, W. Tirschler, and K. Obrtlik, The Effect of Local Textures on Microcrack Propagation in Fatigued Fcc Metals, Mater. Sci. Eng. A, Elsevier, 1997, 234, p 563–566.
30.
Zurück zum Zitat A.S. Azar, L.-E. Svensson, and B. Nyhus, Effect of Crystal Orientation and Texture on Fatigue Crack Evolution in High Strength Steel Welds, Int. J. Fatigue, Elsevier, 2015, 77, p 95–104. A.S. Azar, L.-E. Svensson, and B. Nyhus, Effect of Crystal Orientation and Texture on Fatigue Crack Evolution in High Strength Steel Welds, Int. J. Fatigue, Elsevier, 2015, 77, p 95–104.
31.
Zurück zum Zitat K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie, and H.J. Maier, Effect of Microstructure on the Fatigue of Hot-Rolled and Cold-Drawn NiTi Shape Memory Alloys, Mater. Sci. Eng. A, Elsevier, 2008, 486(1–2), p 389–403. K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie, and H.J. Maier, Effect of Microstructure on the Fatigue of Hot-Rolled and Cold-Drawn NiTi Shape Memory Alloys, Mater. Sci. Eng. A, Elsevier, 2008, 486(1–2), p 389–403.
32.
Zurück zum Zitat M.J. Mahtabi, N. Shamsaei, and B. Rutherford, Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Alloys: An Experimental Investigation, Procedia Eng., Elsevier, 2015, 133, p 646–654. M.J. Mahtabi, N. Shamsaei, and B. Rutherford, Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Alloys: An Experimental Investigation, Procedia Eng., Elsevier, 2015, 133, p 646–654.
33.
Zurück zum Zitat K. Gall and H.J. Maier, Cyclic Deformation Mechanisms in Precipitated NiTi Shape Memory Alloys, Acta Mater., Elsevier, 2002, 50(18), p 4643–4657. K. Gall and H.J. Maier, Cyclic Deformation Mechanisms in Precipitated NiTi Shape Memory Alloys, Acta Mater., Elsevier, 2002, 50(18), p 4643–4657.
34.
Zurück zum Zitat S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall. Trans. A, Springer, 1986, 17(1), p 115–120. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall. Trans. A, Springer, 1986, 17(1), p 115–120.
35.
Zurück zum Zitat H. El Kadiri, L. Wang, M.F. Horstemeyer, R.S. Yassar, J.T. Berry, S. Felicelli and P.T. Wang, Phase Transformations in Low-Alloy Steel Laser Deposits, Mater. Sci. Eng. A, 2008, 494(1–2), p 10–20. CrossRef H. El Kadiri, L. Wang, M.F. Horstemeyer, R.S. Yassar, J.T. Berry, S. Felicelli and P.T. Wang, Phase Transformations in Low-Alloy Steel Laser Deposits, Mater. Sci. Eng. A, 2008, 494(1–2), p 10–20. CrossRef
36.
Zurück zum Zitat D. Catoor, Z. Ma, and S. Kumar, Cyclic Response and Fatigue Failure of Nitinol Under Tension–Tension Loading, J. Mater. Res., Cambridge University Press, 2019, 34(20), p 3504–3522. D. Catoor, Z. Ma, and S. Kumar, Cyclic Response and Fatigue Failure of Nitinol Under Tension–Tension Loading, J. Mater. Res., Cambridge University Press, 2019, 34(20), p 3504–3522.
37.
Zurück zum Zitat M.J. Mahtabi and N. Shamsaei, Fatigue Modeling for Superelastic NiTi Considering Cyclic Deformation and Load Ratio Effects, Shape Mem. Superelasticity, Springer, 2017, 3(3), p 250–263 M.J. Mahtabi and N. Shamsaei, Fatigue Modeling for Superelastic NiTi Considering Cyclic Deformation and Load Ratio Effects, Shape Mem. Superelasticity, Springer, 2017, 3(3), p 250–263
38.
Zurück zum Zitat M.J. Mahtabi and N. Shamsaei, A Modified Energy-Based Approach for Fatigue Life Prediction of Superelastic NiTi in Presence of Tensile Mean Strain and Stress, Int. J. Mech. Sci., Elsevier, 2016, 117, p 321–333. M.J. Mahtabi and N. Shamsaei, A Modified Energy-Based Approach for Fatigue Life Prediction of Superelastic NiTi in Presence of Tensile Mean Strain and Stress, Int. J. Mech. Sci., Elsevier, 2016, 117, p 321–333.
39.
Zurück zum Zitat R.M. Tabanli, N.K. Simha, and B.T. Berg, Mean Strain Effects on the Fatigue Properties of Superelastic NiTi, Metall. Mater. Trans. A, Springer, 2001, 32(7), p 1866–1869. R.M. Tabanli, N.K. Simha, and B.T. Berg, Mean Strain Effects on the Fatigue Properties of Superelastic NiTi, Metall. Mater. Trans. A, Springer, 2001, 32(7), p 1866–1869.
40.
Zurück zum Zitat Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale and J.B. Jordon, Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075–T651, Eng. Fract. Mech., 2007, 74(17), p 2810–2823. CrossRef Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale and J.B. Jordon, Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075–T651, Eng. Fract. Mech., 2007, 74(17), p 2810–2823. CrossRef
41.
Zurück zum Zitat J.B. Jordon, M.F. Horstemeyer, N. Yang, J.F. Major, K.A. Gall, J. Fan, and D.L. McDowell, Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy, Metall. Mater. Trans. A, Springer, 2010, 41(2), p 356–363. J.B. Jordon, M.F. Horstemeyer, N. Yang, J.F. Major, K.A. Gall, J. Fan, and D.L. McDowell, Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy, Metall. Mater. Trans. A, Springer, 2010, 41(2), p 356–363.
42.
Zurück zum Zitat K. Gall, M. Horstemeyer, D.L. McDowell and J. Fan, Finite Element Analysis of the Stress Distributions near Damaged Si Particle Clusters in Cast Al–Si Alloys, Mech. Mater., 2000, 32(5), p 277–301. CrossRef K. Gall, M. Horstemeyer, D.L. McDowell and J. Fan, Finite Element Analysis of the Stress Distributions near Damaged Si Particle Clusters in Cast Al–Si Alloys, Mech. Mater., 2000, 32(5), p 277–301. CrossRef
43.
Zurück zum Zitat D.W. Brown, A. Jain, S.R. Agnew and B. Clausen, Twinning and Detwinning During Cyclic Deformation of Mg Alloy AZ31B, Mater. Sci. Forum, 2007, 539–543, p 3407–3413. CrossRef D.W. Brown, A. Jain, S.R. Agnew and B. Clausen, Twinning and Detwinning During Cyclic Deformation of Mg Alloy AZ31B, Mater. Sci. Forum, 2007, 539–543, p 3407–3413. CrossRef
44.
Zurück zum Zitat D.R. Hayhurst, F.A. Leckie, and D.L. McDowell, Damage Growth under Nonproportional Loading, Multiaxial fatigue, ASTM International, 1985. D.R. Hayhurst, F.A. Leckie, and D.L. McDowell, Damage Growth under Nonproportional Loading, Multiaxial fatigue, ASTM International, 1985.
45.
Zurück zum Zitat L.H. Rettberg, J.B. Jordon, M.F. Horstemeyer and J.W. Jones, Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60, Metall. Mater. Trans. A, 2012, 43(7), p 2260–2274. CrossRef L.H. Rettberg, J.B. Jordon, M.F. Horstemeyer and J.W. Jones, Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60, Metall. Mater. Trans. A, 2012, 43(7), p 2260–2274. CrossRef
46.
Zurück zum Zitat A.R. Pelton, V. Schroeder, M.R. Mitchell, X.-Y. Gong, M. Barney, and S.W. Robertson, Fatigue and Durability of Nitinol Stents, J. Mech. Behav. Biomed. Mater., Elsevier, 2008, 1(2), p 153–164. A.R. Pelton, V. Schroeder, M.R. Mitchell, X.-Y. Gong, M. Barney, and S.W. Robertson, Fatigue and Durability of Nitinol Stents, J. Mech. Behav. Biomed. Mater., Elsevier, 2008, 1(2), p 153–164.
47.
Zurück zum Zitat A. Runciman, D. Xu, A.R. Pelton, and R.O. Ritchie, An Equivalent Strain/Coffin–Manson Approach to Multiaxial Fatigue and Life Prediction in Superelastic Nitinol Medical Devices, Biomaterials, Elsevier, 2011, 32(22), p 4987–4993. A. Runciman, D. Xu, A.R. Pelton, and R.O. Ritchie, An Equivalent Strain/Coffin–Manson Approach to Multiaxial Fatigue and Life Prediction in Superelastic Nitinol Medical Devices, Biomaterials, Elsevier, 2011, 32(22), p 4987–4993.
48.
Zurück zum Zitat J.M. Hughes, M.F. Horstemeyer, R. Carino, N. Sukhija, W.B. Lawrimore, S. Kim, and M.I. Baskes, Hierarchical Bridging between Ab Initio and Atomistic Level Computations: Sensitivity and Uncertainty Analysis for the Modified Embedded-Atom Method (Meam) Potential (Part b), Jom, Springer, 2015, 67(1), p 148–153. J.M. Hughes, M.F. Horstemeyer, R. Carino, N. Sukhija, W.B. Lawrimore, S. Kim, and M.I. Baskes, Hierarchical Bridging between Ab Initio and Atomistic Level Computations: Sensitivity and Uncertainty Analysis for the Modified Embedded-Atom Method (Meam) Potential (Part b), Jom, Springer, 2015, 67(1), p 148–153.
Metadaten
Titel
Microstructure-Based MultiStage Fatigue Modeling of NiTi Alloy Fabricated via Direct Energy Deposition (DED)
verfasst von
Allen Bagheri
Aref Yadollahi
Mohammad J. Mahtabi
Yubraj Paudel
Ethan Vance
Nima Shamsaei
Mark F. Horstemeyer
Publikationsdatum
02.03.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06603-z

Weitere Artikel der Ausgabe 6/2022

Journal of Materials Engineering and Performance 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.