Skip to main content
Erschienen in: Metallography, Microstructure, and Analysis 1/2018

27.12.2017 | Technical Article

Microstructure, Mechanical Properties, and Shape Memory Effect of Annealed Cu-Al-Ni-xCo Shape Memory Alloys

verfasst von: M. Ainul Haidar, Safaa N. Saud, Esah Hamzah

Erschienen in: Metallography, Microstructure, and Analysis | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to develop the main applications of Cu-based shape memory alloys (SMAs), the effect of annealing time and temperature on the microstructure, mechanical properties, and shape memory characteristics of Cu-Al-Ni-xCo SMAs (x is 0.38, 0.6, and 1.2 wt.%) were studied. A distinct consideration is lent to the microstructural changes, phase transformation, and mechanical properties, which might take place in accordance with the changes in the alloying element/composition and/or heat treatment implementation. Because of this, the microstructural changes were portrayed using a variable-pressure scanning electron microscope, energy-dispersive spectrometer, and x-ray diffraction. The strength and hardness were determined using a universal Instron testing machine and Vickers hardness testing machine, respectively. The shape memory test was carried out using specially designed with an insulated system. The results indicated that the phase transformation of Cu-Al-Ni-xCo SMAs can be changed by varying the annealing temperature and time, and subsequent annealing can cause an effective impact on the shape memory effect. Moreover, it was also realized that the annealing treatment is involved in controlling the presence of γ 2 phase precipitate, thereby, improving the mechanical properties. The highest fracture stress and strain of 860.94 MPa and 9.43%, respectively, were determined in the Cu-Al-Ni-0.6 wt.% Co SMAs after being annealed at 500 °C for 3 h. In particular, the Cu-Al-Ni-1.2 wt.% Co SMAs obtained 84.08% recovery, which is the highest strain recovery after being annealed at 500 °C for 3 h.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Funakubo, Shape Memory Alloys (CRC Press LLC, Boca Raton, 1987) H. Funakubo, Shape Memory Alloys (CRC Press LLC, Boca Raton, 1987)
2.
Zurück zum Zitat M. Kumar, R. Gupta, Introduction to Shape Memory Alloys (Springer, Berlin, 2008)CrossRef M. Kumar, R. Gupta, Introduction to Shape Memory Alloys (Springer, Berlin, 2008)CrossRef
3.
Zurück zum Zitat D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, Berlin, 2008) D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, Berlin, 2008)
4.
Zurück zum Zitat S. Saud et al., Thermal aging behavior in Cu–Al–Ni–xCo shape memory alloys. J. Therm. Anal. Calorim. 119(2), 1273–1284 (2015)CrossRef S. Saud et al., Thermal aging behavior in Cu–Al–Ni–xCo shape memory alloys. J. Therm. Anal. Calorim. 119(2), 1273–1284 (2015)CrossRef
5.
Zurück zum Zitat M.I.A.E. Aal, Influence of the pre-homogenization treatment on the microstructure evolution and the mechanical properties of Al–Cu alloys processed by ECAP. Mater. Sci. Eng. A 528(22–23), 6946–6957 (2011)CrossRef M.I.A.E. Aal, Influence of the pre-homogenization treatment on the microstructure evolution and the mechanical properties of Al–Cu alloys processed by ECAP. Mater. Sci. Eng. A 528(22–23), 6946–6957 (2011)CrossRef
6.
Zurück zum Zitat M.A. Morris, S. Gunter, Effect of heat treatment and thermal cycling on transformation temperatures of ductile Cu-Al-Ni-Mn-B alloys. Scr. Metall. Mater. 26(11), 1663–1668 (1992)CrossRef M.A. Morris, S. Gunter, Effect of heat treatment and thermal cycling on transformation temperatures of ductile Cu-Al-Ni-Mn-B alloys. Scr. Metall. Mater. 26(11), 1663–1668 (1992)CrossRef
7.
Zurück zum Zitat S. Saud et al., Structure-property relationship of Cu-Al-Ni-Fe shape memory alloys in different quenching media. J. Mater. Eng. Perform. 23(1), 255–261 (2014)CrossRef S. Saud et al., Structure-property relationship of Cu-Al-Ni-Fe shape memory alloys in different quenching media. J. Mater. Eng. Perform. 23(1), 255–261 (2014)CrossRef
8.
Zurück zum Zitat A. Melzer, D. Stockel, Using shape-memory alloys. Med. Device Technol. 6(4), 16–20, 22–3 (1995) A. Melzer, D. Stockel, Using shape-memory alloys. Med. Device Technol. 6(4), 16–20, 22–3 (1995)
9.
Zurück zum Zitat R. Dasgupta, A look into Cu-based shape memory alloys: present scenario and future prospects. J. Mater. Res. 29(16), 1681–1698 (2014)CrossRef R. Dasgupta, A look into Cu-based shape memory alloys: present scenario and future prospects. J. Mater. Res. 29(16), 1681–1698 (2014)CrossRef
10.
Zurück zum Zitat S. Miyazaki et al., The fracture of Cu–Al–Ni shape memory alloy. Trans. Jpn. Inst. Met. 22(4), 244–252 (1981)CrossRef S. Miyazaki et al., The fracture of Cu–Al–Ni shape memory alloy. Trans. Jpn. Inst. Met. 22(4), 244–252 (1981)CrossRef
11.
Zurück zum Zitat Y. Sutou et al., Effects of grain size and texture on damping properties of Cu–Al–Mn-based shape memory alloys. Mater. Sci. Eng. A 438, 743–746 (2006)CrossRef Y. Sutou et al., Effects of grain size and texture on damping properties of Cu–Al–Mn-based shape memory alloys. Mater. Sci. Eng. A 438, 743–746 (2006)CrossRef
12.
Zurück zum Zitat J. Fernández et al., Thermal stability of the martensitic transformation of Cu–Al–Ni–Mn–Ti. Mater. Sci. Eng. A 438–440, 723–725 (2006)CrossRef J. Fernández et al., Thermal stability of the martensitic transformation of Cu–Al–Ni–Mn–Ti. Mater. Sci. Eng. A 438–440, 723–725 (2006)CrossRef
13.
Zurück zum Zitat S. Saud et al., Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J. Therm. Anal. Calorim. 118, 1–12 (2014)CrossRef S. Saud et al., Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J. Therm. Anal. Calorim. 118, 1–12 (2014)CrossRef
14.
Zurück zum Zitat R.D. Dar, H. Yan, Y. Chen, Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase. Scr. Mater. 115, 113–117 (2016)CrossRef R.D. Dar, H. Yan, Y. Chen, Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase. Scr. Mater. 115, 113–117 (2016)CrossRef
15.
Zurück zum Zitat S. Montecinos et al., Grain size evolution in Cu-based shape memory alloys. J. Mater. Sci. 50(11), 3994–4002 (2015)CrossRef S. Montecinos et al., Grain size evolution in Cu-based shape memory alloys. J. Mater. Sci. 50(11), 3994–4002 (2015)CrossRef
16.
Zurück zum Zitat E. Mazzer et al., Thermodynamic analysis of the effect of annealing on the thermal stability of a Cu–Al–Ni–Mn shape memory alloy. Thermochim. Acta 608, 1–6 (2015)CrossRef E. Mazzer et al., Thermodynamic analysis of the effect of annealing on the thermal stability of a Cu–Al–Ni–Mn shape memory alloy. Thermochim. Acta 608, 1–6 (2015)CrossRef
17.
Zurück zum Zitat C.A. Canbay, Z. Karagoz, Effects of annealing temperature on thermomechanical properties of Cu–Al–Ni shape memory alloys. Int. J. Thermophys. 34(7), 1325–1335 (2013)CrossRef C.A. Canbay, Z. Karagoz, Effects of annealing temperature on thermomechanical properties of Cu–Al–Ni shape memory alloys. Int. J. Thermophys. 34(7), 1325–1335 (2013)CrossRef
18.
Zurück zum Zitat M. Fremond, S. Miyazaki, Shape Memory Alloys, vol. 351 (Springer, Berlin, 2014) M. Fremond, S. Miyazaki, Shape Memory Alloys, vol. 351 (Springer, Berlin, 2014)
19.
Zurück zum Zitat K. Yildiz, M. Kok, Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys. J. Therm. Anal. Calorim. 115(2), 1509–1514 (2014)CrossRef K. Yildiz, M. Kok, Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys. J. Therm. Anal. Calorim. 115(2), 1509–1514 (2014)CrossRef
20.
Zurück zum Zitat S.N. Saud et al., Effect of Ta additions on the microstructure, damping, and shape memory behaviour of prealloyed Cu-Al-Ni shape memory alloys. Scanning 2017, 1–13 (2017) S.N. Saud et al., Effect of Ta additions on the microstructure, damping, and shape memory behaviour of prealloyed Cu-Al-Ni shape memory alloys. Scanning 2017, 1–13 (2017)
21.
Zurück zum Zitat U. Sarı, İ. Aksoy, Electron microscopy study of 2H and 18R martensites in Cu–11.92 wt% Al–3.78 wt% Ni shape memory alloy. J. Alloy. Compd. 417(1–2), 138–142 (2006)CrossRef U. Sarı, İ. Aksoy, Electron microscopy study of 2H and 18R martensites in Cu–11.92 wt% Al–3.78 wt% Ni shape memory alloy. J. Alloy. Compd. 417(1–2), 138–142 (2006)CrossRef
22.
Zurück zum Zitat U. Sari, Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys. Int. J. Miner. Metall. Mater. 17(2), 192–198 (2010)CrossRef U. Sari, Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys. Int. J. Miner. Metall. Mater. 17(2), 192–198 (2010)CrossRef
23.
Zurück zum Zitat S.H. Chang, Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape memory alloys. Mater. Chem. Phys. 125(3), 358–363 (2011)CrossRef S.H. Chang, Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape memory alloys. Mater. Chem. Phys. 125(3), 358–363 (2011)CrossRef
24.
Zurück zum Zitat E. Patoor et al., Shape memory alloys, part I: general properties and modeling of single crystals. Mech. Mater. 38(5), 391–429 (2006)CrossRef E. Patoor et al., Shape memory alloys, part I: general properties and modeling of single crystals. Mech. Mater. 38(5), 391–429 (2006)CrossRef
25.
Zurück zum Zitat S.N. Saud et al., Effect of quarterly element addition of cobalt on phase transformation characteristics of Cu-Al-Ni shape memory alloys. Metall. Mater. Trans. A 46(8), 3528–3542 (2015)CrossRef S.N. Saud et al., Effect of quarterly element addition of cobalt on phase transformation characteristics of Cu-Al-Ni shape memory alloys. Metall. Mater. Trans. A 46(8), 3528–3542 (2015)CrossRef
26.
Zurück zum Zitat F. Sun et al., Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater. 61(17), 6406–6417 (2013)CrossRef F. Sun et al., Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater. 61(17), 6406–6417 (2013)CrossRef
Metadaten
Titel
Microstructure, Mechanical Properties, and Shape Memory Effect of Annealed Cu-Al-Ni-xCo Shape Memory Alloys
verfasst von
M. Ainul Haidar
Safaa N. Saud
Esah Hamzah
Publikationsdatum
27.12.2017
Verlag
Springer US
Erschienen in
Metallography, Microstructure, and Analysis / Ausgabe 1/2018
Print ISSN: 2192-9262
Elektronische ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-017-0413-2

Weitere Artikel der Ausgabe 1/2018

Metallography, Microstructure, and Analysis 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.