Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

26.07.2021

Microstructure, Tensile Properties, and Wear Resistance of In Situ TiB2/6061 Composites Prepared by High Energy Ball Milling and Stir Casting

verfasst von: Weibin Zhuang, Hairui Yang, Weibo Yang, Jialong Cui, Liguo Huang, Chun Wu, Jingfu Liu, Yuejun Sun, Chao Meng

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In-situ synthesized TiB2/6061 composites were prepared from Al-K2TiF6-KBF4 by high energy ball milling and stir casting. Phase analysis and microstructure observation of the samples were characterized by XRD, SEM and EDS, respectively. The effect of TiB2 particle content on the microstructure, tensile properties and wear resistance of the composites was studied. The results show that the average size of TiB2 particles is 1 μm, which is polygonal shape. The average grain size of the composites can be refined significantly as the TiB2 particle mass content increased from 1 to 3%; however, the grain coarsening occurs in the 5 wt.% TiB2/6061composites. The 3 wt.% TiB2/6061 composites have best tensile strength, yield strength and Young’s modulus among the composites in ranges of the TiB2 mass fraction from 1 to 5%. Strengthening mechanisms of the TiB2/6061 composites were fine grain strengthening, Orwan strengthening and CTE strengthening, in which the CTE strengthening plays an important role as increasing the TiB2 content. The pin-on-disk wear test results indicated that the average friction coefficient and wear rate of the TiB2/6061 composites increased firstly and then decreased with increasing the TiB2 content from 1 to 5 wt.%. The wear mechanism of the TiB2/6061 composites was discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T.K. Ye, Y.X. Xu and J. Ren, Effects of SiC Particle Size on Mechanical Properties of SiC Particle Reinforced Aluminum Metal Matrix Composite, Mat. Sci. Eng. A, 2019, 753, p 146–155.CrossRef T.K. Ye, Y.X. Xu and J. Ren, Effects of SiC Particle Size on Mechanical Properties of SiC Particle Reinforced Aluminum Metal Matrix Composite, Mat. Sci. Eng. A, 2019, 753, p 146–155.CrossRef
2.
Zurück zum Zitat M. Cabeza, I. Feijoo, P. Merino, G. Pena, M.C. Pérez, S. Cruza and P. Rey, Effect of High Energy Ball Milling on the Morphology, Microstructure and Properties of Nano-Sized TiC Particle-Reinforced 6005A Aluminium Alloy Matrix Composite, Powder. Technol., 2017, 321, p 31–43.CrossRef M. Cabeza, I. Feijoo, P. Merino, G. Pena, M.C. Pérez, S. Cruza and P. Rey, Effect of High Energy Ball Milling on the Morphology, Microstructure and Properties of Nano-Sized TiC Particle-Reinforced 6005A Aluminium Alloy Matrix Composite, Powder. Technol., 2017, 321, p 31–43.CrossRef
3.
Zurück zum Zitat G.Q. Huang, J. Wu, W.T. Hou and Y.F. Shen, Microstructure, Mechanical Properties and Strengthening Mechanism of Titanium Particle Reinforced Aluminum Matrix Composites Produced by Submerged Friction Stir Processing, Mat. Sci. Eng. A, 2018, 734, p 353–363.CrossRef G.Q. Huang, J. Wu, W.T. Hou and Y.F. Shen, Microstructure, Mechanical Properties and Strengthening Mechanism of Titanium Particle Reinforced Aluminum Matrix Composites Produced by Submerged Friction Stir Processing, Mat. Sci. Eng. A, 2018, 734, p 353–363.CrossRef
4.
Zurück zum Zitat R.F. Liu, W.X. Wang, H.S. Chen, M.B. Tan and Y.Y. Zhang, Microstructure Evolution and Mechanical Properties of Micro-/Nano-Bimodal Size B4C Particles Reinforced Aluminum Matrix Composites Prepared by SPS Followed by HER, Vacuum, 2018, 151, p 39–50.CrossRef R.F. Liu, W.X. Wang, H.S. Chen, M.B. Tan and Y.Y. Zhang, Microstructure Evolution and Mechanical Properties of Micro-/Nano-Bimodal Size B4C Particles Reinforced Aluminum Matrix Composites Prepared by SPS Followed by HER, Vacuum, 2018, 151, p 39–50.CrossRef
5.
Zurück zum Zitat V.G. Arigela, N.R. Palukuri, D. Singh, S.K. Kolli, J. Rengaswamy, P. Chekhonin, J. Scharnweber and W. Skrotzki, Evolution of Microstructure and Mechanical Properties in 2014 and 6063 Similar and Dissimilar Aluminium Alloy Laminates Produced by Accumulative Roll Bonding, J. Alloy. Compd., 2019, 790, p 917–927.CrossRef V.G. Arigela, N.R. Palukuri, D. Singh, S.K. Kolli, J. Rengaswamy, P. Chekhonin, J. Scharnweber and W. Skrotzki, Evolution of Microstructure and Mechanical Properties in 2014 and 6063 Similar and Dissimilar Aluminium Alloy Laminates Produced by Accumulative Roll Bonding, J. Alloy. Compd., 2019, 790, p 917–927.CrossRef
6.
Zurück zum Zitat P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain and P. Gupta, Advance Research Progresses in Aluminium Matrix Composites: Manufacturing and Applications, J. Mater. Res. Technol., 2019, 8(5), p 4924–4939.CrossRef P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain and P. Gupta, Advance Research Progresses in Aluminium Matrix Composites: Manufacturing and Applications, J. Mater. Res. Technol., 2019, 8(5), p 4924–4939.CrossRef
7.
Zurück zum Zitat Z.N. Chen, T.M. Wang, Y.P. Zheng, Y.F. Zhao, H.J. Kang and L. Gao, Development of TiB2 Reinforced Aluminum Foundry Alloy Based In Situ Composites – Part I: An Improved Halide Salt Route to Fabricate Al–5 wt.%TiB2 Master Composite, Mat. Sci. Eng. A, 2014, 605, p 301–309.CrossRef Z.N. Chen, T.M. Wang, Y.P. Zheng, Y.F. Zhao, H.J. Kang and L. Gao, Development of TiB2 Reinforced Aluminum Foundry Alloy Based In Situ Composites – Part I: An Improved Halide Salt Route to Fabricate Al–5 wt.%TiB2 Master Composite, Mat. Sci. Eng. A, 2014, 605, p 301–309.CrossRef
8.
Zurück zum Zitat M. Ao, H.M. Liu and C.F. Dong, The Effect of La2O3 Addition on Intermetallic-Free Aluminium Matrix Composites Reinforced with TiC and Al2O3 Ceramic Particles, Ceram. Int., 2019, 45(9), p 12001–12009.CrossRef M. Ao, H.M. Liu and C.F. Dong, The Effect of La2O3 Addition on Intermetallic-Free Aluminium Matrix Composites Reinforced with TiC and Al2O3 Ceramic Particles, Ceram. Int., 2019, 45(9), p 12001–12009.CrossRef
9.
Zurück zum Zitat V. Chak, H. Chattopadhyay and T.L. Dora, A Review on fabrication Methods, Reinforcements and Mechanical Properties of Aluminum Matrix Composites, J. Manuf. Process., 2020, 56, p 1059–1074.CrossRef V. Chak, H. Chattopadhyay and T.L. Dora, A Review on fabrication Methods, Reinforcements and Mechanical Properties of Aluminum Matrix Composites, J. Manuf. Process., 2020, 56, p 1059–1074.CrossRef
10.
Zurück zum Zitat N. Muralidharan, K. Chockalingam, I. Dinaharan and K. Kalaiselvan, MICROSTRUCTURE and Mechanical behavior of AA2024 Aluminum Matrix Composites Reinforced with In Situ Synthesized ZrB2 Particles, J. Alloy. Compd., 2018, 735, p 2167–2174.CrossRef N. Muralidharan, K. Chockalingam, I. Dinaharan and K. Kalaiselvan, MICROSTRUCTURE and Mechanical behavior of AA2024 Aluminum Matrix Composites Reinforced with In Situ Synthesized ZrB2 Particles, J. Alloy. Compd., 2018, 735, p 2167–2174.CrossRef
11.
Zurück zum Zitat S.A. Sajjadi, H.R. Ezatpour and H. Beygi, Microstructure and Mechanical Properties of Al–Al2O3 Micro and Nano Composites Fabricated by Stir Casting, Mat. Sci. Eng. A, 2011, 528(29), p 8765–8771.CrossRef S.A. Sajjadi, H.R. Ezatpour and H. Beygi, Microstructure and Mechanical Properties of Al–Al2O3 Micro and Nano Composites Fabricated by Stir Casting, Mat. Sci. Eng. A, 2011, 528(29), p 8765–8771.CrossRef
12.
Zurück zum Zitat P. Samal, P.R. Vundavilli, A. Meher and M.M. Mahapatra, Recent Progress in Aluminum Metal matrix Composites: A Review on Processing, Mechanical and Wear Properties, J. Manuf. Process, 2020, 59, p 131–152.CrossRef P. Samal, P.R. Vundavilli, A. Meher and M.M. Mahapatra, Recent Progress in Aluminum Metal matrix Composites: A Review on Processing, Mechanical and Wear Properties, J. Manuf. Process, 2020, 59, p 131–152.CrossRef
13.
Zurück zum Zitat K. Sinan, Effects of TiB2 Nanoparticle Content on the Microstructure and Mechanical Properties of Aluminum Matrix Nanocomposites, Mater Test, 2017, 59(10), p 844–852.CrossRef K. Sinan, Effects of TiB2 Nanoparticle Content on the Microstructure and Mechanical Properties of Aluminum Matrix Nanocomposites, Mater Test, 2017, 59(10), p 844–852.CrossRef
14.
Zurück zum Zitat A.R. Najarian, R. Emadi and M. Hamzeh, Fabrication of as-Cast Al Matrix Composite Reinforced by Al2O3/Al3Ni Hybrid Particles Via in-Situ Reaction and Evaluation of its Mechanical Properties, Mat. Sci. Eng. B, 2018, 231, p 57–65.CrossRef A.R. Najarian, R. Emadi and M. Hamzeh, Fabrication of as-Cast Al Matrix Composite Reinforced by Al2O3/Al3Ni Hybrid Particles Via in-Situ Reaction and Evaluation of its Mechanical Properties, Mat. Sci. Eng. B, 2018, 231, p 57–65.CrossRef
15.
Zurück zum Zitat Y. Afkham, R.A. Khosroshahi, S. Rahimpour, C. Aavani, D. Brabazon and R.T. Mousavian, Enhanced Mechanical Properties of In Situ Aluminium Matrix Composites Reinforced by Alumina Nanoparticles, Arch. Civ. Mech. Eng., 2018, 18(1), p 215–226.CrossRef Y. Afkham, R.A. Khosroshahi, S. Rahimpour, C. Aavani, D. Brabazon and R.T. Mousavian, Enhanced Mechanical Properties of In Situ Aluminium Matrix Composites Reinforced by Alumina Nanoparticles, Arch. Civ. Mech. Eng., 2018, 18(1), p 215–226.CrossRef
16.
Zurück zum Zitat K.N. Mathan and K.L. Annamalai, Characterization and Tribological analysis on AA 6061 Reinforced with AlN and Zrb2 In Situ Composites, J. Mater. Res. Technol., 2019, 8(1), p 969–980.CrossRef K.N. Mathan and K.L. Annamalai, Characterization and Tribological analysis on AA 6061 Reinforced with AlN and Zrb2 In Situ Composites, J. Mater. Res. Technol., 2019, 8(1), p 969–980.CrossRef
17.
Zurück zum Zitat C.S. Ramesh, S. Pramod and R. Keshavamurthy, A Study on Microstructure and Mechanical Properties of Al 6061–TiB2 In-Situ Composites, Mat. Sci. Eng. A, 2011, 528(12), p 4125–4132.CrossRef C.S. Ramesh, S. Pramod and R. Keshavamurthy, A Study on Microstructure and Mechanical Properties of Al 6061–TiB2 In-Situ Composites, Mat. Sci. Eng. A, 2011, 528(12), p 4125–4132.CrossRef
18.
Zurück zum Zitat Y. Pazhouhanfar and B. Eghbali, Microstructural Characterization and Mechanical Properties of TiB2 Reinforced Al6061 Matrix Composites Produced Using Stir Casting Process, Mat. Sci. Eng. A, 2018, 710, p 172–180.CrossRef Y. Pazhouhanfar and B. Eghbali, Microstructural Characterization and Mechanical Properties of TiB2 Reinforced Al6061 Matrix Composites Produced Using Stir Casting Process, Mat. Sci. Eng. A, 2018, 710, p 172–180.CrossRef
19.
Zurück zum Zitat J. Zhang, D. Zhang, H. Zhu and Z. Xie, In-Situ TiC Reinforced Al-4Cu Matrix Composite: Processing, Microstructure and Mechanical Properties, Mat. Sci. Eng. A, 2020, 794, p 139946.CrossRef J. Zhang, D. Zhang, H. Zhu and Z. Xie, In-Situ TiC Reinforced Al-4Cu Matrix Composite: Processing, Microstructure and Mechanical Properties, Mat. Sci. Eng. A, 2020, 794, p 139946.CrossRef
20.
Zurück zum Zitat H. Yang, T. Gao, Y. Wu, H. Zhang, J. Nie and X. Liu, Microstructure and Mechanical Properties at Both Room and High Temperature of In-Situ TiC Reinforced Al–4.5Cu Matrix Nanocomposite, J. Alloy. Compd., 2018, 767, p 606–616.CrossRef H. Yang, T. Gao, Y. Wu, H. Zhang, J. Nie and X. Liu, Microstructure and Mechanical Properties at Both Room and High Temperature of In-Situ TiC Reinforced Al–4.5Cu Matrix Nanocomposite, J. Alloy. Compd., 2018, 767, p 606–616.CrossRef
21.
Zurück zum Zitat T. Gao, L. Liu, J. Song, G. Liu and X. Liu, Synthesis and Characterization of an In-Situ Al2O3/Al–Cu Composite with a Heterogeneous Structure, J. Alloy. Compd., 2021, 868, p 159283.CrossRef T. Gao, L. Liu, J. Song, G. Liu and X. Liu, Synthesis and Characterization of an In-Situ Al2O3/Al–Cu Composite with a Heterogeneous Structure, J. Alloy. Compd., 2021, 868, p 159283.CrossRef
22.
Zurück zum Zitat S. Lei, X.F. Li, Y.Q. Deng, Y.K. Xiao, Y.C. Chen and H.W. Wang, Microstructure and Mechanical Properties of Electron Beam Freeform Fabricated TiB2/Al-Cu Composite, Mater. Lett., 2020, 277, p 128273.CrossRef S. Lei, X.F. Li, Y.Q. Deng, Y.K. Xiao, Y.C. Chen and H.W. Wang, Microstructure and Mechanical Properties of Electron Beam Freeform Fabricated TiB2/Al-Cu Composite, Mater. Lett., 2020, 277, p 128273.CrossRef
23.
Zurück zum Zitat X.X. Dong, H. Youssef, Y.J. Zhang, H.L. Yang, S.H. Wang and S.X. Ji, Advanced Heat Treated Die-Cast Aluminium Composites Fabricated by TiB2 Nanoparticle Implantation, Mater. Des., 2019, 186, p 108372.CrossRef X.X. Dong, H. Youssef, Y.J. Zhang, H.L. Yang, S.H. Wang and S.X. Ji, Advanced Heat Treated Die-Cast Aluminium Composites Fabricated by TiB2 Nanoparticle Implantation, Mater. Des., 2019, 186, p 108372.CrossRef
24.
Zurück zum Zitat J. Liu, Z.W. Liu, Z.W. Dong, X.L. Cheng, Q.L. Zheng, J. Li, Z. Sha, Z.F. Huang, Y.M. Gao, J.D. Xing and Q.Y. Han, On the Preparation and Mechanical Properties of In Situ Small-Sized TiB2/Al-4.5Cu Composites Via Ultrasound Assisted RD Method, J. Alloy. Compd., 2018, 765, p 1008–1017.CrossRef J. Liu, Z.W. Liu, Z.W. Dong, X.L. Cheng, Q.L. Zheng, J. Li, Z. Sha, Z.F. Huang, Y.M. Gao, J.D. Xing and Q.Y. Han, On the Preparation and Mechanical Properties of In Situ Small-Sized TiB2/Al-4.5Cu Composites Via Ultrasound Assisted RD Method, J. Alloy. Compd., 2018, 765, p 1008–1017.CrossRef
25.
Zurück zum Zitat S. Mozammil, J. Karloopia, R. Verma and P.K. Jha, Effect of Varying TiB2 Reinforcement and its Ageing Behaviour on Tensile and Hardness Properties of In-Situ Al-4.5%Cu-xTiB2 Composite, J. Alloy. Compd., 2019, 793, p 454–466.CrossRef S. Mozammil, J. Karloopia, R. Verma and P.K. Jha, Effect of Varying TiB2 Reinforcement and its Ageing Behaviour on Tensile and Hardness Properties of In-Situ Al-4.5%Cu-xTiB2 Composite, J. Alloy. Compd., 2019, 793, p 454–466.CrossRef
26.
Zurück zum Zitat F. Chen, Z. Chen, F. Mao, T. Wang and Z. Cao, TiB2 Reinforced Aluminum Based In Situ Composites Fabricated by Stir Casting, Mat. Sci. Eng. A, 2015, 625, p 357–368.CrossRef F. Chen, Z. Chen, F. Mao, T. Wang and Z. Cao, TiB2 Reinforced Aluminum Based In Situ Composites Fabricated by Stir Casting, Mat. Sci. Eng. A, 2015, 625, p 357–368.CrossRef
27.
Zurück zum Zitat S.L. Zhang, J. Yang, B.R. Zhang, Y.T. Zhao, G. Chen, X.X. Shi and Z.P. Liang, A Novel Fabrication Technology of In Situ TiB2/6063Al Composites: High Energy Ball Milling and Melt In Situ Reaction, J. Alloy. Compd., 2015, 639, p 215–223.CrossRef S.L. Zhang, J. Yang, B.R. Zhang, Y.T. Zhao, G. Chen, X.X. Shi and Z.P. Liang, A Novel Fabrication Technology of In Situ TiB2/6063Al Composites: High Energy Ball Milling and Melt In Situ Reaction, J. Alloy. Compd., 2015, 639, p 215–223.CrossRef
28.
Zurück zum Zitat L. Lü, M.O. Lai, Y. Su, H.L. Teo and C.F. Feng, In Situ TiB2 Reinforced Al Alloy Composites, Scripta Mater., 2001, 45(9), p 1017–1023.CrossRef L. Lü, M.O. Lai, Y. Su, H.L. Teo and C.F. Feng, In Situ TiB2 Reinforced Al Alloy Composites, Scripta Mater., 2001, 45(9), p 1017–1023.CrossRef
29.
Zurück zum Zitat K.L. Tee, L. Lu and M.O. Lai, Synthesis of In Situ Al-TiB2 Composites Using Stir Cast Route, Compos. Struct., 1999, 47(1–4), p 589–593.CrossRef K.L. Tee, L. Lu and M.O. Lai, Synthesis of In Situ Al-TiB2 Composites Using Stir Cast Route, Compos. Struct., 1999, 47(1–4), p 589–593.CrossRef
30.
Zurück zum Zitat J.V. Wood, D.G. McCartney, K. Dinsdale, J.L.F. Kellie and P. Davies, Casting and Mechanical Properties of a Reactively Cast Al-TiB2 Alloy, Cast Metal., 1995, 8(1), p 57–64. J.V. Wood, D.G. McCartney, K. Dinsdale, J.L.F. Kellie and P. Davies, Casting and Mechanical Properties of a Reactively Cast Al-TiB2 Alloy, Cast Metal., 1995, 8(1), p 57–64.
31.
Zurück zum Zitat J. Yi, G. Wang, S.K. Li, Z.W. Liu and Y.L. Gong, Effect of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of Welded Joints of 6061–T6 Aluminum Alloy, T. Nonferr. Metal. Soc., 2019, 29(10), p 2035–2046.CrossRef J. Yi, G. Wang, S.K. Li, Z.W. Liu and Y.L. Gong, Effect of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of Welded Joints of 6061–T6 Aluminum Alloy, T. Nonferr. Metal. Soc., 2019, 29(10), p 2035–2046.CrossRef
32.
Zurück zum Zitat S. Agrawal, A.K. Ghose and I. Chakrabarty, Effect of Rotary Electromagnetic Stirring During Solidification of In-Situ Al-TiB2 Composites, Mater. Design., 2017, 113, p 195–206.CrossRef S. Agrawal, A.K. Ghose and I. Chakrabarty, Effect of Rotary Electromagnetic Stirring During Solidification of In-Situ Al-TiB2 Composites, Mater. Design., 2017, 113, p 195–206.CrossRef
33.
Zurück zum Zitat A. Kumar, R.K. Gautam and R. Tyagi, Dry Sliding Wear characteristics of In Situ Synthesized Al-Tic Composites, Compos. Interface., 2016, 23(6), p 469–480.CrossRef A. Kumar, R.K. Gautam and R. Tyagi, Dry Sliding Wear characteristics of In Situ Synthesized Al-Tic Composites, Compos. Interface., 2016, 23(6), p 469–480.CrossRef
34.
Zurück zum Zitat Z.Y. Yu, N.Q. Zhao, E.Z. Liu, C.S. Shi, X.W. Du and J. Wang, Low-Temperature Synthesis of Aluminum Borate Nanowhiskers on the Surface of Aluminum Powder Promoted by Ball-Milling Pretreatment, Powder. Technol., 2011, 212(2), p 310–315.CrossRef Z.Y. Yu, N.Q. Zhao, E.Z. Liu, C.S. Shi, X.W. Du and J. Wang, Low-Temperature Synthesis of Aluminum Borate Nanowhiskers on the Surface of Aluminum Powder Promoted by Ball-Milling Pretreatment, Powder. Technol., 2011, 212(2), p 310–315.CrossRef
35.
Zurück zum Zitat R. Raghu, J. Nampoothiri and T.S. Kumar, In-Situ Generation of MgAl2O4 Particles in Al-Mg Alloy Using H3BO3 Addition for Grain Refinement Under Ultrasonic Treatment, Measurement, 2018, 129, p 389–394.CrossRef R. Raghu, J. Nampoothiri and T.S. Kumar, In-Situ Generation of MgAl2O4 Particles in Al-Mg Alloy Using H3BO3 Addition for Grain Refinement Under Ultrasonic Treatment, Measurement, 2018, 129, p 389–394.CrossRef
36.
Zurück zum Zitat I.S. Lee, C. Hsu, C.F. Chen, N.J. Ho and P.W. Kao, Particle-Reinforced Aluminum Matrix Composites Produced from Powder Mixtures Via Friction Stir Processing, Compos. Sci. Technol., 2011, 71(5), p 693–698.CrossRef I.S. Lee, C. Hsu, C.F. Chen, N.J. Ho and P.W. Kao, Particle-Reinforced Aluminum Matrix Composites Produced from Powder Mixtures Via Friction Stir Processing, Compos. Sci. Technol., 2011, 71(5), p 693–698.CrossRef
37.
Zurück zum Zitat T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, 1st ed. Cambridge University Press, Cambridge, 1993.CrossRef T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, 1st ed. Cambridge University Press, Cambridge, 1993.CrossRef
38.
Zurück zum Zitat S. Jayalakshmi, S. Gupta, S. Sankaranarayanan, S. Sahu and M. Gupta, Structural and Mechanical Properties of Ni60Nb40 Amorphous Alloy Particle Reinforced Al-Based composites Produced by Microwave-Assisted Rapid Sintering, Mat. Sci. Eng. A, 2013, 581, p 119–127.CrossRef S. Jayalakshmi, S. Gupta, S. Sankaranarayanan, S. Sahu and M. Gupta, Structural and Mechanical Properties of Ni60Nb40 Amorphous Alloy Particle Reinforced Al-Based composites Produced by Microwave-Assisted Rapid Sintering, Mat. Sci. Eng. A, 2013, 581, p 119–127.CrossRef
39.
Zurück zum Zitat G. Huang, J. Wu, W. Hou and Y. Shen, Microstructure, Mechanical Properties and Strengthening Mechanism of Titanium Particle Reinforced Aluminum Matrix Composites Produced by Submerged Friction Stir Processing, Mat. Sci. Eng. A, 2018, 734, p 353–363.CrossRef G. Huang, J. Wu, W. Hou and Y. Shen, Microstructure, Mechanical Properties and Strengthening Mechanism of Titanium Particle Reinforced Aluminum Matrix Composites Produced by Submerged Friction Stir Processing, Mat. Sci. Eng. A, 2018, 734, p 353–363.CrossRef
40.
Zurück zum Zitat B. Bhushan, Introduction to Tribology, 2nd ed. Wiley, Chichester, 2013.CrossRef B. Bhushan, Introduction to Tribology, 2nd ed. Wiley, Chichester, 2013.CrossRef
Metadaten
Titel
Microstructure, Tensile Properties, and Wear Resistance of In Situ TiB2/6061 Composites Prepared by High Energy Ball Milling and Stir Casting
verfasst von
Weibin Zhuang
Hairui Yang
Weibo Yang
Jialong Cui
Liguo Huang
Chun Wu
Jingfu Liu
Yuejun Sun
Chao Meng
Publikationsdatum
26.07.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05964-1

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.