Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2017

27.02.2017

Microstructures, Forming Limit and Failure Analyses of Inconel 718 Sheets for Fabrication of Aerospace Components

verfasst von: K. Sajun Prasad, Sushanta Kumar Panda, Sujoy Kumar Kar, Mainak Sen, S. V. S. Naryana Murty, Sharad Chandra Sharma

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, aerospace industries have shown increasing interest in forming limits of Inconel 718 sheet metals, which can be utilised in designing tools and selection of process parameters for successful fabrication of components. In the present work, stress-strain response with failure strains was evaluated by uniaxial tensile tests in different orientations, and two-stage work-hardening behavior was observed. In spite of highly preferred texture, tensile properties showed minor variations in different orientations due to the random distribution of nanoprecipitates. The forming limit strains were evaluated by deforming specimens in seven different strain paths using limiting dome height (LDH) test facility. Mostly, the specimens failed without prior indication of localized necking. Thus, fracture forming limit diagram (FFLD) was evaluated, and bending correction was imposed due to the use of sub-size hemispherical punch. The failure strains of FFLD were converted into major-minor stress space (σ-FFLD) and effective plastic strain-stress triaxiality space (ηEPS-FFLD) as failure criteria to avoid the strain path dependence. Moreover, FE model was developed, and the LDH, strain distribution and failure location were predicted successfully using above-mentioned failure criteria with two stages of work hardening. Fractographs were correlated with the fracture behavior and formability of sheet metal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Yuan and W.C. Liu, Effect of the δ Phase on the Hot Deformation Behavior of Inconel 718, Mater. Sci. Eng. A, 2005, 408, p 281–289CrossRef H. Yuan and W.C. Liu, Effect of the δ Phase on the Hot Deformation Behavior of Inconel 718, Mater. Sci. Eng. A, 2005, 408, p 281–289CrossRef
2.
Zurück zum Zitat H.J. Song, Microstructural Evolution and Deformation Mechanisms in Nickel-Base Superalloys. PhD Thesis, University of Cincinnati, USA, 2010 H.J. Song, Microstructural Evolution and Deformation Mechanisms in Nickel-Base Superalloys. PhD Thesis, University of Cincinnati, USA, 2010
3.
Zurück zum Zitat K.S. Prasad, T. Kamal, S.K. Panda, S. Kar, S.V.S. Narayana Murty, and S.C. Sharma, Finite Element Validation of Forming Limit Diagram of IN-718 Sheet Metal, Mater. Today Proc., 2015, 2(4), p 2037–2045CrossRef K.S. Prasad, T. Kamal, S.K. Panda, S. Kar, S.V.S. Narayana Murty, and S.C. Sharma, Finite Element Validation of Forming Limit Diagram of IN-718 Sheet Metal, Mater. Today Proc., 2015, 2(4), p 2037–2045CrossRef
4.
Zurück zum Zitat S.C. Krishna, S.K. Singh, S.V.S.N. Murty, G.V. Narayana, A.K. Jha, B. Pant, and K.M. George, Closed Die Hammer Forging of Inconel 718, J. Metall., 2014, 2014, p 1–7CrossRef S.C. Krishna, S.K. Singh, S.V.S.N. Murty, G.V. Narayana, A.K. Jha, B. Pant, and K.M. George, Closed Die Hammer Forging of Inconel 718, J. Metall., 2014, 2014, p 1–7CrossRef
5.
Zurück zum Zitat L.H. Thaller and A.H. Zimmerman, Overview of the Design, Development, and Application of Nickel-Hydrogen Batteries, NASA Tech. Rep., 2003, (NASA TP—2003-211905) L.H. Thaller and A.H. Zimmerman, Overview of the Design, Development, and Application of Nickel-Hydrogen Batteries, NASA Tech. Rep., 2003, (NASA TP—2003-211905)
6.
Zurück zum Zitat P. Roamer, C.J. Van Tyne, D.K. Matlock, A.M. Meier, H. Ruble, and F. Suarez, Room Temperature Formability of Alloys 625LCF, 718 and 718SPF, Advanced Steel Processing and Products Research Center Colorado School of Mines Golden, CO 80401, TMS, 1997, p 315–329 P. Roamer, C.J. Van Tyne, D.K. Matlock, A.M. Meier, H. Ruble, and F. Suarez, Room Temperature Formability of Alloys 625LCF, 718 and 718SPF, Advanced Steel Processing and Products Research Center Colorado School of Mines Golden, CO 80401, TMS, 1997, p 315–329
7.
Zurück zum Zitat K. Hariharan, N.T. Nguyen, N. Chakraborti, M.G. Lee, and F. Barlat, Multi-objective Genetic Algorithm to Optimize Variable Drawbead Geometry for Tailor Welded Blanks Made of Dissimilar Steels, Steel Res. Int., 2014, 85, p 1597–1607CrossRef K. Hariharan, N.T. Nguyen, N. Chakraborti, M.G. Lee, and F. Barlat, Multi-objective Genetic Algorithm to Optimize Variable Drawbead Geometry for Tailor Welded Blanks Made of Dissimilar Steels, Steel Res. Int., 2014, 85, p 1597–1607CrossRef
8.
Zurück zum Zitat S.M. Hussaini, G. Krishna, A.K. Gupta, and S.K. Singh, Development of Experimental and Theoretical Forming Limit Diagrams for Warm Forming of Austenitic Stainless Steel 316, J. Manuf. Process., 2015, 18, p 151–158CrossRef S.M. Hussaini, G. Krishna, A.K. Gupta, and S.K. Singh, Development of Experimental and Theoretical Forming Limit Diagrams for Warm Forming of Austenitic Stainless Steel 316, J. Manuf. Process., 2015, 18, p 151–158CrossRef
9.
Zurück zum Zitat K. Bandyopadhyay, S.K. Panda, and P. Saha, Optimization of Fiber Laser Welding of DP980 Steels Using RSM to Improve Weld Properties for Formability, J. Mater. Eng. Perform., 2016, 25, p 2462–2477CrossRef K. Bandyopadhyay, S.K. Panda, and P. Saha, Optimization of Fiber Laser Welding of DP980 Steels Using RSM to Improve Weld Properties for Formability, J. Mater. Eng. Perform., 2016, 25, p 2462–2477CrossRef
10.
Zurück zum Zitat S.K. Singh, K. Mahesh, A. Kumar, and M. Swathi, Understanding Formability of Extra-Deep Drawing Steel at Elevated Temperature Using Finite Element Simulation, Mater. Des., 2010, 31, p 4478–4484CrossRef S.K. Singh, K. Mahesh, A. Kumar, and M. Swathi, Understanding Formability of Extra-Deep Drawing Steel at Elevated Temperature Using Finite Element Simulation, Mater. Des., 2010, 31, p 4478–4484CrossRef
11.
Zurück zum Zitat S.S. Panicker, H.G. Singh, S.K. Panda, and R. Dashwood, Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24, p 4267–4282CrossRef S.S. Panicker, H.G. Singh, S.K. Panda, and R. Dashwood, Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24, p 4267–4282CrossRef
12.
Zurück zum Zitat K. Bandyopadhyay, S.K. Panda, and P. Saha, Investigations Into the Influence of Weld Zone on Formability of Fiber Laser-Welded Advanced High Strength Steel, J. Mater. Eng. Perform., 2014, 23, p 1465–1479CrossRef K. Bandyopadhyay, S.K. Panda, and P. Saha, Investigations Into the Influence of Weld Zone on Formability of Fiber Laser-Welded Advanced High Strength Steel, J. Mater. Eng. Perform., 2014, 23, p 1465–1479CrossRef
13.
Zurück zum Zitat K. Hariharan, G. Balachandran, and M.S. Prasad, Application of Cost-Effective Stainless Steel for Automotive Components, Mater. Manuf. Process., 2009, 24, p 1442–1452CrossRef K. Hariharan, G. Balachandran, and M.S. Prasad, Application of Cost-Effective Stainless Steel for Automotive Components, Mater. Manuf. Process., 2009, 24, p 1442–1452CrossRef
14.
Zurück zum Zitat R.K. Kesharwani, S.K. Panda, and S.K. Pal, Experimental Investigations on Formability of Aluminum Tailor Friction Stir Welded Blanks in Deep Drawing Process, J. Mater. Eng. Perform., 2015, 24, p 1038–1049CrossRef R.K. Kesharwani, S.K. Panda, and S.K. Pal, Experimental Investigations on Formability of Aluminum Tailor Friction Stir Welded Blanks in Deep Drawing Process, J. Mater. Eng. Perform., 2015, 24, p 1038–1049CrossRef
15.
Zurück zum Zitat S.P. Keeler, Determination of Forming Limits in Automotive Stampings, SAE Tech. Pap., 1965, 42, p 683–691 S.P. Keeler, Determination of Forming Limits in Automotive Stampings, SAE Tech. Pap., 1965, 42, p 683–691
16.
Zurück zum Zitat G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop, SAE Tech. Pap., 1968, 60, p 764–774 G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop, SAE Tech. Pap., 1968, 60, p 764–774
17.
Zurück zum Zitat S.S. Hecker, Simple Technique for Determining Forming Limit Curves, Sheet Met. Ind., 1975, 52, p 671–676 S.S. Hecker, Simple Technique for Determining Forming Limit Curves, Sheet Met. Ind., 1975, 52, p 671–676
18.
Zurück zum Zitat L.X. Zhou and T.N. Baker, Effects of Strain Rate and Temperature on Deformation Behaviour of IN 718 During High Temperature Deformation, Mater. Sci. Eng. A, 1994, 177, p 1–9CrossRef L.X. Zhou and T.N. Baker, Effects of Strain Rate and Temperature on Deformation Behaviour of IN 718 During High Temperature Deformation, Mater. Sci. Eng. A, 1994, 177, p 1–9CrossRef
19.
Zurück zum Zitat X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577CrossRef X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577CrossRef
20.
Zurück zum Zitat F.-L. Sui, L.-X. Xu, L.-Q. Chen, and X.-H. Liu, Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211, p 433–440CrossRef F.-L. Sui, L.-X. Xu, L.-Q. Chen, and X.-H. Liu, Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211, p 433–440CrossRef
21.
Zurück zum Zitat H.N. Han and K.H. Kim, A Ductile Fracture Criterion in Sheet Metal Forming Process, J. Mater. Process. Technol., 2003, 142, p 231–238CrossRef H.N. Han and K.H. Kim, A Ductile Fracture Criterion in Sheet Metal Forming Process, J. Mater. Process. Technol., 2003, 142, p 231–238CrossRef
22.
Zurück zum Zitat M.B. Silva, M. Skjoedt, A.G. Atkins, N. Bay, and P.A.F. Martins, Single-Point Incremental Forming and Formability–Failure Diagrams, J. Strain Anal. Eng. Des., 2008, 43, p 15–35CrossRef M.B. Silva, M. Skjoedt, A.G. Atkins, N. Bay, and P.A.F. Martins, Single-Point Incremental Forming and Formability–Failure Diagrams, J. Strain Anal. Eng. Des., 2008, 43, p 15–35CrossRef
23.
Zurück zum Zitat K. Isik, M.B. Silva, A.E. Tekkaya, and P.A.F. Martins, Formability Limits by Fracture in Sheet Metal Forming, J. Mater. Process. Technol., 2014, 214, p 1557–1565CrossRef K. Isik, M.B. Silva, A.E. Tekkaya, and P.A.F. Martins, Formability Limits by Fracture in Sheet Metal Forming, J. Mater. Process. Technol., 2014, 214, p 1557–1565CrossRef
24.
Zurück zum Zitat A.S. Korhonen and T. Manninen, Forming and Fracture Limits of Austenitic Stainless Steel Sheets, Mater. Sci. Eng. A, 2008, 488, p 157–166CrossRef A.S. Korhonen and T. Manninen, Forming and Fracture Limits of Austenitic Stainless Steel Sheets, Mater. Sci. Eng. A, 2008, 488, p 157–166CrossRef
25.
Zurück zum Zitat M. Gorji, B. Berisha, P. Hora, and F. Barlat, Modeling of Localization and Fracture Phenomena in Strain and Stress Space for Sheet Metal Forming. Int. J. Mater. Form., 2015, 9, p 1–12 M. Gorji, B. Berisha, P. Hora, and F. Barlat, Modeling of Localization and Fracture Phenomena in Strain and Stress Space for Sheet Metal Forming. Int. J. Mater. Form., 2015, 9, p 1–12
26.
Zurück zum Zitat J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, and J. Allwood, Asymmetric Single Point Incremental Forming of Sheet Metal, CIRP Ann. Technol., 2005, 54, p 88–114CrossRef J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, and J. Allwood, Asymmetric Single Point Incremental Forming of Sheet Metal, CIRP Ann. Technol., 2005, 54, p 88–114CrossRef
27.
Zurück zum Zitat J.D. Embury and J.L. Duncan, Formability Maps, Annu. Rev. Mater. Sci., 1981, 11, p 505–521CrossRef J.D. Embury and J.L. Duncan, Formability Maps, Annu. Rev. Mater. Sci., 1981, 11, p 505–521CrossRef
28.
Zurück zum Zitat H. Takuda, K. Mori, N. Takakura, and K. Yamaguchi, Finite Element Analysis of Limit Strain in Biaxial Stretching of Sheet Metals Allowing Ductile Fracture, Int. J. Mech. Sci., 2000, 42, p 785–798CrossRef H. Takuda, K. Mori, N. Takakura, and K. Yamaguchi, Finite Element Analysis of Limit Strain in Biaxial Stretching of Sheet Metals Allowing Ductile Fracture, Int. J. Mech. Sci., 2000, 42, p 785–798CrossRef
29.
Zurück zum Zitat M. Jain, J. Allin, and D.J. Lloyd, Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet, Int. J. Mech. Sci., 1999, 41, p 1273–1288CrossRef M. Jain, J. Allin, and D.J. Lloyd, Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet, Int. J. Mech. Sci., 1999, 41, p 1273–1288CrossRef
30.
Zurück zum Zitat S. Basak, S.K. Panda, and Y.N. Zhou, Formability Assessment of Prestrained Automotive Grade Steel Sheets Using Stress Based and Polar Effective Plastic Strain-Forming Limit Diagram, J. Eng. Mater. Tech., 2015, 137, p 1–12CrossRef S. Basak, S.K. Panda, and Y.N. Zhou, Formability Assessment of Prestrained Automotive Grade Steel Sheets Using Stress Based and Polar Effective Plastic Strain-Forming Limit Diagram, J. Eng. Mater. Tech., 2015, 137, p 1–12CrossRef
31.
Zurück zum Zitat R. Arrieux, C. Bedrin, and M. Boivin, Determination of an Intrinsic Forming Limit Stress Diagram for Isotropic Metal Sheets. In Proceedings of the 12th Biennial Congress of the IDDRG, 1982, p 61–71. R. Arrieux, C. Bedrin, and M. Boivin, Determination of an Intrinsic Forming Limit Stress Diagram for Isotropic Metal Sheets. In Proceedings of the 12th Biennial Congress of the IDDRG, 1982, p 61–71.
32.
Zurück zum Zitat T.B. Stoughton, General Forming Limit Criterion for Sheet Metal Forming, Int. J. Mech. Sci., 2000, 42, p 1–17CrossRef T.B. Stoughton, General Forming Limit Criterion for Sheet Metal Forming, Int. J. Mech. Sci., 2000, 42, p 1–17CrossRef
33.
Zurück zum Zitat T.B. Stoughton and X. Zhu, Review of Theoretical Models of the Strain-Based FLD and Their Relevance to the Stress-Based FLD, Int. J. Plast., 2004, 20, p 1463–1486CrossRef T.B. Stoughton and X. Zhu, Review of Theoretical Models of the Strain-Based FLD and Their Relevance to the Stress-Based FLD, Int. J. Plast., 2004, 20, p 1463–1486CrossRef
34.
Zurück zum Zitat Y. Bai and T. Wierzbicki, A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence, Int. J. Plast., 2008, 24, p 1071–1096CrossRef Y. Bai and T. Wierzbicki, A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence, Int. J. Plast., 2008, 24, p 1071–1096CrossRef
35.
Zurück zum Zitat H. Hooputra, G. Metzmacher, and H. Werner, Fracture Criteria for Crashworthiness Simulation of Wrought Aluminum Alloy Components. In Proceedings of 11th Annual European Conference EuroPam, Heidelberg, Germany, 2001, p 1–18. H. Hooputra, G. Metzmacher, and H. Werner, Fracture Criteria for Crashworthiness Simulation of Wrought Aluminum Alloy Components. In Proceedings of 11th Annual European Conference EuroPam, Heidelberg, Germany, 2001, p 1–18.
36.
Zurück zum Zitat A.H. Clausen, T. Børvik, O.S. Hopperstad, and A. Benallal, Flow and Fracture Characteristics of Aluminium Alloy AA5083–H116 as Function of Strain Rate, Temperature and Triaxiality, Mater. Sci. Eng. A, 2004, 364, p 260–272CrossRef A.H. Clausen, T. Børvik, O.S. Hopperstad, and A. Benallal, Flow and Fracture Characteristics of Aluminium Alloy AA5083–H116 as Function of Strain Rate, Temperature and Triaxiality, Mater. Sci. Eng. A, 2004, 364, p 260–272CrossRef
37.
Zurück zum Zitat AMS 5596 Specification Nickel Alloy, Corrosion and Heat Resistant, Sheet, Strip, Foil, and Plate 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 18Fe Consumable Electrode or Vacuum Induction Melted, 1775 °F (968 °C) Solution Heat Treated, AMS, SAE International, 2012. http://standards.sae.org/ams5596k/. AMS 5596 Specification Nickel Alloy, Corrosion and Heat Resistant, Sheet, Strip, Foil, and Plate 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 18Fe Consumable Electrode or Vacuum Induction Melted, 1775 °F (968 °C) Solution Heat Treated, AMS, SAE International, 2012. http://​standards.​sae.​org/​ams5596k/​.
38.
Zurück zum Zitat M. Xie, Eutectic γ (Ni)/γ′(Ni3Al)-δ (Ni3Nb) Polycrystalline Nickel-Base Superalloys: Chemistry, Processing, Microstructure and Properties, PhD Thesis, Illinois Institute of Technology, USA, 2012. M. Xie, Eutectic γ (Ni)/γ(Ni3Al)-δ (Ni3Nb) Polycrystalline Nickel-Base Superalloys: Chemistry, Processing, Microstructure and Properties, PhD Thesis, Illinois Institute of Technology, USA, 2012.
39.
Zurück zum Zitat Standard, ASTM, E8/E8M Standard Test Methods for Tension Testing of Metallic Materials, ASTM. International, West Conshohocken (PA), 2011 Standard, ASTM, E8/E8M Standard Test Methods for Tension Testing of Metallic Materials, ASTM. International, West Conshohocken (PA), 2011
40.
Zurück zum Zitat J.H. Hollomon, Tensile Deformation, AIME Trans., 1945, 12, p 1–22 J.H. Hollomon, Tensile Deformation, AIME Trans., 1945, 12, p 1–22
41.
Zurück zum Zitat H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1, p 1–18CrossRef H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1, p 1–18CrossRef
42.
Zurück zum Zitat W.A. Backofen, I.R. Turner, and D.H. Avery, Superplasticity in an Al–Zn Alloy, Trans. ASM, 1964, 57, p 980–990 W.A. Backofen, I.R. Turner, and D.H. Avery, Superplasticity in an Al–Zn Alloy, Trans. ASM, 1964, 57, p 980–990
43.
Zurück zum Zitat P.L. Charpentier, Influence of Punch Curvature on the Stretching Limits of Sheet Steel, Metall. Mater. Trans. A, 1975, 6, p 1665–1669CrossRef P.L. Charpentier, Influence of Punch Curvature on the Stretching Limits of Sheet Steel, Metall. Mater. Trans. A, 1975, 6, p 1665–1669CrossRef
44.
Zurück zum Zitat O.M. Badr, B. Rolfe, P. Hodgson, and M. Weiss, Forming of High Strength Titanium Sheet at Room Temperature, Mater. Des., 2014, 66, p 618–626CrossRef O.M. Badr, B. Rolfe, P. Hodgson, and M. Weiss, Forming of High Strength Titanium Sheet at Room Temperature, Mater. Des., 2014, 66, p 618–626CrossRef
45.
Zurück zum Zitat J. He, Z.C. Xia, X. Zhu, D. Zeng, and S. Li, Sheet Metal Forming Limits Under Stretch-Bending with Anisotropic Hardening, Int. J. Mech. Sci., 2013, 75, p 244–256CrossRef J. He, Z.C. Xia, X. Zhu, D. Zeng, and S. Li, Sheet Metal Forming Limits Under Stretch-Bending with Anisotropic Hardening, Int. J. Mech. Sci., 2013, 75, p 244–256CrossRef
46.
Zurück zum Zitat K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, and S.C. Sharma, Effect of Bending Strain in Forming Limit Strain and Stress of IN-718 Sheet Metal, Mater. Sci. Forum, 2015, 830, p 238–241CrossRef K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, and S.C. Sharma, Effect of Bending Strain in Forming Limit Strain and Stress of IN-718 Sheet Metal, Mater. Sci. Forum, 2015, 830, p 238–241CrossRef
47.
Zurück zum Zitat M.J. Donachie Jr., and O.H. Kriege, Phase Extraction and Analysis in Superalloys-Summary of Investigations by ASTM Committee E-4 Task Group 1, J. Mater., 1972, 7, p 269–278 M.J. Donachie Jr., and O.H. Kriege, Phase Extraction and Analysis in Superalloys-Summary of Investigations by ASTM Committee E-4 Task Group 1, J. Mater., 1972, 7, p 269–278
48.
Zurück zum Zitat E.O. Ezugwu, Z.M. Wang, and A.R. Machado, The Machinability of Nickel-Based Alloys: A Review, J. Mater. Process. Technol., 1999, 86, p 1–16CrossRef E.O. Ezugwu, Z.M. Wang, and A.R. Machado, The Machinability of Nickel-Based Alloys: A Review, J. Mater. Process. Technol., 1999, 86, p 1–16CrossRef
49.
Zurück zum Zitat L. Garimella, P.K. Liaw, and D.L. Klarstrom, Fatigue Behavior in Nickel Based Superalloys: A Literature Review, Jom, 1997, 49, p 67–71CrossRef L. Garimella, P.K. Liaw, and D.L. Klarstrom, Fatigue Behavior in Nickel Based Superalloys: A Literature Review, Jom, 1997, 49, p 67–71CrossRef
50.
Zurück zum Zitat A. Oradei-Basile and J.F. Radavich, A Current TTT Diagram for Wrought Alloy 718, Superalloys 718, 625 Var. Deriv., tms.org, 1991, p 325–335. A. Oradei-Basile and J.F. Radavich, A Current TTT Diagram for Wrought Alloy 718, Superalloys 718, 625 Var. Deriv., tms.org, 1991, p 325–335.
51.
Zurück zum Zitat W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, and S.G. Wang, The Influence of Cold Rolling on the Precipitation of Delta Phase in Inconel 718 Alloy, Scr. Mater., 1997, 37, p 53–57CrossRef W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, and S.G. Wang, The Influence of Cold Rolling on the Precipitation of Delta Phase in Inconel 718 Alloy, Scr. Mater., 1997, 37, p 53–57CrossRef
52.
Zurück zum Zitat D.R. Kumar and K. Swaminathan, Formability of Two Aluminium Alloys, Mater. Sci. Technol., 1999, 15, p 1241–1252 D.R. Kumar and K. Swaminathan, Formability of Two Aluminium Alloys, Mater. Sci. Technol., 1999, 15, p 1241–1252
53.
Zurück zum Zitat S. Iyer, Viscoplastic Model Development to Account for Strength Differential: Application To Aged Inconel 718 at Elevated Temperature, PhD Thesis, Penn State University, USA, 2001. S. Iyer, Viscoplastic Model Development to Account for Strength Differential: Application To Aged Inconel 718 at Elevated Temperature, PhD Thesis, Penn State University, USA, 2001.
54.
Zurück zum Zitat W.F. Hosford and J.L. Duncan, Sheet Metal Forming: A Review, Jom, 1999, 51, p 39CrossRef W.F. Hosford and J.L. Duncan, Sheet Metal Forming: A Review, Jom, 1999, 51, p 39CrossRef
55.
Zurück zum Zitat M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Deformation Behavior of Gamma Double Prime Strengthened Inconel 718, Acta Met., 1988, 36, p 847–864CrossRef M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Deformation Behavior of Gamma Double Prime Strengthened Inconel 718, Acta Met., 1988, 36, p 847–864CrossRef
56.
Zurück zum Zitat M. Sundararaman, R. Kishore, and P. Mukhopadhyay, Strain Hardening in Underaged Inconel 718, Metall. Mater. Trans. A, 1994, 25, p 653–656CrossRef M. Sundararaman, R. Kishore, and P. Mukhopadhyay, Strain Hardening in Underaged Inconel 718, Metall. Mater. Trans. A, 1994, 25, p 653–656CrossRef
57.
Zurück zum Zitat A.G. Atkins, Fracture in Forming, J. Mater. Process. Technol., 1996, 56, p 609–618CrossRef A.G. Atkins, Fracture in Forming, J. Mater. Process. Technol., 1996, 56, p 609–618CrossRef
58.
Zurück zum Zitat G. Maresca, P.P. Milella, and G. Pino, A Critical Review of Triaxiality Based Failure Criteria, Con. IGF XIII Cassino, 1997, 2008. G. Maresca, P.P. Milella, and G. Pino, A Critical Review of Triaxiality Based Failure Criteria, Con. IGF XIII Cassino, 1997, 2008.
59.
Zurück zum Zitat R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. London A: Math. Phys. Eng. Sci., 1948, 193, p 281–297CrossRef R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. London A: Math. Phys. Eng. Sci., 1948, 193, p 281–297CrossRef
Metadaten
Titel
Microstructures, Forming Limit and Failure Analyses of Inconel 718 Sheets for Fabrication of Aerospace Components
verfasst von
K. Sajun Prasad
Sushanta Kumar Panda
Sujoy Kumar Kar
Mainak Sen
S. V. S. Naryana Murty
Sharad Chandra Sharma
Publikationsdatum
27.02.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2547-4

Weitere Artikel der Ausgabe 4/2017

Journal of Materials Engineering and Performance 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.